
Secure and Private Sequence Comparisons ∗

Mikhail J. Atallah
Department of Computer
Sciences and CERIAS

Purdue University
West Lafayette, IN 47907

mja@cs.purdue.edu

Florian Kerschbaum
Department of Computer
Sciences and CERIAS

Purdue University
West Lafayette, IN 47907

fk@cerias.purdue.edu

Wenliang Du
Department of Electrical

Engineering and Computer
Science

Syracuse University
Syracuse, NY 13204

wedu@ecs.syr.edu

ABSTRACT
We give an efficient protocol for sequence comparisons of the
edit-distance kind, such that neither party reveals anything
about their private sequence to the other party (other than
what can be inferred from the edit distance between their
two sequences – which is unavoidable because computing
that distance is the purpose of the protocol). The amount of
communication done by our protocol is proportional to the
time complexity of the best-known algorithm for performing
the sequence comparison.

The problem of determining the similarity between two
sequences arises in a large number of applications, in partic-
ular in bioinformatics. In these application areas, the edit
distance is one of the most widely used notions of sequence
similarity: It is the least-cost set of insertions, deletions,
and substitutions required to transform one string into the
other. The generalizations of edit distance that are solved
by the same kind of dynamic programming recurrence rela-
tion as the one for edit distance, cover an even wider domain
of applications.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complex-

ity]: Nonnumerical Algorithms and Problems;
D.4.6 [Operating Systems]: Security and Protection

General Terms
Algorithms, Security

∗Portions of this work were supported by Grants EIA-
9903545, IIS-0219560, IIS-0312357, and IIS-0242421 from
the National Science Foundation, Contract N00014-02-1-
0364 from the Office of Naval Research, by sponsors of
the Center for Education and Research in Information As-
surance and Security, and by Purdue Discovery Park’s e-
enterprise Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’03, October 30, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-776-1/03/0010 ...$5.00.

Keywords
Dynamic programming, edit distance, longest common sub-
sequence, privacy, secure multi-party computation, string
matching

1. INTRODUCTION
We begin with a broad motivation for the framework con-

sidered in this paper. Suppose one bio-engineering com-
pany (call it ”Alice”) has a requirement for a certain bio-
sequence λ and wants to check whether another company
(call it ”Bob”) already has a sequence similar (not neces-
sarily exactly equal) to λ (in which case Alice may want to
negotiate its purchase from Bob). But Alice does not want
Bob to know what Alice is looking for, and similarly Bob
does not want its proprietary catalog of sequences unnec-
essarily revealed. It could be valuable for the companies to
have the ability to perform such comparisons, without either
of them revealing anything about their own sequence (other
than the cooperatively computed distance between their re-
spective sequences). If one of the entities is an individual,
then there are privacy reasons for not wanting to send one’s
DNA to a corporation – the danger is that one could send it
for one purpose X, and later on it also gets used for another
(unauthorized) purpose Y; it is better if there is a protocol
for X that gets the job done yet inherently safeguards the
privacy of the participants’ data. The protocols we give in
this paper achieve such a result for a certain kind of sequence
comparison (the edit distance), and can also be modified so
that only one of the two parties learns the answer. We be-
lieve this kind of framework deserves more investigation in
the bioinformatics community, and our paper is a first step
in that direction.

One of the fundamental methods for molecular sequence
comparison and alignment is the Needleman-Wunsch algo-
rithm [12], which is used in software for detecting similarities
between two DNA sequences. The underlying sequence com-
parison and alignment problem is also known as the string
edit problem in the literature. The dynamic programming
recurrence relation that subtends the solution to this prob-
lem, also serves to solve many other important related prob-
lems (either as special cases, or as generalizations that have
the same dynamic programming kind of solution). These
include the longest common subsequence problem, and the
problem of approximate matching between a pattern se-
quence and text sequence (there is a huge literature of pub-
lished work for the notion of approximate pattern matching

and its connection to the sequence alignment problem). Any
solution to the general sequence comparison problem could
also be used to solve these related problems. For example,
our protocol can remotely compute the answer to the Unix

command

diff file1 file2 | wc -l

where file1 is with Alice and file2 is with Bob, without Al-
ice learning anything about file2 and without Bob learning
anything about file1.

We now precisely state the problem. We first describe
the weighted edit distance problem, in which the cost of an
insertion or deletion or substitution is a symbol-dependent
weight that can be different from 1, and the edit distance is
then the least-cost set of insertions, deletions, and substitu-
tions required to transform one string into the other. More
formally, if we let λ be a string of length n, λ = λ1 . . . λn

and µ be a string of length m, µ = µ1 . . . µm, both over some
alphabet Σ. There are three types of allowed edit operations
to be done on λ: insertion of a symbol, deletion of a symbol,
and substitution of one symbol by another. Each operation
has a cost associated with it, namely I(a) denotes the cost of
inserting the symbol a, D(a) denotes the cost of deleting a,
and S(a, b) denotes the cost of substituting a with b. Each
sequence of operations that transforms λ into µ has a cost
associated with it (= the sum of the costs of the operations
in it), and the least-cost such sequence is the edit-distance.
Our solution allows arbitrary I(a), D(b), and S(a, b) values,
and we give more practical solutions for two special cases:
(i) S(a, b) = |a− b|, and (ii) unit insertion/deletion cost and
S(a, b) = 0 if a = b and S(a, b) = +∞ if a 6= b (in effect
forbidding substitutions).

The longest common subsequence problem is a special case
of edit distance, where insertions and deletions have unit-
cost, I(a) = D(a) = 1, and substitutions are only used if a
and b are equal, S(a, b) = 0 if a = b, else S(a, b) = +∞. The
length l of the longest common subsequence is then easily
seen to be related to the edit distance e in the following way:

l =
n + m − e

2
.

2. RELATED WORK
As mentioned above, the edit distance problem arises in

a large number of application areas. For this reason, it has
been studied rather extensively in the past, and forms the
object of several papers (e.g. [9, 10, 12, 14, 15, 17, 20], to
list a few). The problem is solved by an algorithm that runs
in Θ(mn) time, through dynamic programming (cf. for ex-
ample, [20]). Such a performance represents a lower bound
when the queries on symbols of the string are restricted to
tests of equality [1, 21]. Many important problems are spe-
cial cases of the edit distance problem, including the above-
mentioned longest common subsequence problem and the
problem of approximate matching between a pattern string
and text string (see [8, 18, 19] for the notion of approximate
pattern matching and its connection to the edit distance
problem). Needless to say that our solution to the edit dis-
tance problem implies similar bounds for all of these special
cases.

The problem of computing the edit distance without Al-
ice revealing her string λ to Bob and without Bob revealing
his string µ to Alice, is a special case of secure multi-party

computation. Elegant general constructions have been de-
veloped to solve any secure two-party (or even multi-party)
function computation [6, 22]. Goldreich recommends that
these general solutions not be used in practice, but that more
efficient problem-specific solutions should be developed [6].
Many such solutions to specific problems have been devel-
oped, but not for the edit distance problem. The previous
work most related to this paper is [4], where protocols for
other distance metrics were given, including Hamming dis-
tance, the L1 and L2 distance metrics. All these metrics
considered in [4] were between strings that have the same
length as each other – it is indeed a limitation of the tech-
niques in [4] that they do not extend to the present situa-
tion where the strings are of different length and therefore
insertions and deletions have to be allowed. This makes the
problem substantially different, as the edit distance algo-
rithm is described by a dynamic program that computes it,
rather than as a simple one-line mathematical expression.

3. BUILDING BLOCKS
Giving the full-fledged protocol would make it too long

and rather hard to comprehend. This section aims at mak-
ing the later presentation of the protocol much crisper by
presenting some of the ideas and building blocks for it ahead
of time, right after a brief review of the standard dynamic
programming solution to string edit.

3.1 Edit Distance via Dynamic Programming
As is evident from [15], the dynamic programming idea

for computing edit distance was independently discovered
by over a dozen groups of researchers – each group working
in one particular application area (thus whereas computer
scientists call it the Wagner-Fischer technique, biologists call
it Needleman-Wunsch).

Let M(i, j), (0 ≤ i ≤ n, 0 ≤ j ≤ m) be the minimum
cost of transforming the prefix of λ of length i into the prefix
of µ of length j, i.e., of transforming λ1 . . . λi into µ1 . . . µj .
Then

M(0, 0) = 0

M(0, j) =
∑j

k=1
I(µj) for 1 ≤ j ≤ m

M(i, 0) =
∑i

k=1
D(λi) for 1 ≤ i ≤ n

and for positive i and j, 1 ≤ i ≤ n and 1 ≤ j ≤ m we have

M(i, j) = min

M(i − 1, j − 1) + S(λi, µj)
M(i − 1, j) + D(λi)
M(i, j − 1) + I(µj)

.

Hence M(i, j) can be evaluated row-by-row or column-by-
column in Θ(mn) time [20]. Observe that, of all entries of
the M -matrix, only the three entries M(i− 1, j − 1), M(i−
1, j) and M(i, j − 1) are involved in the computation of the
final value of M(i, j).

Not only does the above dynamic program for computing
M depend on both λ and µ, but even if M could be com-
puted without exchanging λ and µ, the problem remains
that M itself is too revealing: It reveals not only the overall
edit distance, but also the edit distance from every prefix of
λ to every prefix of µ. It is a requirement of our problem
that the only information revealed to Alice and Bob by the
protocol is the overall edit distance. The matrix M should
therefore be known neither to Alice nor to Bob. Only at
then end is M(n, m) revealed to Alice and Bob (or to only
one of them, if that is the goal).

3.2 How M is Stored
Our edit distance protocol computes the same matrix as

the dynamic programming algorithm, in the same order
(e.g., row by row). A crucial difference is that the matrix
M is additively shared between Alice and Bob: Alice and
Bob each hold a matrix MA and MB, respectively, the sum
of which is the matrix M , i.e., M = MA + MB . The proto-
col will keep this as an invariant through all its steps. This
does not solve all privacy problems of the computation, but
it will be one of the guiding principles of our protocol. The
problem is more difficult than that, because the result of
each comparison, as well as the indices of the minimum el-
ements, have to be shared (in the sense that neither party
individually knows them).
Notation: Throughout the paper, items subscripted with A
are known to Alice but not to Bob, those subscripted with
B are known to Bob but not to Alice.

3.3 Homomorphic Encryption
In a homomorphic encryption scheme, the following holds:

E(a) ∗ E(b) = E(a + b). Several such encryption systems
have been proposed that operate over a “modulo-group” [2,
7, 11, 13]. We assume that the group size is large enough for
a + b and a − b to avoid “wrap-around”; in our case this is
easy to achieve because the numbers involved are in a small
range, hence (if computations are modulo n) we can shift
the whole range of interest up by n/2 and no wraparound
will occur (we henceforth assume this is done and avoid re-
peating it explicitly in what follows, to avoid unnecessarily
cluttering the exposition). The encryption scheme should
also be public-key and semantically secure, i.e., E(a) gives
no information about a. Several steps of our protocol use
homomorphic encryption.

3.4 Minimum Finding Protocol for Split Data
Assume that Alice and Bob share a vector ~c additively,

i.e., ~c = ~a +~b such that Alice has ~a = (a1, . . . , al) and Bob

has ~b = (b1, . . . , bl). They want to compute the minimum

element of the vector ~c = ~a + ~b. As a cryptographic tool
they can use a protocol for Yao’s millionaire problem [22],
which privately compares two values α (held by Alice) and
β (held by Bob), such that Alice and Bob only learn if α ≥
β is true. Various protocols for this have been proposed
(e.g., see [3, 5]). However, Alice and Bob want to compare
elements of the additively shared vector ~c. Assume they
want to determine if ci ≥ cj is true, they can compare ai−aj

(held only by Alice) and bj − bi (held only by Bob). This
follows from expansion:

ci ≥ cj ⇐⇒ ai − aj ≥ −(bi − bj)

Using the above mechanism for performing a pairwise
comparison of a ci to a cj , a naive minimum finding proto-
col could mimic any standard minimum finding algorithm,
but that approach suffers from the same problem as the dy-
namic programming algorithm: Alice and Bob would learn
(at least) the index of the minimum element by observing the
results of the comparisons. One way to avoid this problem is
to do the following before performing the above-mentioned
naive minimum finding protocol: To first blind Alice and
Bob (before they engage in such a protocol) by effecting a
random permutation of each of their two vectors as a random
vector is added to Alice’s vector and subtracted from Bob’s

vector. This permutation and random vector are known nei-
ther to Alice nor to Bob; observe that, while the resulting
two vectors are such that the minimum entry in their sum
is the same as for the sum of the original vectors, it now no
longer matters if Alice and Bob know where the minimum
occurs because they have no way of relating that position to
the index that corresponds to it in their original vectors (and
therefore using the naive minimum finding protocol becomes
acceptable).

The question that remains is how to achieve this “permut-
ing and additive blinding”. This is described next.

Blind-and-Permute Protocol
It is enough to describe how the “permuting and additive
blinding” is done when Bob is to know both the permutation
and random vector used, because by doing it another time
with the roles of Alice and Bob reversed (that is, Alice is
to know, but not Bob) we achieve the desired result (of nei-
ther of them knowing the overall permutation and random
vector that were used). This is because the overall permu-
tation would then be the composition of two permutations
each of which is known to only one of the two parties, and
the random vector is the sum of two vectors each of which
is known to only one of the two parties. The following de-
scribes how the “permuting and additive blinding” is done
when Bob knows both the permutation and random vector
used, but Alice doesn’t.

Alice has a vector ~a = (a1, . . . , al) and Bob wants to per-
mute the elements of Alice’s vector after adding to it a ran-
dom vector (of course he also similarly permutes his own
vector after subtracting from it the same random vector,
thus maintaining the value of the minimum entry in the sum
of their two vectors). Observe that, without the addition of
the random vector, Alice could infer the permutation. The
protocol is:

1. Alice generates a public and private key pair for a ho-
momorphic semantically-secure public key system and
sends the public key to Bob. In what follows E(·)
denotes encryption with Alice’s public key, and D(·)
decryption with Alice’s private key.

2. Alice encrypts each entry (a1, . . . , al) using her public

key and sends ~a′ = (E(a1), . . . , E(al)) to Bob.

3. Bob generates a random vector ~r = (r1, . . . , rl) (the
ri’s are random and both positive and negative). He
then computes θi = a′

i · E(ri) = E(ai + ri), for i =
1, . . . , l.

4. Bob permutes, according to a (randomly chosen) per-

mutation πB, the order of the entries of the ~θ vector
he computed in the previous step. Let ~a′′ denote the

permuted version of the vector ~θ. He sends ~a′′ to Alice
who decrypts its entries and obtains the set of l values
of the form ai + ri in a permuted order according to
πB (she knows neither πB nor ~r).

5. Bob computes ~b′ = ~b − ~r and then obtains ~b′′ by per-

muting the entries of ~b′ according to πB .

As mentioned earlier, Alice and Bob must then repeat the

above starting with ~a′′ and ~b′′ but with the roles of Alice and
Bob interchanged. After this is done, they end up with vec-
tors whose sum has the same minimum entry as in the sum

of their original vectors, but now it is safe for them to run a
naive minimum finding protocol to compute an αA and an
αB whose sum is min1≤i≤l ci. Although they could at that
point exchange αA and αB and both would learn the min-
imum value of the ci’s, in all uses of this minimum-finding
scheme by our edit distance protocol no such exchange will
take place (i.e., we will deliberately choose to keep the min-
imum value additively split between Alice and Bob).

3.5 Minimum Finding Protocol for Non-Split
Data

In this case Alice has a vector ~a = (a1, . . . , al) and Bob

has a vector ~b = (b1, . . . , bl′), and the goal is to compute
γ = min(min1≤i≤l ai, min1≤i≤l′ bi) but without either side
actually knowing this γ: Rather, Alice ends up with a γA

and Bob ends up with a γB such that γ = γA + γB. This is
achieved as follows:

1. Alice creates ~a′ of length 2: ~a′ = (min1≤i≤l ai, 0).

Similarly, Bob creates the vector ~b′ of length 2: ~b′ =
(0, min1≤i≤l bi)

2. They run the minimum finding protocol for split data
(as described in the previous section). Alice ends up
with a scalar γA and Bob with a scalar γB whose sum
is min(min1≤i≤l ai, min1≤i≤l bi).

4. EDIT DISTANCE PROTOCOL
We now “put the pieces together” and give the overall

protocol. Recall that Alice is supposed to hold matrix MA

and Bob to hold MB, with M = MA + MB . They want to
implicitly compute each element M(i, j) as in the recursive
edit distance formula, by suitably updating their own private
MA and MB . Of course when they are done computing M ,
they could exchange MA(n, m) and MB(n, m) and obtain
the edit distance M(n, m) = MA(n, m) + MB(n, m). (If
only Alice is supposed to know the answer then she simply
refrains from sending MA(n, m) to Bob.)

We begin with the case of arbitrary I(a)’s and D(a)’s,
but where S(a, b) = |a − b|. This then serves to solve the
important practical case of unit insertion/deletion cost and
forbidden substitutions (i.e., S(a, b) is 0 if a = b and +∞
otherwise). Finally, the general case of arbitrary I(a), D(b),
S(a, b) is considered and a protocol is given for it that is
asymptotically as good as the above two special cases, but
that is less practical because of its use of oblivious transfer
as a subroutine.

4.1 The Case S(a, b) = |a − b|

Initialization of MA and MB

M should be initialized the same way as in the standard
algorithm, and we should maintain the property that M =
MA +MB. Note also, that neither Alice nor Bob ever sends
any element of MA or MB , respectively in clear-text to the
other party after the initialization, until completion of the
protocol and above-mentioned exchange of results. The fol-
lowing initializes the MA and MB matrices:

• Alice sets MA(0, j) = 0 for 0 ≤ j ≤ m, she sets

MA(i, 0) =
∑i

k=1
D(λk) for 1 ≤ i ≤ n.

• Bob sets MB(i, 0) = 0 for 0 ≤ i ≤ n, he sets MB(0, j) =
∑j

k=1
I(µk).

Note that this does implicitly initialize M(i, j) in the correct
way, because it results in

• MA(0, 0) + MB(0, 0) = 0,

• MA(0, j) + MB(0, j) =
∑j

k=1
I(µj) for 1 ≤ j ≤ m,

• MA(i, 0) + MB(i, 0) =
∑i

k=1
D(λi) for 1 ≤ i ≤ n.

Note: There is no need to initialize MA(i, j) and MB(i, j)
for positive i and j, because their final value is computed
before they are ever used in a computation.

Mimicking a step of the dynamic program
The following protocol describes how an M(i, j) computa-
tion is done by Alice and Bob, i.e., how they modify their
respective MA(i, j) and MB(i, j), thus implicitly comput-
ing the final M(i, j) without either of them knowing which
update was performed.

1. Alice and Bob use the minimum finding protocol for
non-split data to compute γ′

A and γ′
B such that γ′

A +
γ′

B = min(λi, µj). Then they use a version of that
protocol for computing the max rather than the min,
to obtain γ′′

A and γ′′
B such that γ′′

A +γ′′
B = max(λi, µj).

Alice then obtains γA = γ′′
A − γ′

A, and Bob obtains
γB = γ′′

B − γ′
B . The crucial observation is that γA +

γB = max(λi, µj)−min(λi, µj) = |λi−µj | = S(λi, µj).

2. Alice then forms vA = MA(i − 1, j − 1) + γA and Bob
forms vB = MB(i − 1, j − 1) + γB . Observe that vA +
vB = M(i − 1, j − 1) + S(λi, µj), which is one of the
three quantities involved in the update step for M(i, j)
in the dynamic program.

3. Alice forms uA = MA(i−1, j)+D(λi), Bob forms uB =
MB(i − 1, j). Observe that uA + uB = M(i − 1, j) +
D(λi), which is another one of the three quantities
involved in the update step for M(i, j) in the dynamic
program.

4. Alice forms wA = MA(i, j − 1), Bob forms wB =
MB(i, j−1)+I(µj). Observe that wA+wB = M(i, j−
1) + I(µj), which is the last of the three quantities in-
volved in the update step for M(i, j) in the dynamic
program.

5. Alice and Bob use the minimum finding protocol for
split data on their respective vectors (vA, uA, wA) and
(vB , uB , wB). As a result, Alice gets an xA and Bob
gets an xB whose sum xA + xB is

xA + xB = min(vA + vB , uA + uB, wA + wB) =

= min

M(i − 1, j − 1) + S(λi, µj)
M(i − 1, j) + D(λi)
M(i, j − 1) + I(µj)

.

6. Alice replaces MA(i, j) in her MA by xA and Bob re-
places MB(i, j) by xB .

4.2 The Case of Unit Insertion and Deletion
Costs and Forbidden Substitutions

Forbidden substitutions means that S(a, b) is +∞ unless
a = b (in which case it is zero because it is a “do nothing”
operation). Of course a substitution is useless if its cost

is 2 or more (because one might as well achieve the same
effect with a deletion followed by an insertion). Let the
alphabet be Σ = {1, . . . , σ}. This could be a known fixed
set of symbols (e.g., in biology Σ = {A, C, T, G}), or the
domain of a hash function that maps the potentially infinite
alphabet into a finite domain.

The protocol is then:

1. For i = σ, . . . , 1 in turn, each side replaces, in their in-
put string, every occurrence of symbol i by the symbol
2i. Effectively the alphabet becomes {2, 4, 6, . . . , 2σ}.

2. They run the protocol given in the previous section for
the case of S(a, b) = |a− b|, using a unit cost for every
insertion and every deletion.

The reason it works is that, after the change of alphabet,
S(a, b) is zero if a = b and 2 or more if a 6= b, i.e., it is as if
S(a, b) = +∞ if a 6= b (recall that a substitution is useless
if its cost is 2 or more, because one can achieve the same
effect with a deletion followed by an insertion).

4.3 The General Case: Arbitrary I(a), D(b),
S(a, b)

Whereas the above protocols for the two special cases do
not use oblivious transfer (which we review below when we
do use it), this subsection for the most general case does
use it, and the resulting protocol is therefore less practical
than for the two special cases (although it has same the
asymptotic communication and computation complexity).

The necessary modification is in the first step of the pro-
tocol, in Sub-section 4.1, titled “mimicking a step of the dy-
namic program”. Specifically, we give below a new version of
Step 1, whose aim is still to produce a vA with Alice and a vB

with Bob such that vA +vB = M(i−1, j−1)+S(λi, µj). We
assume in what follows that the alphabet is Σ = {1, . . . , σ},
i.e., all symbols λi and µj come from Σ.

1. Alice selects a random rA and sets vA = MA(i− 1, j −
1) − rA. The task is now for Bob to get a vB that
equals MB(i − 1, j − 1) + S(λi, µj) + rA. This is done
as follows:

(a) Alice produces the σ items α1, . . . , ασ where αt =
S(λi, t) + rA.

(b) Bob uses a 1-out-of-σ oblivious transfer protocol
to obtain αµj

from Alice without revealing to Al-
ice which of her αt’s he received (see [16] for de-
tailed oblivious transfer protocols).

(c) Bob sets vB = MB(i−1, j−1)+αµj
, which equals

MB(i − 1, j − 1) + S(λi, µj) + rA.

Note that, at the end of Step 1, vA +vB equals MA(i−1, j−
1) − rA + MB(i − 1, j − 1) + S(λi, µj) + rA = M(i − 1, j −
1) + S(λi, µj) as required.

5. CONCLUDING REMARKS
We gave an efficient protocol for sequence comparisons of

the string-edit kind, such that neither party reveals anything
about their private sequence to the other party. This is but
a first step in an area of activity that is compelling in its
potential usefulness; in addition to the already-mentioned
scenarios of preserving a corporation’s private bio-sequences

from competitors, and preserving the privacy of individuals,
many other questions come up such as “can Alice perform
data mining on Bob’s biological database without revealing
Alice’s queries to Bob and without revealing Bob’s database
to Alice (other than what Alice can infer from the query
responses)” ? Which other bioinformatics problems have
efficient protocols like the one presented in this paper ?

6. REFERENCES
[1] A.V. Aho, D.S. Hirschberg and J.D. Ullman. Bounds

on the Complexity of the Longest Common
Subsequence Problem, Journal of the ACM 23, 1,
pp.1–12 (1976).

[2] J. Benaloh. Dense Probabilistic Encryption,
Proceedings of the Workshop on Selected Areas of
Cryptography, pp.120-128 (1994).

[3] C. Cachin. Efficient Private Bidding and Auctions
with an Oblivious Third Party. Proceedings of the 6th
ACM Conference on Computer and Communications
Security, pp.120-127 (1999).

[4] W. Du and M.J. Atallah. Protocols for Secure Remote
Database Access with Approximate Matching.
Proceedings of the 1st ACM Workshop on Security and
Privacy in E-Commerce (2000).

[5] M. Fischlin. A Cost-Effective Pay-Per-Multiplication
Comparison Method for Millionaires. RSA Security
2001 Cryptographer’s Track. Lecture Notes in
Computer Science 2020, pp.457-471 (2001).

[6] O. Goldreich. Secure Multi-party Computation
(working draft). Available at
http://www.wisdom.weizmann.ac.il/∼oded/pp.html
(2001).

[7] S. Goldwasser and S. Micali. Probabilistic Encryption.
Journal of Computer and System Sciences 28, 2,
pp.270-299 (1984).

[8] G. Landau and U. Vishkin. Introducing Efficient
Parallelism into Approximate String Matching and a
new Serial Algorithm, Proceedings of the 18-th ACM
STOC, pp.220–230 (1986).

[9] H. M. Martinez (ed.) Mathematical and
Computational Problems in the Analysis of Molecular
Sequences, Bulletin of Mathematical Biology (Special
Issue Honoring M. O. Dayhoff), 46, 4 (1984).

[10] W. J. Masek and M. S. Paterson. A Faster Algorithm
Computing String Edit Distances, Journal of
Computer and System Science 20, pp.18–31 (1980).

[11] D. Naccache and J. Stern. A New Cryptosystem based
on Higher Residues. Proceedings of the ACM
Conference on Computer and Communications
Security 5, pp.59-66 (1998).

[12] S. B. Needleman and C.D. Wunsch. A General
Method Applicable to the Search for Similarities in
the Amino-acid Sequence of Two Proteins, Journal of
Molecular Biology 48, pp.443–453 (1973).

[13] T. Okamoto and S. Uchiyama. A New Public-Key
Cryptosystem as Secure as Factoring. Eurocrypt’98
Lecture Notes in Computer Science 1403, pp.308-318
(1998).

[14] D. Sankoff. Matching Sequences Under
Deletion-insertion Constraints, Proceedings of the
National Academy of Sciences of the U.S.A. 69,
pp.4–6 (1972).

[15] D. Sankoff and J. B. Kruskal (eds.). Time Warps,
String Edits and Macromolecules: The Theory and
Practice of Sequence Comparison, Addison-Wesley,
Reading, PA (1983).

[16] Bruce Schneier. Applied Cryptography : Protocols,
Algorithms, and Source Code in C (Second Edition),
John Wiley & Sons, New York, NY (1996).

[17] P.H. Sellers. An Algorithm for the Distance between
two Finite Sequences, J. of Combinatorial Theory 16,
pp.253–258 (1974).

[18] P.H. Sellers. The Theory and Computation of
Evolutionary Distance: Pattern Recognition, Journal
of Algorithms 1, pp.359–373 (1980).

[19] E. Ukkonen. Finding Approximate Patterns in
Strings, Journal of Algorithms 6, pp.132–137 (1985).

[20] R. A. Wagner and M. J. Fischer. The String to String
Correction Problem, Journal of the ACM 21,1,
pp.168–173 (1974).

[21] C.K. Wong and A.K. Chandra. Bounds for the String
Editing Problem, Journal of the ACM 23, 1, pp.13–16
(1976).

[22] A. Yao. Protocols for Secure Computations.
Proceedings of the Annual IEEE Symposium on
Foundations of Computer Science 23, pp.160-164
(1982).

