Bureaucratic Protocols for Secure Two-Party Sorting,
Selection, and Permuting

Guan Wang
Syracuse University
Syracuse, NY, USA 13244

gwang07@syr.edu
Wenliang Du

Syracuse University
Syracuse, NY, USA 13244

wedu@syr.edu

ABSTRACT

In this paper, we introduce a framework for secure two-party
(S2P) computations, which we call bureaucratic comput-
ing, and we demonstrate its efficiency by designing prac-
tical S2P computations for sorting, selection, and random
permutation. In a nutshell, the main idea behind bureau-
cratic computing is to design data-oblivious algorithms that
push all knowledge and influence of input values down to
small black-box circuits, which are simulated using Yao’s
garbled paradigm. The practical benefit of this approach
is that it maintains the zero-knowledge features of secure
two-party computations while avoiding the significant com-
putational overheads that come from trying to apply Yao’s
garbled paradigm to anything other than simple two-input
functions. !

Categories and Subject Descriptors

K.6 [Management of Computing and Information Sys-
tems]: Miscellaneous

General Terms
Algorithms, Security

Keywords

Secure two-party computation, sorting, oblivious algorithms,
bureaucratic protocols

1. INTRODUCTION

!This work has partially supported by Awards No. 0430252
and 0618680 from the United States National Science Foun-
dation.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyooiherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ASACCS 10 April 13-16, 2010, Beijing, China.

Copyright 2010 ACM 978-1-60558-936-7/10/04 ...$10.00.

Tongbo Luo
Syracuse University
Syracuse, NY, USA 13244

toluo@syr.edu

Michael T. Goodrich
University of California, Irvine
Irvine, CA, USA 92697
goodrich@ics.uci.edu

Zutao Zhu
Syracuse University
Syracuse, NY, USA 13244

Zutao@syr.edu

As people become more and more concerned about their
privacy, privacy-preserving techniques have been receiving
increasing attention in the research community, with secure
two-party (S2P) computations being one of the primary so-
lutions that have been studied to address this concern. S2P
computations allow two parties, say Alice and Bob, to evalu-
ate a public known function, f(X,Y), on private data, with
X belonging to Alice and Y belonging to Bob, without dis-
closing any information on their inputs other than what can
be inferred from the result, f(X,Y) [14,30].

One of the most theoretically elegant and general tech-
niques for achieving S2P computations is Yao’s garbled cir-
cuit paradigm [30]. In using this paradigm, Alice and Bob
compile f(X,Y) into a Boolean circuit, which they then
cooperatively evaluate using cryptographically masked ver-
sions of their respective inputs, X and Y. The generality
of this technique is derived from the fact it can be applied
to any function that can be converted into a Boolean cir-
cuit, which implies that it works for any function that can
be computed by an algorithm?.

Bringing Yao’s garbled circuit paradigm out of the realm
of theoretical computer science, the Fairplay system [25] is
a beautiful software system that implements Yao’s garbled
circuit paradigm to compile Boolean circuits from program
specifications and then simulate the resulting circuits us-
ing cryptographic masking of the inputs shared by the two
parties. Unfortunately, as the popularity of the Fairplay
system is growing, people are discovering that Yao’s garbled
circuit approach incurs major computational costs for any-
thing other than basic functions, like MIN, MAX, ADD, and
compare-exchange. Thus, the practical usefulness of Yao’s
garbled circuit paradigm, and, hence, the Fairplay system,
is diminished for more complex computations. For exam-
ple, using the Fairplay system’s implementation of Yao’s
garbled circuit paradigm, we can turn Quicksort into a cir-
cuit, and achieve sorting of an array between Alice and Bob,
where each array element s; is shared by Alice and Bob (e.g.,
si = a; D b;, where a; is known to Alice and b; is known to
Bob). We know that Quicksort has an O(nlogn) average-
case complexity, and is considered as one of the most efficient
sorting algorithms. Nevertheless, we have observed that the
running time of Quicksort is ©(n?) if it is implemented using

2Recall that the formal definition of an algorithm states that
it must terminate on every possible input.

a garbled circuit for S2P with Fairplay. This performance,
of course, completely negates the efficiency of using Quick-
sort. Even the simple Bubblesort can achieve ©(n?) in the
S2P environment. Moreover, such examples are more than
just academic exercises, since sorting plays a role in several
S2P protocols.

1.1 The Benefit of Bureaucracy

To help understand better what causes an efficient algo-
rithm in the non-S2P environment to become inefficient in
the S2P environment, let us consider the following two sim-
ple algorithms. Both algorithms calculate the number of
ones in the first n positions in a binary sequence, S, which
we assume are indexed from 1 to n:

CountOne_1(S,n):
if (n == 1) then
return S[1]
else
i=n
if (S[i] == 1) then
return 1 + CountOne_1(S,n-1)
else
return CountOne_1(S,n-1)
end_if
end_if

CountOne_2(S,n):
countOne = 0
for i = 1 to n do
countOne = S[i] + countOne
end_for
return countOne

Note that both algorithms have running times that are
O(n), and that CountOne_1 has the added benefit that the
number of additions it performs will on average be half the
number done by CountOne_2. Therefore, these algorithms
might seem to be equal candidates for conversion to an S2P
environment, with CountOne_1 likely to be somewhat faster
than CountOne_2 in practice (since it uses tail recursion and
makes half as many calls on average to an addition circuit),
but this is not the case.

In a typical S2P environment, the array S is shared by
two parties, Alice and Bob, with each bit of the array being
the exclusive-or of two bits a and b, where a is known to
Alice and b is known to Bob. Alice and Bob want to find
out the number of ones in the array S without letting the
other know the actual contents of S. Using Yao’s garbled
circuit paradigm, we can easily turn the above algorithms
into S2P protocols. However, the running time of the resul-
tant protocols will be quite different.

For the first algorithm, the outcome of the second if-else
(and the fact that one of its branches performs an addi-
tion and the other doesn’t) cannot be disclosed to anybody
during the computation; otherwise, that party will know
the value of S[i], which is considered as private informa-
tion disclosure in typical S2P computation circumstance be-
cause no party is supposed to know any real value in array
S. To disguised the outcome of the if-condition, there-
fore, the circuit has to execute both branches of the second
if-else. Unfortunately, this increases the complexity of the
algorithm from ©(n) to ©(2"), since it requires the dupli-
cation of the circuit that counts the number of ones in the

first n — 1 positions of S. That is, compiling CountOne_1
for S2P converts an efficient linear-time computation into
an exponential-sized circuit that Alice and Bob must then
painfully evaluate using masked versions of their respective
data values. The second algorithm does not have the prob-
lem, however, since it has no conditions that depend on any
values of S, so the complexity of the resulting circuit is O(n).

The dramatic difference in complexity between the S2P
versions of these two algorithms is caused by the fact that
the second algorithm is data-oblivious, while the first one
is not. Recall that an algorithm is data-oblivious [21] if
the control flow of the algorithm does not depend on any
data values. In the case of CountOne_2, the only part of
the algorithm that needs to “know” the actual values of S is
the low-level summation operator. The higher-level portions
of the algorithm needs not “know” anything about the low-
level summation operations other than the fact that they
are performing their respective tasks correctly.

In addition to being a graphic demonstration of the ineffi-
ciencies that can come from wholesale applications of Yao’s
garbled circuit paradigm, the above example also serves as a
motivation for an alternative approach to S2P computations,
which we call bureaucratic computing. In the bureaucratic
approach, all the high-level steps of an algorithm to evalu-
ate the function, f(X,Y), of interest to Alice and Bob, are
done in a data-oblivious way; that is, the high-level steps
are non-adaptive with respect to the data values, X and Y.
All the low-level computations that depend on the data val-
ues are isolated to simple “black-box” functions, like SUM,
MIN, MAX, compare-exchange, etc., which can be efficiently
simulated in a zero-knowledge fashion using Yao’s garbled
circuit technique. In simulating a bureaucratic algorithm in
the S2P framework, Alice and Bob collectively perform each
high-level step using their cryptographically masked vari-
ables, and they only engage in the simulations of Boolean
circuits for the low-level steps that involve their inputs being
“fed” into one of the low-level black-box functions.

1.2 Our Results and Contributions

In this paper, we demonstrate the utility of the bureau-
cratic approach to S2P computations through case studies
involving three problems—sorting, random permutation and
selection (i.e., finding the k' smallest or largest element).
These problems have been extensively studied in the non-
S2P environment, and many efficient algorithms for them
are taught in undergraduate computer science classes (e.g.,
see [10,16]). However, as we have discussed, the time com-
plexities in the non-S2P environment and in the S2P envi-
ronment are not necessarily the same. To the best of our
knowledge, there has been little previous attention to meth-
ods for developing practical algorithms for these problems
in the S2P environment, for which we are advocating the
bureaucratic approach in this paper.

Specifically, we study two bureaucratic algorithms for sort-
ing from the perspective of S2P computations: one algo-
rithm leverages research from sorting networks and the other
uses a randomized-algorithms approach. Both algorithms
use compare-exchange as a low-level primitive, with all other
(high-level) steps being done in a data-oblivious manner. In-
cidentally, previous studies of sorting networks were moti-
vated by a totally different reason (hardware design), but
we find out that the results of sorting networks are nev-
ertheless applicable to our problem, since they give rise to

efficient bureaucratic algorithms. Using existing results on
sorting networks, we can achieve an O(nlog®n) time com-
plexity for S2P sorting, with a constant factor that is only
0.25. We also study another interesting algorithm that low-
ers the time complexity to O(nlogn), with a constant 5.
This algorithm is also data-oblivious, but it is probabilistic,
guaranteeing with very high probability that its final result
is sorted. As we show, this algorithm also leads to efficient
S2P implementations.

Building upon these bureaucratic S2P sorting algorithms,
we propose some immediate applications: in particular, to
selection algorithms and random permutation algorithms for
the S2P environment.

The contribution of this paper is two-fold: (1) We have
developed a new paradigm, called bureaucratic computing,
for solving S2P computation problems. (2) We have devel-
oped efficient algorithms for conducting sorting, selection,
and random permuting in the secure two-party computation
environment.

2. BUREAUCRATIC COMPUTING

2.1 The Framework

A standard S2P computation involves two parties, each
having his/her own secret inputs. Without loss of generality,
we assume that each party’s input is an array. These two
participants want to run a protocol to evaluate a function
(e.g. vector dot product) or run an algorithm (e.g. sorting)
on their joint inputs. At the end of the protocol, neither
party can learn anything other than what can be derived
from the results and their own private inputs.

As we have pointed out in Section 1, although a whole-
sale application of Yao’s garbled circuit paradigm can solve
general S2P computation problems theoretically, the resul-
tant protocols might not be practically applicable, even if
the Yao’s circuit is built upon an algorithm that is optimal
in the non-S2P environment.

We propose a new paradigm, called bureaucratic comput-
ing. It consists of two levels of computations. The low-level
computations depend on the data values from both parties.
The computations must be oblivious, in the sense that no
participant should be able to infer anything about the in-
termediate results of the computation or other party’s data.
We can use Yao’s garbled circuit technique to build S2P cir-
cuits for these low-level computations. We call these circuits
components in this paper.

The high-level computations in our bureaucratic comput-
ing paradigm consists of the procedures (or algorithms) of
how to invoke the low-level components. These computa-
tions must be data oblivious, meaning that the algorithms
are non-adaptive with respect to the data values; namely,
regardless of what the results of the low-level computations
are, the behavior of the high-level computations stays the
same. This data-oblivious property is very important; oth-
erwise, a participant can infer the other party’s private in-
puts from the observable behavior of the algorithms. Data-
obliviousness guarantees that the behavior of an algorithm
is independent from its inputs.

2.2 Low-Level Components

Low-level components serves as building blocks to S2P
computations. In our bureaucratic computing paradigm,
these components should be oblivious; more specifically, they

should have the following properties: first, outputs of the
components cannot be revealed to any participant. Because
the outputs of the low-level components are usually interme-
diate results, not the final results, S2P computations do not
allow them to be disclosed (recall that in S2P, participants
can only learn whatever can be derived from the final results
and their own private inputs, and nothing else). Second, the
inputs of the low-level component might be intermediate re-
sults from other components; because of the way how the
other components’ outputs are protected, nobody (Alice or
Bob) knows the actual inputs.

Therefore, when building Yao’s garbled circuit for low-
level computation components, we adopt the circuit layout
depicted in Figure 1.

OB O O,
O, r\ Oy.4 Om,a
O, O, Om

O = Opa® Oy

Secure 2—-Party Computation

I I I, I = Iy a® Inp
11“,4 Iy In.L
L Ls L5

Figure 1: Circuit Layout

Outputs: To protect intermediate results in Yao’s garbled
circuit, all intermediate results are distributed to Alice and
Bob using a secret sharing scheme, i.e., the actual output
is split into two pieces, each going to one party. Nobody
can derive any useful information about the secret outputs
based on their own share alone; they need to put both pieces
together to reveal the actual secrets. Since in S2P computa-
tion, we only have two participants, we use a simple secret
sharing method, exclusive-or (xor). Namely, each secret r
is split into two random pieces a and b, such that r = a ® b,
where a is disclosed to Alice and b is disclosed to Bob.
Therefore, each output pin of our circuit (we may have
many output pins depending on the actual computations)
consists of two outputs, one goes to Alice and the other goes
to Bob. This way, nobody knows the actual output of this
circuit. If this circuit is the last step of the entire algorithm
or function, Alice and Bob can disclose their secret shares to
each other to obtain the final results. They cannot do so if
the output is not the final results, due to privacy concerns.

Inputs: If our circuit is used as a component, the inputs of
the circuit are likely outputs from other components. There-
fore, according to the ways how outputs are protected, each
input pin of our circuit also consists of two inputs, one from
Alice and the other from Bob; the actual input is the xor of
these two inputs. More specifically, in our circuit design, we
assume that Alice holds her shares A = {a1, a2, ...,an}, and
Bob holds his shares B = {b1,b2,...,b,}. The real secret
values R=A® B,ie, R={ri=a;®b; |i=1,...,n},
where 7;’s are never known to any single party.

The above setting is different from the setting of tra-
ditional S2P problems. In the traditional setting, Alice
and Bob have their own private inputs, and they want to
do a joint computation on their joint inputs. The tradi-
tional setting can be considered as a special case of our set-
ting. For example, if Alice’s private inputs are 71,..., 7k,

while Bob’s private inputs are rg41,...,7,, we can consider
that Alice has A = {r1,...,7%,0,...,0}, and Bob has B
={0,...,0,7k+1,...,7n}, as we know that any number xor

with 0 stays the same.

2.3 Secure Compare-Swap Component

We have developed a useful component that is called Se-
cure Compare-Swap (SCS); it serves as the low-level compo-
nent for our bureaucratic protocols for sorting, selection, and
random permutation problems. According to bureaucratic
computing paradigm, we use Yao’s garbled circuit technique
to implement this component. The layout of this component
follows the general circuit layout depicted in Figure 1.

The functionality of the SCS circuit is to compare two
input numbers L and R, such that the larger one is output
from the Max pin, while the smaller one is output from the
Min pin. The actual input L is the xor of L4 and Lp (R is
the xor of Ra and Rp), where L4 and R4 belong to Alice,
while Lp and Rp belong to Bob. Neither Alice nor Bob
knows L or R.

Outputs of the SCS component are most likely interme-
diate results, so they should not disclose any information
about the inputs. Therefore, we need this primitive to be
not only secure (i.e. disclosing no information about the
value of the inputs), but also oblivious, i.e., from the out-
put, nobody should be able to tell which number (L or R)
becomes the Max output and which one becomes the Min out-
put. To put it in another way, nobody should know whether
the “swap” has occurred within the circuit or not.

Ta Ta 1y 1p

Max =T, @ T3

Max Min
Min= 1,6 1p
L=Ls®L
Input L Input R R — R‘ii RL;

LA LIJ RA RB

Figure 2: Secure Compare-Swap (SCS)

It should be noted that every time the SCS circuit is used,
the random numbers generated to disguise the outputs must
be fresh, and cannot be constants. Therefore, although we
use the same component multiple times in a protocol, the
outputs are independently disguised, and there is no infor-
mation disclosure due to the repeated use of the component.

The SCS circuit can be easily built from the scratch or
using Fairplay [25].

2.4 High-Level Computations

The high-level computations in the bureaucratic comput-
ing are concerned about how to assemble the low-level com-
ponents together to solve a specific problem. To prevent
partial information disclosure, the high-level computations
should be data-oblivious.

There are two different ways to achieve data-obliviousness.
One is to add redundant steps to turn a non-data-oblivious
algorithm into an data-oblivious one. For example, an al-
gorithm might need need to use afi] at a specific step, and
the value ¢ depends the results of previous steps. This al-
gorithm is not data-oblivious. In S2P computation, letting
either party learn the value of i is unacceptable. It is not

difficult to hide the value of ¢ using Yao’s garbled circuit
technique. The problem is if ¢ is unknown, how can the par-
ticipants know which element of the array should be used at
this step. To solve this problem, a standard technique is to
“pretend to” use the entire array, but making sure that only
the value of a[i] actually affects the outcome [25]. The com-
putations of other array elements are redundant and are for
disguise purpose. These redundant computations increase
the time complexity of non-data-oblivious algorithms.

An alternative to achieve data-obliviousness in high-level
computations is to directly use a data-oblivious algorithm.
In a data-oblivious algorithm, if a[i] needs to be used at
a specific step, the value i must be independent from the
results of previous steps, i.e., ¢ is known even before the
whole computation. Therefore, disclosing the value i poses
no risk. For example, bubblesort is a data-oblivious algo-
rithm. Figure 3 depicts the steps of bubblesort for three
numbers. Regardless of what the inputs are, the steps de-
picted in the figure are always the same. Because there is
no need to add redundant computations, converting a data-
oblivious algorithms to S2P computations does not change
the time complexity of the algorithm.

Q. o
g . g .
5 L o» 8 » o 7
3 o &8 =
2 QC gx g c
—R® = c .=
RN
o o
o %C o
7 Rg 5 2
o
o

Figure 3: Example of bubblesort of 3 numbers

Regardless of what approach we take, the end results are
data-oblivious algorithms. Therefore, the problem that we
should solve is to develop optimal data-oblivious algorithms
and use them for the high-level computations in the bureau-
cratic computing. In the subsequent sections, we will focus
on developing such algorithms.

2.5 From Oblivious Algorithm to S2P Circuit

Once we have a data-oblivious algorithm for high-level
computation and the necessary low-level components, con-
verting the algorithm to a S2P circuit is straightforward. To
help readers understand the procedure, we use the bubblesort
of three numbers as an example.

The comparison sequence of bubblesort for three num-
bers are depicted in Figure 3. This sequence is data-oblivious,
so the sequence itself (i.e. the high-level steps) reveals noth-
ing about the contents of inputs. However, the low-level
“compare & swap” component does reveal information about
the inputs because the behavior of the component depends
on the inputs. To ensure that no information about the
“compare & swap” step is disclosed, we replace this compo-
nent with the SCS component (Figure 2), which uses Yao’s
garbled circuit technique to hide the behavior inside the
component. Moreover, the component is reusable like a func-
tion of a program, so the whole bureaucratic computing is
quite scalable.

Since it is straightforward, we will not discuss how to con-
vert data-oblivious algorithms into S2P circuit again in the
rest of this paper. We will only focus on the discussion of
the date-oblivious algorithms themselves.

3. SECURE TWO-PARTY SORTING
3.1 The S2P Sorting Problem

Sorting is a fundamentally important procedure that serves
as a critical subroutine to many solutions. Therefore, to pro-
vide solutions to many interesting S2P problems, it is very
important to be able to conduct sorting in the S2P setting,
where the actual array to be sorted consists of the private in-
puts from two different parties, and no private inputs should
be disclosed to the other party.

We would like to build an efficient S2P circuit for sorting
using the bureaucratic computing paradigm. We call this
circuit the S2P sorting circuit. We would like the S2P sort-
ing circuit to not only serve as a complete solution itself, but
also serve as a S2P sub-function to other more sophisticated
problems. Therefore, the layout of our circuit follows what
we depicted in Figure 1. We formally define the requirement
of our S2P sorting circuit in the following:

DEFINITION 3.1. (S2P Sorting Circuit) The objective of
this sorting circuit is to sort the input I = {I1,...,I,}.
However nobody knows the actual input array; instead, each
participant has a secret share of this array. Namely, Al-
ice has {I1,A,...,In,a}, while Bob has has {I\,B,...,InB},
where Iy, = I A @ Ik,B, fork=1,...,n.

The actual output of the circuit is a sorted array O =
{O1,...,0,}, where O1 < 02 < ... < O,. No party should
learn these actual outputs; instead, Alice learns {O1,a4, ...,
On,a} and Bob learns {O1,B, ..., On,B}, where Op = Ok AP
Ok,B, fork=1,...,n.

Because this is a S2P computation, from the evaluation of
this S2P sorting circuit, nobody should be able to derive any
useful information about the input array I and the output
array O, other than what they have already learned before
the evaluation of this circuit .

3.2 Challenges and Approaches

As we known, sorting has been extensively studied in
the non-S2P setting; many sorting algorithms have been
proposed, such as quicksort, mergesort, bubblesort, etc.
The lower bound on comparison-based sorting algorithm is
O(nlogn), which is achieved by a number of sorting algo-
rithms. We have studied the common sorting algorithms
that achieve O(n logn) time complexity (either in worst case
or in average case). Unfortunately, these algorithms are
not data-oblivious; none of them can beat the bubblesort
asymptotically (i.e., they are no better than O(n?)) in se-
cure sorting cases where time complexity may change (see
the countone example in introduction).

Recall that mainstream comparison-based algorithms, such
as quicksort, mergesort, heapsort, etc, must know where
the compare-swap occurs, so that they can perform further
sorting based on the previous result. Iterating in such a
manner, however, is considered to disclose the mapping in-
formation in our secure two-party sorting case. Because the
positions that compare-swap occurs are dependent on the
input data. In other words, those positions are variables in
each iteration. Directly using such sorting algorithms will
put us in a paradox, because compare-swap positions are

31f the output is the final result, then both parties are sup-
posed to learn the output. In this case, they will disclose
their private shares of the outputs to each other.

key part in sorting, however, we must somehow leave Alice
and Bob unknown about them in the whole sorting process.

Our Approaches: We have identified two types of sort-
ing algorithms that are efficient and data-oblivious. One
type of algorithms come from the literature of sorting net-
works, which have been studied extensively for the purpose
of efficient hardware design. The best practical results can
achieve O(nlog?n) time complexity. Not satisfying with
this asymptotic result, we have developed a new algorithm
called Randomized Shellsort; it achieves O(nlogn) time
complexity. This algorithm is a probabilistic sorting algo-
rithm, i.e., it can sort any array with very high probability.

3.3 The S2P Sorting Networks

Data-oblivious sorting algorithms have been extensively
studied in the literature. The studies were motivated by a
totally different reason: a data-oblivious sorting algorithm
always makes the same comparisons, regardless of the input.
That is, the behavior of the algorithm is independent of
the input. This property is useful for hardware design (i.e.
design a hardware sorting module or a switching network),
for parallel computing, and for sorting that uses external
memory (such as disks and tapes), all of which can benefit
if the algorithm is data-oblivious [4].

The data-oblivious sorting algorithms are usually called
sorting networks in the literature. A sorting network is an
abstract mathematical model of a network of wires and com-
parator modules that is used to sort a sequence of numbers.
Each comparator connects two wires and sort the values by
outputting the smaller value to one wire, and a larger value
to the other. By arranging these comparators properly, ev-
ery input element will be sent to its final position in the
sorted sequence. Figure 3 gives an example of sorting net-
works for three numbers.

Although sorting networks were not motivated by secure
two-party computation, S2P computation gives sorting net-
works a brand new life: sorting networks are data-oblivious,
which is exactly the property that we need for bureaucratic
computing. Therefore, we can leverage the optimal results
developed from the sorting network community to build ef-
ficient S2P sorting circuits. Here optimal means to sort n
number of input, using least number of comparators (or least
number of SCS circuits for S2P sorting circuits).

Efficient Sorting Networks. The asymptotically best
sorting network, discovered by Ajtai, Komlds, and Szemerédi,
achieves O(nlogn) for n inputs [2]. This network is called
AKS network, and it is asymptotically optimal. A simplified
version of the AKS network was described by Paterson [26].
While an important theoretical discovery, the AKS network
has little or no practical application because of the large
linear constant hidden by the Big-O notation.

Currently, optimal sorting networks for n < 8 are known
exactly and are presented in [21] along with the most efficient
sorting networks to date for 9 < n < 16. These results are
listed in Table 1.

For input size n > 16, no optimal network have been dis-

covered. However, several sorting networks with size O(n log? n)

have been proposed, such as odd-even mergesort and bitonic
sort [4]. These networks are often used in practice. These
algorithms are attached in Appendix C. Among these three
sorting networks, the odd-even mergesort has the small-
est constants in the Big-O notation. For example, to sort

Input Size n 3114|5678

1
of Comparators | 0 1 3159]|12]16(19
Input Size n 9 |10)11 12|13 |14 |15] 16

of Comparators | 25 | 29 | 35 | 39 | 45 | 51 | 56 | 60

Table 1: Best results for sorting networks

n inputs, the actual number of comparators needed by the
odd-even mergesort is %nlog2 n— %nlogn +n—1.

3.4 The S2P Randomized Shellsort

As we discussed in the previous subsection, practical sort-
ing networks have O(nlog?n) time complexity. In this sub-
section, we discuss an asymptotically better sorting algo-
rithm, called randomized Shellsort.This algorithm achieves
O(nlogn) time complexity and correctly sorts with very
high probability.

Shellsort. Shellsort defines a gap sequence (also called
offset sequence) H = {hu, ..., hm}, where m is a predefined
value. The performance of Shellsort depends on this gap
sequence. A number of good sequences have been proposed
through empirical studies, including the geometric sequence
(i.e. m/2, n/4, ..., 1) [29], the Ciura sequence [9], and the
Fibonacci sequence [28]. In this paper, we only use the ge-
ometric sequence.

For each sequence number h;, Shellsort divides the input
array (of size n) into h—”l regions, and use the insertion sort
algorithm to sort the array consisting of the j-th element
from each region, i.e., A[j], A[j + hi], ..., A[j +m * h;]. for
7 =0,...,h;—1. This step is called h-sort. The psudocode
of Shellsort is given in Figure 4.

Shellsort
Input: The n-element array A that to be sorted
Output: The sorted array A
foreach h € {hi,...,hy} do
fori=0toh—1do
Sort A[i], Ali + h], Ali + 2h], ..., using insertion sort;
/* This inner loop is h-sort */
end
end

Figure 4: The original Shellsort Algorithm

Unfortunately, the h-sort step, i.e. the insertion sort, is
not data-oblivious, and cannot be efficiently converted into
Yao’s garbled circuit. We need to replace the insertion sort
with an efficient data-oblivious algorithm.

Shake and Brick pass Three interesting operations have
been studied in the context of Shellsort: h-bubble pass,
h-shake pass, and h-brick pass. All these operations are
data-oblivious, suitable for our bureaucratic computing.

An h-bubble pass move from left to right through the
array, compare-exchanging each element with the one h to
its right. This is like one iteration of the bubble sort. An
h-shake pass is an h-bubble pass followed by a similar pass
in the opposite direction, from right to left through the ar-
ray, compare-exchanging each element with the one h to its
left [19]. Figure 5(a) gives the concrete example of a h-shake
pass. The h-shake pass pushes the large numbers toward
the right and small numbers towards the left.

H-brick pass is another interesting operation [28]. Within
this pass, elements in positions ¢, ¢ + 2h, i + 4h, i + 6h,

Step 1: up Step 1 (odd to even)
(& (R, Ry |y][Ry [[Ry |[Ry |[Ry |[R;]
N N NS N
Step 2: down Step 2 (even to odd)

a) h-shake pass h) h-brick pass
h-shal b) h-brick

Figure 5: H-Shake Pass and H-Brick Pass

. are compare-exchanged with items in positions ¢ + h,
i+ 3h, i + 5h, i + Th, ..., respectively; then items in posi-
tions i+ h, i+ 3h, i + bh, i+ Th, ..., are compare-exchanged
with those in positions ¢ + 2h, ¢ + 4h, ¢ + 6h, ¢ + 8h, ..., re-
spectively. Figure 5(b) shows how brick pass works. H-brick
pass helps larger elements quickly jump to the right regions
while smaller elements quickly jump to the left.

Empirical results [18,23] indicate that replacing the h-sort
in Shellsort by an h-shake pass or an h-brick pass gives an
algorithm that nearly always sorts when the increment se-
quence is geometric. The imprecise phrase “nearly always
sorts” indicates a probabilistic sorting method. That is, the
method might leave some items unsorted.

Randomized Shellsort Algorithm. To further improve
the sorting results, consider a randomized region comparison
concept. To conduct compare-and-swap on two regions R;
and Rz (both of size L), h-shake pass and h-brick pass al-
ways conduct the operation on elements that are exactly h
distance apart (see Figure 6(a)). We change this deterimin-
stic behavior to randomized behavior, i.e., we first construct
a random permutation of set {1,2,..., L}; assume that the
permutation result is the set {i1,42,...,ir}. For the k-th el-
ement in R1, do a compare-swap operation with the element
ir in Ra. See Figure 6(b).

Ry Ry Ry Ry
(a) Original Region Comparison (b) Randomized Region Comparison

Figure 6: Region comparisons

Combining the advantages of h-shake pass, h-brick pass,
and the randomized region comparison, the Randomized
Shellsort algorithm is shown in Figure 7. In this algorithm,
we choose the geometry gap sequence {n/2,n/4,n/8,...,1}.
For each of the gap value h in this sequence, the algorithm
runs 6 loops. The first two loops are actually one h-shake
pass (one loop from left to right, and the other from right to
left). The next four loops are several h-brick passes: each
pass compares with the region 3h, 2h, and h gap away, re-
spectively. The comparison between two regions always use
randomized region comparison.

Correctness Theorem. Although our algorithm is prob-
abilistic, it achieves complete sorting with very high proba-
bility. The proof of this property is quite complicated, and
is beyond the scope of this paper. We refer readers to [17]
for more details. Thus, we only state the following theo-
rem of correctness, for which we provide a reference in the
non-anonymous version of this paper. In Section 6, we use
empirical studies to demonstrate the validity of this theo-
rem.

Randomized Shellsort
Input: The n-element array A that to be sorted
Output: The sorted array A
Offset = {n/2, n/4, ..., 1};
foreach h € Offset do
fori—0;i<n—h;i—i+hdo
| compareRegions(a, i, i + h, h);
end
fori—n—h;i>h;i—i—hdo
| compareRegions(a, i — h, i, h);
end
fori—0;i<n—3%+h;i+—i+hdo
| compareRegions(a, i + 3 x h, h, h);
end
fori—0;i<n—2xh;i—i+hdo
| compareRegions(a, i + 2 * h, h, h);
end
fori—0;i<n;i<—i+2xhdo
| compareRegions(a, i, i + h, h);
end
for i — h;i<n—h;i—i+2xhdo
| compareRegions(a, i, i + h, h);
end
end

procedure compareRegions(a, startl, start2, offset)
1: array target < 0 to offset - 1
2: RandomPermute(target);
3: for ¢ < 0 to offset - 1
4 CompareSwap(a, startl + i, start2 + target(i));

Figure 7: The Randomized Shellsort Algorithm

THEOREM 1. The Randomized Shellsort algorithm can cor-
rectly sort any input array of size n with very high probabil-
ity. The term “very high probability” means that the failure
probability is at most O(n~%), for some constant o > 1,
where failure means that the number of inverse ordered ele-
ment pair within the output array is at least one.

Time Complexity Analysis The time complexity of the
Randomized Shellsort algorithm is the following (the proof
is in Appendix A):

THEOREM 2. To sort n inputs, the number of compare-
swap operations in the Randomized Shellsort is the following:

T(n) =5nlogn — 1—25n+8. (1)

3.5 A Further Improvement

Although Randomized Shellsort can reduce the time com-
plexity to about 5nlogn, in practice, this cost might still
be quite expensive, due to its constant. This is because un-
like non-S2P settings, each comparison in the S2P setting
is quite expensive. Therefore, it is quite desirable for S2P
computation if we can further reduce the cost.

In practice, there may be some applications that accept
“almost sorted” array as “sorting” result, as long as the num-
ber of miss-placed elements is small and their offsets (com-
pared to their actual places in the completed sorted array)
is not too far off. This observation can help us reduce the
number of loops in the Randomized Shellsort algorithm.

From our empirical studies, we have discovered the follow-
ing properties in the Randomized Shellsort algorithm: (1) If
we only keep the first two loops (i.e. the h-shake pass),

the number of misplaced elements is quite small (less than
4.5% for n < 2'®. (2) Among these miss-placed elements,
the majority of them is miss-placed by one position. For-
tunately, these missing-one mistakes can be corrected by a
single bubble pass (i.e., one iteration in bubblesort), which
takes m comparisons. Based on these two properties, we
modified the Randomized Shellsort algorithm, and devel-
oped a new algorithm called Fast Randomized Shellsort. The
algorithm is depicted in Figure 8.

Fast Randomized Shellsort
Input: The n-element array A that to be sorted
Output: The sorted array A
Offset = {n/2, n/4, ..., 1};
foreach h € Offset do
fori«—0;i<n—h;i<—i+hdo
| compareRegions(a, i, i + h, h);
end
fori—n—h;i>h;i—i—hdo
| compareRegions(a, i — h, %, h);
end
end
fori—0;i<n—-1;i<—1:+1do
| CompareSwap(a, i, i + 1);
end

Figure 8: The Fast Randomized Shellsort Algorithm

The time complexity of this algorithm is improved from
5nlogn to 2nlogn, an improvement of over 60%. This im-
provement is achieved at a small cost of sorting quality. We
will provide detailed evaluations in Section 6.

4. SECURE TWO-PARTY SELECTION
4.1 The S2P Selection Problem

Selection is another important problem in computer sci-
ence. A selection algorithm is an algorithm for finding the
k-th smallest (or largest) number in an array. Selection al-
gorithms are widely used in many applications. It is impor-
tant to be able to conduct selection in the S2P environment,
where the actual input array consists of the private inputs
from two different parties.

We would like to build an efficient S2P circuit for selection.
Similar to what we did to S2P sorting circuit, we would like
this circuit to not only serve as a complete solution itself,
but also serve as a component of the solutions to other more
sophisticated problems. Therefore, the layout of our circuit
follows what we depicted in Figure 1, except that the output
only consists of two pins, which are the two secret shares of
the actual output, the k-th smallest number. We formally
define the S2P selection circuit in the following:

DEFINITION 4.1. (S2P Selection) The input of the S2P
selection circuit is an array I = {I1,...,I,}. Nobody knows
the actual input array; instead, each participant has a secret
share of this array. Namely, Alice has {I1,4,...,In 4}, while
Bob has has {I1,B,-.., I8}, where Iy = Iy o & Iy B, for
k=1,...,n.

The actual output of the circuit is denoted as O, which
is the k-th smallest number in I (k is public to both par-
ticipants). No party should learn these actual value of O;
instead, Alice learns Oa and Bob learns Op, where O =
O4 @ OpB.

4.2 Challenges

It is well-known that selection can be achieved in linear
time for general k [5,21]. Similar to quicksort, these lin-
ear time algorithms use a pivot to partition the input array,
and then conduct the recursion on one of the partitions. As
we have already discussed before, the recursion (i.e. subse-
quent comparisons) after partition depends on the partition
results, which depend on the actual input. Therefore, just
like quicksort, these linear time algorithms are not data-
oblivious. If we use Fairplay to build a Yao’s garbled circuit
directly from these algorithms, the time complexity will be
increased to O(n?).

Sorting-Based Approach. A naive solution is to di-
rectly apply the S2P sorting circuit on the input, and then
output the k-th smallest number as the result. This way,
we can achieve the O(nlog®n) time complexity using sort-
ing networks or O(nlogn) using our proposed probabilistic
sorting algorithms.

However, we have observed that using sorting to achieve
selection basically requires us to do more work than what
is actually needed. In the selection problem, we are only
interested in ensuring that the k-th smallest element is in
its correct position; whether other elements are in correct
positions is not important. When we use sorting algorithms,
we have to do extra work by putting the other n—1 elements
in their correct places; this becomes overhead. The challenge
is whether we can reduce the amount of overhead.

Another observation that we make is that in the selection
problem, many applications might not demand that the fi-
nal output is strictly the k" smallest; small errors are often
tolerable. For example, if the requirement is to find the me-
dian, but the result turns out to be (§ — 1)-th smallest, the
results are acceptable to many applications. If we are build-
ing S2P selection circuits for this type of applications, we
should be able to simplify our circuits by sacrificing a little
bit of accuracy. Based on this motivation, we have modified
our Fast Randomized Shellsort algorithm for selection, and
reduced the running time by 50%. Asymptotically, our new
algorithm runs in ©(nlogk) time, when selecting the k**
smallest element in n inputs.

4.3 A fast selection algorithm

The objective of our algorithm is to construct a series of
compare-swap steps, after which the k" smallest element
(called the target) of the input array A is put in A[k]. To
avoid the overhead of a complete sorting, we would like to
achieve the following goals: (1) Elements smaller than the
target should be located to the left of the target. (2) Element
larger than the target should be located to the right of the
target. We are not concerned about the actual positions of
the element other than the target.

We divide the input array into LEJ groups. The group

containing the k** position is called the target group. We
refer positions left to the target the “left part”, and right
ones the “right part”. To achieve the goals above, we first
go through a bubble pass from the rightmost group to the
target group, after which, smaller elements on the right side
of the target group will be moved to the left. Second, we
run another bubble pass from the first group to the group
next to the target group. This step guarantees to move
larger elements of the left part into the right part of the
k" position. Third, after these two passes, we make region

comparisons between the elements in the target group (only
those to the right of the k" position) and the elements in
other groups on the right side. * In the last step, we compare
the two groups on both side of the target. This pass provides
more opportunities for smaller elements to jump directly into
the left part. Figure 9 illustrates the above steps.

The k™ position
. OO I
R i R v
—. g 0
[O i S o

Figure 9: Steps in the Fast Selection Algorithm

We repeat the above four steps for a different offset value
h that is half of the previous offset value, until h = 1. At
this time, all elements that are smaller or equal to our target
have been move to the left part with very high probability.
We simply add one more bubble pass to extract the target.
The algorithm is depicted in Figure 10.

Fast Oblivious Selection
Input: The n-element array A and k.
Output: The k" smallest element in A
Offset = {k, & & . 1}
foreach offset h € Offset do
group «k/h;
for i «— n — h; i > groupxh; i «—i—h do
| compareRegions(a, i — h, i, h, rand);
end
for i «— 0; ¢ < groupxh; i — i+ h do
| compareRegions(a, i, i + h, h, rand);
end
for i —mn;i> k+h;i—i—hdo
| compareRegions(a, i — h, k, h, rand);
end
compareRegions(a, k-h, k, h, rand);
end
fori—1;i<k;i—i+1do
| CompareSwap(a, i, i + 1);
end
fori—mn;i>k;i—i—1do
| CompareSwap(a, i, i — 1);
end
Output aj,

The compareRegions and CompareSwap functions are the same as the Random-
ized Shellsort.

Figure 10: The Fast Selection Algorithm

This algorithm can find the k-th smallest element with
high probability. Our empirical studies show that the error
rate is very low. More details will be given in Section 6. The
time complexity of this selection algorithm is given in the
following;:

THEOREM 3. To find the k-th smallest element in an ar-
ray of size n, the number of compare-swap operations Ty i
is bounded by the following inequality:

(2n—k)logk+n—4k+4 < T, < (2n—k)logk+3n+k—2.

4We assume that k < 5. If k > 3, the region comparisons

will be conducted on the left side. The goal is to conduct
the comparisons on the longer side.

The proof is given in Appendix B. The theorem indicates
that the time complexity of the algorithm is ©(nlog k).

5. S2P RANDOM PERMUTING
5.1 The S2P Random Permuting Problem

A random permutation is a random ordering of a set of
elements. It often serves as a building block to many ran-
domized algorithms, such as those in coding theory, cryptog-
raphy, and simulation. A good random permuting algorithm
should be able to generate all of the n! permutations with
an equal probability.

We would like to build a S2P random permuting circuit.
The layout of the circuit is exactly the same as the layout
depicted in Figure 1. Namely, the inputs of the circuit are
shared by Alice and Bob (nobody knows the actual inputs).
The output of the circuit is a random permutation of the
inputs. Neither Alice nor Bob knows how the inputs are
permuted.

5.2 Random Permuting Algorithms

Like sorting networks, there are permuting networks. Gold-
stein and Leibholz proposed a method in [15]. Its cost is
(p—1) 27 + 1, for 27 items. Although this algorithm is
data-oblivious, the distribution of the results is not uniform.
Namely, the information of the inputs is disclosed to certain
degree.

Another well-known random permuting algorithm is re-
ferred to as Knuth shuffle [20]. It has been proven that
Knuth shuffle generates all n! permutations with uniform
distribution, as long as the random number is uniformly
generated. To shuffle an array with size n, the algorithm
takes n — 1 round. In each round (say round i), the algo-
rithm generates a random number r € {1,...,n — i}, and
exchange the i-th element of the array with the r-th element.

Knuth shuffle runs in O(n) time, but unfortunately, it is
not a data-oblivious algorithm, because the sequence of com-
parisons depends on the value of r. To use Knuth shuffle to
build a S2P permuting circuit, the value of r cannot be dis-
closed to anybody; otherwise how the inputs are permuted
is partially disclosed. Introducing decoys to hide r increases
the time complexity to O(n?).

5.3 A Sorting-Based Permuting Algorithm

Permuting can be achieved using sorting. The idea is quite
simple: in order to randomly permute an array, we expand
each element (say a;) of the array into a tuple (r;, a;), where
r; is a randomly generated number. We then sort this array
of tuples using the random numbers as the key. After sort-
ing, the elements (a;’s) of the original array are randomly
permuted.

The random numbers r;’s are generated jointly by Alice
and Bob, i.e., each of them generate their own shares, the
actual random numbers used for sorting is the xor of their
shares. Nobody knows the actual random numbers. Our
S2P sorting circuit allows the sorting without each party
knowing the actual inputs.

It has been proven that if there are no duplicates in the
generated random numbers, the permutations is uniformly
random [20].

6. EVALUATION

This section gives a comprehensive empirical study of our
S2P sorting and selection algorithms. Because our permut-
ing algorithm is based on sorting, we will not describe its
evaluation results. All the experiments are run on Intel(R)
Pentium(R)-D machines with 3.00 GHz CPU and 4GB of
physical memory. Our implementation is in Java. We use
Fairplay [25] to build our compare-swap primitive.

6.1 S2P Sorting Circuit

In this section, we evaluate the performance of S2P cir-
cuits based on sorting networks and Randomized Shellsort.
Figure 11(a) and 11(b) show the performance of S2P sort-
ing circuits on a local machine and a local area network, re-
spectively. All the evaluated circuits can finish S2P sorting
within reasonable amount time, except Shellsort, because
Shellsort’s inner loop is not data-oblivious and its circuit
runs out of memory when n > 64.

From these two figures, we can find out that when the ar-
ray size is not too large, the Odd-Even Mergesort performs
the best. Although this algorithm has O(n log? n) time com-
plexity, it has a small constant (0.25). That is why it is even
better than the randomized Shellsort algorithm (with time
complexity (nlogn)). However, Randomized Shellsort be-
comes better when n is large (see Figure 11(c)). In this
figure, we uses the number of compare-swap as the Y-axis,
because the running time for the evaluation of one compare-
swap primitive is constant (0.766 second for a local machine
and 0.901 second over a LAN).

Randomized Shellsort is a probabilistic algorithm, which
achieves sorting with very high probability. To evaluate this,
we have conducted experiments using randomly generated
array of various size. We ran the algorithm ® over one million
times for each input size, ranging from 2 to 22°. We have
found no sorting error in the results.

6.2 Fast Randomized Shellsort

We evaluate the improvement achieved by our Fast Ran-
domized Shellsort. Figure 11(c), the asymptotic plot, demon-
strates the savings compared to Randomized Shellsort. This
saving is quite significant; it is achieved by allowing a small
amount of sorting errors. To see how much the sacrifice is,
we conducted our evaluation on randomly generated arrays
of different sizes. We run our experiment 10,000 times for
each size, and plot the average results in Figure 12.

From Figure 12, we can see that the error rates (i.e., the
portion of elements that are not placed in correct positions
after sorting) are very low, i.e., although the whole array
is not completely sorted, only a small percent of elements
are in wrong positions. Moreover, among all mis-located
elements, most of them are only off by one position (i.e.,
error distance = 1), and very small number of elements are
off by two positions. No element in our experiments is off
by more than two positions.

6.3 S2P Selection Circuit

Figure 13 compares our selection algorithm with the sorting-
based selection. The improvement over the running time is
quite significant. This improvement is achieved at the cost
of a accuracy.

To evaluate how accurately our algorithm can find the k-
th smallest item. We conducted experiments on randomly

To save time, we conduct this experiment only in the non-
S2P setting, as the results of this experiment does not change
even if it is conducted in S2P settings.

x10

7000 8000, 12
1]
« Shellsort * Shellsort 2
@7 |=Randomized Shellsort 2™ |=Randomized Shellsort o [7Randomized Shelsot 3
kel o +0dd-Even Mergesort @ + Odd-Even Mergesort
& sooof |+ Odd—Even Mergesort § 6000 Bitoni A g s 4 Fast Randomized Shellsorf
S itoni < Bitonic sort o g
2 ©Bitonic sort 2 5000 o g
e < . =3
£ £ 4000 g o
S 3000 = O
2 . 23000 5 4 4
£ 2000 £ 2000 3 -
& z 'E 2 A
1000 ® 10000 o 3 a
e RS IR
s i S z 5.
50 250 300 50 10 250 300 2 10 12

100 150 200
The input size
(a) Running time on local machine

0 150 200
The input size

(b) Running time on LAN

4 6 8
The input size 3

(c) Running time for large n

x 10

Figure 11: Performance of S2P sorting algorithms

10°

MError distance = 1
[CIError distance = 2

Error rate
IS

256

512 1024 2048 4096 8192 16384 32768 65536
The input size

Figure 12: Error rate of Fast Randomized Shellsort

10*

9 E
73 i
Q
S 51 [«Fast selection
@ | [+Odd-Even Mergesort
04
@

3

g 3 e
3 e -

52 o ——

5] —

2

E1 T

5 s

z =

1500

1000 2000 2500
The input size

Figure 13: Performance of S2P selection algorithms

generated arrays of various sizes and with various k values.
The error rates are plotted in Figure 14.

Our selection algorithm is quite accurate. Most of the
errors are just off by one (i.e., instead of finding the k-th
largest number, the algorithm returns the (k — 1)-th or (k +
1)-th largest number). The rate of this type of errors is quite
small (less than 0.014%). Errors that are off by more than
one position are much less.

4

10°

MError distance=1
[Error distance=2
CError distance=3

Error rate

256

512 2048

1024 4096
The input size

8192 16384

Figure 14: Error rate of the Fast Selection algorithm

7. RELATED WORK

Bureaucratic computing reveals the inherent relationship
between secure two-party computation and oblivious algo-
rithms. We briefly review these two fields in this section.

10

Applications of S2P can be categorized into two directions.
One focuses on developing generic solution using Yao’s gar-
bled circuit [13,14,30]. Thanks to Fairplay [25], we can
easily build Yao’s circuit for a specific problem. However,
this general approach is not scalable [1,24]. For example, di-
rectly compiling the bubblesort algorithm into Yao’s circuit
generates a circuit that contains O(nz) compare-swap gates,
each of which requires an expensive oblivious-transfer pro-
tocol. The cost of such a generic circuit is quite large with a
big n. Another direction aims at designing S2P schemes for
a given function or a specific algorithm [1,3,6,8,11,24]. They
take the approach of reducing the generic circuit construc-
tion into many invocations of simpler secure functions of less
inputs, or sacrificing partial secret information to gain effi-
ciency. The concept of “data obliviousness of an algorithm”
has never been studied in those papers.

Our goal is different. We would like to answer which algo-
rithm is the fastest for a specific S2P computation problem,
such as sorting. Bureaucratic framework ensures that the
costly effort of applying the generic garbled circuit is spent
only on the atomic two-input functions.

This framework roots in the data obliviousness of algo-
rithms. Knuth’s book [21] is one of the first places to men-
tion “oblivious algorithm” in details. In [12,27], the authors
propose “cache-oblivious” algorithms, which are appealing
in hardware applications. The motivation is to design algo-
rithms that are independent to hardware parameters, such
as cache size and cache-line length. This line of work has
little relationship to ours; we study data obliviousness.

Sorting network is an important research topic in hard-
ware and parallelization research [4]. We exam most popular
two of them, odd-even merge and bitonic sort. Several stud-
ies based on [4] have improved efficiency and simplicity for
selection and sorting [7,22]. Sorting networks are suitable
for bureaucratic computing since they are data-oblivious.
Shellsort and its variants is another widely-studied tech-
nique [19,28]. These variants are mainly for improving
performance. The best known time complexity for Shell-
sort variant is beyond O(nlogn) [28]. To the best of our
knowledge, our Randomized Shellsort is the first variant that
achieves O(nlogn), with a provable very high probability.
Moreover, it is, by design, data-oblivious and appropriate
for bureaucratic computing.

This paper is also (arguably) the first one to propose ef-
ficient S2P sorting, selection, and permutation algorithms.
Although there is a secure k'*-ranked computation method
in [1], their setting is different from ours, in the sense that
it allows partial information (i.e., intermediate results) dis-
closure. Our solution ensures zero knowledge disclosure.

We have already summarized the work related to random
permuting in Section 5. We will not repeat it here.

8. CONCLUSION

We propose a bureaucratic computing framework for algo-
rithm design for S2P computation, and justify its efficiency
on S2P sorting, selection and permutation problems. Our
system is reasonably fast and will be open source. With
the increasing privacy concerns, we believe that the direc-
tion to find efficient algorithms for bureaucratic computing
is important. This paper makes an important initial step to-
wards this direction. More efficient algorithms will emerge
to solve other interesting S2P problems.

9. REFERENCES

[1] G. Aggarwal, N. Mishra, and B. Pinkas. Secure
computation of the k*"-ranked element. In In
Advances in Cryptology-Proc. of Eurocrypt’04, pages
40-55, 2004.

[2] M. Ajtai, J. Komlos, and E. Szemeredi. Sorting in
clogn parallel steps. Combinatorica, 3:1-19, 1983.

[3] M. J. Atallah and W. Du. Secure multi-party
computational geometry. In WADS2001: Tth
International Workshop on Algorithms and Data
Structures, pages 165—179, Providence, Rhode Island,
USA, August 8-10 2001.

[4] K. E. Batcher. Sorting networks and their
applications. In Proceedings of the AFIPS Spring Joint
Computer Conference 32, pages 307-314, 1968.

[5] M. Blum, R. W. Floyd, V. Pratt, R. Rivest, and
R. Tarjan. Time bounds for selection, 1973.

[6] R. Canetti, Y. Ishai, R. Kumar, M. K. Reiter,

R. Rubinfeld, and R. N. Wright. Selective private
function evaluation with applications to private
statistics (extended abstract). In Proceedings of
Twentieth ACM Symposium on Principles of
Distributed Computing (PODC), 2001.

[7] G. Chen and H. Shen. A bitonic selection algorithm
on multiprocessor system. J. of Comput. Sci. Technol.,
4:315-322, 1989.

[8] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private information retrieval. In Proceedings of IEEE
Symposium on Foundations of Computer Science,
Milwaukee, WI USA, October 23-25 1995.

[9] M. Ciura. Best increments for the average case of
shellsort. In International Symposium on
Fundamentals of Computation Theory, Riga, Latvia,
2001.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Second Edition.
The MIT Press, 2001.

[11] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim,
M. Strauss, and R. Wright. Secure multiparty
computation of approximations. In Twenty Eighth
International Colloquium on Automata, Language and
Programming, 2001.

[12] M. Frigo, C. E. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algorithms
(extended abstract). In In Proc. 40th Annual
Symposium on Foundations of Computer Science,
pages 285-397. IEEE Computer Society Press, 1999.

[13] O. Goldreich. The Foundations of Cryptography,
volume 2. 2004.

[14] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing,
pages 218-229, 1987.

[15] L. J. Goldstein and S. W. Leibholz. On the synthesis
of signal switching networks with transient blocking,
1967.

[16] M. T. Goodrich and R. Tamassia. Algorithm Design:
Foundations, Analysis, and Internet Examples. Wiley,
2001.

[17] Michael T. Goodrich. Randomized Shellsort: A simple
oblivious sorting algorithm. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1-16. STAM, 2010.

[18] J. Incerpi. A study of the worst case of shellsort.
Ph.D. thesis, Brown University, Dept. of Computer
Science, 1994.

[19] J. Incerpi and R. Sedgewick. Practical variations of
shellsort. Information Processing Letters, 79:223-227,
2001.

[20] D. E. Knuth. Seminumerical algorithms. The Art of
Computer Programming, 2.

[21] D. E. Knuth. Sorting and searching. The Art of
Computer Programming, 3.

[22] T. Leighton, Y. Ma, and T. Suel. On probabilistic
networks for selection, merging, and sorting. In
SPAA’95, pages 106—118, Santa Barbara, CA, USA,
1995.

[23] P. Lemke. The performance of randomized
shellsort-like network sorting algorithms. In SCAMP
working paper, Institute for Defense Analysis,
Princeton, NJ, USA, 1994.

[24] Y. Lindell and B. Pinkas. Privacy preserving data
mining. In Advances in Cryptology - Crypto2000,
Lecture Notes in Computer Science, volume 1880,
2000.

[25] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay
— a secure two-party computation system. In In
USENIX Security Symposium, pages 287-302, 2004.

[26] M. S. Paterson. Improved sorting networks with o(log
n) depth. Algorithmica, 5:75-92, 2005.

[27] H. Prokop. Cache-oblivious algorithms. Technical
report, M.I.T, 1999.

[28] R. Sedgewick. Analysis of shellsort and related
algorithms. In ESA 96: Fourth Annual European
Symposium on Algorithms, pages 25—27, 1996.

[29] D. L. Shell. A high-speed sorting procedure. Commun.
ACM, 2(7):30-32, 1959.

[30] A. C. Yao. How to generate and exchange secrets. In
Proceedings 27th IEEE Symposium on Foundations of
Computer Science, pages 162—167, 1986.

APPENDIX
A. PROOF OF THEOREM 2

Here is the proof for Theorem 2, the time complexity of
Randomized Shellsort.

PROOF. In every round, we have six passes. When offset
equals to f, the number of compare-swap operations that

each pass takes is (? —1) % f, (% — 1) % f, (% —3) = f,
(% —2)x* f, (% x f, and (% — 1) = f, respectively. Note that
the third, fourth, and sixth inner loop are not running at the
first round. We have the total number of compare-swaps as
the following:

T) = (5 =DI+ (5 =D+ (50
+ 2L =t (- i+ (G~ DA

Since we are using geometry sequence for our offset, f; is
n/2*, we have

T(n) = 5nlogn — %n—b—&

This concludes our proof. []

B. PROOF OF THEOREM 3

We have the time complexity of the Fast selection algo-
rithm. The proof of Theorem 3 is the following:

PROOF. Similar to the proof above, we list the number
of compare-swaps each inner loop takes. When offset is f,
they are L?Jﬁ f"Tfk]ﬁ L"fl;ffjﬂ and f, respectively. The
summation of them gives the expression of T, :

[log k|

Tox= 3 (L5lfi+]

n —

k . n—k—fi
—Eyp n bt

fi

Ifi+fi)+n
(2)

Since f; is k/2°, we have

[log k|
Tagk < Z (fﬁfl + (n; i +1)fi + %_ﬂfz + fi) +
’L:O 1 1 1
[log k|
= Z(Qn—k—!—fi)—kn
i—0

IA

(2n—k)logk+3n+k —2

We can have the lower bound in the same way. [

C. RELATED ALGORITHMS

Figure 15 is the algorithm of Odd-Even Mergesort; while
Figure 16 is Bitonic sort algorithm.

n

12

0Odd-Even Mergesort

Input: The n-element array A that to be sorted

Output: The sorted array A

if n > 1 then
Odd-Even Mergesort Ao, A1, ..., Az_q
Odd-Even Mergesort Az, An1,...,4,
Odd-Even Merge(A)

end

procedure Odd-Even Merge(a)

1:

2
3:
4

@ o

ifn>2
Odd-Even Merge(ag, ag, ..., an—2)
Odd-Even Merge(ay, as, ..., an—1)

CompareSwap(a, 4,7+ 1) for all i € {1,3,5,7,...,n — 3}
else
CompareSwap(a, 0, 1)

Figure 15: Odd-Even Mergesort Algorithm

Bitonic sort
Input: The n-element array A that to be sorted, start, end, direction
Output: The sorted array Agiart - - - Aend
n < end — start if n > 1 then
m %
Bitonic sort(Astart, - - -y Am, ASCENDING)
Bitonic sort(Am, 4 start, - - - , Am, DESCENDING)
Bitonic Merge(Astarts - - - » Aena, direction)
end

procedure Bitonic Merge(a, low, a.length, direction)

1:

N oo e w N

n « a.length

cifn > 1
s m—n/2
s for(i « low; i < low+m;i—i+1

CompareSwap(a, i, + m, direction)

. Bitonic Merge(a, low, m, direction)
. Bitonic Merge(a, low + m, m, direction)

Figure 16: Bitonic sort Algorithm

