
TruZ-View: Developing TrustZone User Interface for Mobile OS
Using Delegation Integration Model

Kailiang Ying, Priyank Thavai, and Wenliang Du
Syracuse University, Syracuse, New York, USA

{kying,pthavai,wedu}@syr.edu

ABSTRACT
When OS and hypervisor are compromised, mobile devices cur-
rently provide a hardware protected mode called Trusted Execution
Environment (TEE) to guarantee the confidentiality and integrity
of the User Interface (UI). The present TEE UI solutions adopt a
self-contained design model, which provides a fully functional UI
stack in the TEE, but they fail to manage one critical design princi-
ple of TEE: a small Trusted Computing Base (TCB), which should
be more easily verified in comparison to a rich OS. The TCB size
of the self-contained model is large as a result of the size of an
individual UI stack. To reduce the TCB size of the TEE UI solution,
we proposed a novel TEE UI design model called delegation model.
To be specific, our design reuses the majority of the rich OS UI
stack. Unlike the existing UI solutions protecting 3-dimensional
UI processing in the TEE, our design protects the UI solely as a
2-dimensional surface and thus reduces the TCB size. Our system,
called TruZ-View, allows application developers to use the rich OS
UI development environment to develop TEE UI with consistent UI
looks across the TEE and the rich OS. We successfully implemented
our design on HiKey board. Moreover, we developed several TEE
UI use cases to protect the confidentiality and integrity of UI. We
performed a thorough security analysis to prove the security of the
delegation UI model. Our real-world application evaluation shows
that developers can leverage our TEE UI with few changes to the
existing app’s UI logic.

CCS CONCEPTS
• Security and privacy→ Mobile platform security;

KEYWORDS
TrustZone, Android, UI safety

ACM Reference Format:
Kailiang Ying, Priyank Thavai, and Wenliang Du. 2019. TruZ-View: Devel-
oping TrustZone User Interface for Mobile OS Using Delegation Integration
Model. In Ninth ACM Conference on Data and Application Security and Pri-
vacy (CODASPY ’19), March 25–27, 2019, Richardson, TX, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3292006.3300035

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CODASPY ’19, March 25–27, 2019, Richardson, TX, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6099-9/19/03. . . $15.00
https://doi.org/10.1145/3292006.3300035

1 INTRODUCTION
Nowadays, users perform various essential activities, including
banking, shopping, and financing, through the smartphone User
Interface (UI). Because of the heavy reliance on this single interface,
the security of the mobile software stack controlling UI has become
increasingly critical. Unfortunately, CVE results of mobile OSes are
not positive [6]. Take Android OS as an example – the number of
vulnerabilities has skyrocketed over the last eight years. The mobile
OSes cannot prevent untrusted code embedded in applications from
running, which then leads to a broad attack surface. Untrusted code
can exploit many vulnerabilities and can eventually manage to
compromise the OS. Once the mobile OS is compromised, the last
UI defense will be gone, and UI will then be controlled by malware.
What’s worse, malware can spoof actions on behalf of users without
their consent.

Trusted Execution Environment (TEE), a technology that can
secure the UI when the OS is compromised, has been developed
to address this prominent security issue. As the most commonly
deployed TEE on mobile devices, ARM TrustZone protects the
UI in an isolated environment, secure world, inaccessible by the
compromisedmobile OS and normal apps, while in the normal world,
untrusted normal apps run freely. We consider that there are mainly
two directions to design TrustZone UI, as shown in Figure 1. The
current design direction of the TrustZone UI solutions [4, 20, 30] is
established to support a fully functional UI stack in the secure world
mainly because these UI solutions support the Trusted Application
(TA) to build isolated UI in the secure world. Such a UI design
direction requires an isolated code stack (i.e., UI stack and TA)
in the secure world and we call it the self-contained UI model, as
shown on the left side of the Figure 1. Research works [3, 18, 28, 32]
built various UI protection mechanisms (i.e., TAs) on top of the
current TrustZone UI solutions [4, 30]. Although the self-contained
UI model does provide UI security measures, we consider that the
current TrustZone UI model fails to manage one critical design
principle of TEE: a small Trusted Computing Base (TCB), which
should be more easily verified in comparison to a rich OS. The
TCB size of the self-contained model is large because it requires an
individually functional UI stack in the secure world.

We intend to reduce the TCB size of the TrustZone UI. Our pri-
mary observation is that the functionalities of the secure-world
UI stack can be further divided into UI development, UI services,
and UI interaction, as shown in Figure 2. The main objective of the
TrustZone UI solution is to secure the UI interaction, which involves
displaying sensitive data on the screen and taking sensitive input
from users. In order to protect the UI interaction, the self-contained
UI model decides to also include both the UI development and the
UI services in the secure world. When developing UI, developers
construct the UI layer by layer. For example, developers can first

https://doi.org/10.1145/3292006.3300035
https://doi.org/10.1145/3292006.3300035

Figure 1: TrustZone UI Design Models

define the background layout (layer 1) and then put buttons (layer
2) on top of the layout (layer 1). The main tasks of the UI services
are propagating touch events and compositing the screen content
based on the multilayered UI structure defined by developers. Be-
cause of the complexity of this multilayered UI processing, the TCB
size of the UI development and UI services is large. However, when
users interact with the secure-world UI, they solely interact with a
2-dimensional surface on the screen. On a 2-dimensional surface,
the protection of displaying the sensitive data is equivalent to the
protection of a region on the image and the protection of the users’
sensitive input is equivalent to the protection of users’ touch coor-
dinates on the screen. We can significantly reduce the TCB size if
the secure world solely protects the UI as a 2-dimensional surface
and leaves the 3-dimensional UI processing in the rich OS.

Figure 2: TrustZone UI Stack

Based on our observation, we propose the delegation UI model
for TrustZone, as shown on the right side of the Figure 1. The
main idea of our model is to delegate the UI development and
the UI services to the rich OS. The normal world conducts the 3-
dimensional UI processing, which does not contain any sensitive
data. The output of the normal-world UI stack becomes an image
on the screen. To display the sensitive data stored in TrustZone, the
secure world takes a screenshot and overlaps the protected data on
top of the screenshot before displaying them to users. To protect the
users’ sensitive input, our design keeps users’ touch coordinates on
the screenshot in the secure world. The protected data will never
be leaked to the normal world. With this new design model, our
approach significantly reduces the size of the secure-world UI stack
from 3-dimensional UI processing to 2-dimensional UI processing.

This paper makes the following contributions: (1) provides the
first study to propose a novel TrustZone UI design model called
delegation model and to systematically study the properties and
design principles of this new model; (2) the implementation of the
TrustZone UI solution, called TruZ-View, applying the delegation

model to protect UI interactionwhen themobile OS is compromised;
(3) the performance of a thorough security analysis to prove the
security of TruZ-View; (4) the evaluation of our system by using
real-world applications.

2 PROBLEM
In this section, we discuss our threat model, research problems,
and design challenges when applying the delegation UI model.
We systematically compare the design trade-off between the self-
contained model and the delegation model.

2.1 Threat Model
The user of the device is trusted. The normal world filled with apps
and Android OS is untrusted because it may attempt to take screen-
shots that contain users’ confidential information or to keylog users’
confidential input (e.g., password and credit card number), and may
spoof an unauthorized action on users’ behalf without their confir-
mation. The secure world that includes the Trusted Applications
(TA) and TEE OS is trusted and preserves users’ confidentiality and
integrity when the normal world is compromised. We assume that
the server remains trusted after it is authorized by the user. The
authorized server aims to protect the users’ confidential data and
verify the integrity of the users’ request.

2.2 Problem Statement
The research problem of protecting UI can be further broken down
into protecting UI display and protecting UI input. In this paper,
we apply the delegation UI model and mainly answer (1) how to
securely display the protected data, which is downloaded from
the server; and (2) how to securely take users’ sensitive input in
TrustZone.

2.3 UI Design Models Design Trade-off
To better understand characteristics of different design models,
we systematically compare the design trade-off between the self-
contained UI model and the delegation UI model in three aspects,
namely security, system design, and application impact. The com-
parison result is summarized in Table 1. Relying on the comparison
result, we further derive design principles when we apply the dele-
gation UI model.

Security. The TCB size and the isolation boundary are two essen-
tial attributes to measure the security of TrustZone solution. The
self-contained model requires a separate UI stack to support TAs to
write the UI logic, which requires a large TCB in the secure world.
By contrast, the delegation model pushes the majority of the UI
stack in the normal world and requires a small TCB in the secure
world. As a trade-off for the TCB, the self-contained model could
maintain a clean isolation boundary between two worlds because
the software stacks are completely isolated in two worlds, while
the isolation boundary for the delegation model is not clear yet.
Therefore, the UI design that applies the delegation model has to
answer this challenging question.

System design. The code reusability and the modularity are
two critical measurements for the TEE system design. First of all,
the code reusability implies that the software stack developed for

Table 1: UI Design Models Comparison Summary

Security System Design Application Impact
Model TCB Isolation Reusability Modularity Transparency Consistency Rich Usability

Self-contained large clean low clean low low high
Delegation small unclear high unclear high high none

one world can be reused for another world. The software devel-
oped based on the self-contained model always suffers a low code
reusability because different OSes have different interfaces and
development standards. In contrast to the self-contained model, the
delegation model reuses the majority of the normal-world software
stack including OS level and application level. Therefore, the delega-
tion model can obtain a high code reusability. Secondly, modularity
suggests that the system update of one world should not affect
the other world. The self-contained model can update systems in-
dependently because software stacks of both worlds are entirely
separated. As a trade-off for the code reusability, the delegation
model cannot merely modularize two worlds into two modules.
The UI design that applies the delegation model has to provide an
insight to preserve the modularity between two worlds.

Application impact. We use transparency, consistency, and rich
usability to assess the TrustZone design impact on applications.
Firstly, transparency is how many efforts application developers
need to make to integrate the TrustZone UI solution with their
applications. The self-contained model requires application devel-
opers to work with vendors to develop UI in the secure world, and
such an approach requires much effort of application developers to
leverage the TrustZone UI. Moreover, putting application-specific
logic in the TEE is not secure because it is the reason that broadens
the normal-world attack surface. The delegation model has high
transparency to applications because our model reuses the normal-
world application UI logic to develop the secure-world UI and does
not put any application-specific logic in the TEE. Secondly, the con-
sistency means whether users have the same UI experience across
worlds. Users usually endure an inconsistent user experience when
interacting with the self-contained UI model because the screen
images are produced by separate UI stacks. The delegation model
can provide consistent UI experiences across worlds because a sin-
gle UI stack produces screen data for both worlds. Thirdly, the rich
usability refers to whether the secure-world UI supports the rich UI
functionalities such as animation and UI extensible services such
as autocomplete and spell checker. As a trade-off for the TCB, we
decide not to support any rich UI functionality like animation inside
the secure world while the self-contained model could support rich
UI depending on how large its TCB is.

Delegation UI model design principles. To reach a conclusion
on the comparison, we summarize design principles of the delega-
tion UI model. When we apply the model to design the TrustZone
UI, these principles will help us preserve the aforementioned prop-
erties of the delegation model: (1) maintain a small TCB in the
secure world and reuse the rich OS for non-sensitive operation as
much as possible; (2) find a clean cut for the isolation boundary;
(3) require a minimum effort from the TrustZone integration for

applications and the system update; (4) maintain a consistent UI
experience across the worlds.

2.4 UI Design Challenges
In this section, we discuss UI design challenges by applying the
delegation model. The secure world loses many capabilities during
this TCB reduction process because our design model pushes the
majority of the UI stack out of the secure world. However, some of
the lost capabilities are important for the secure world to protect
UI and become challenges for our UI design.

First of all, the secure world loses the capability to develop UI
independently. We delegate UI development to the untrusted nor-
mal world. The data processed by the normal world is considered
as untrusted. How can the secure world leverage the untrusted
normal-world UI stack to develop UI for the secure world?

Secondly, the secure world loses the UI layer information because
the delegation model solely protects the 2-dimensional image in
the secure world while all the UI layer information is processed in
the normal world. However, some of the UI layer information is
important to define how to protect the UI display and the UI input.
We need to find way to recover the lost UI layer information in
the secure world.

3 IDEA
In this section, we discuss our key ideas to leverage the untrusted
UI stack and to recover the lost UI layer information.

3.1 Splitting the UI Rendering Process
Our main idea of producing the secure-world UI is to split the
normal-world UI rendering process at the last step.We categorize all
existing TrustZone UI solutions as splitting the UI rendering process
at different layers. The Figure 3 is an abstraction diagram of splitting
design options. The first option [4, 20, 30] is to split the UI rendering
at the application layer and to put all three layers into the secure
world. The second option [32] is to split the UI rendering process at
the framework level. Such a splitting option leaves the application
logic in the normal world and puts the remaining two layers in
the secure world. The challenge of the 2nd option is to maintain
the binding between the application code in the normal world and
the UI in the secure world. Although these two existing splitting
options provide UI security measures, such splitting approaches
require a separate UI stack to support the secure-world UI.

We suggest splitting the UI rendering process at the last step.
The normal world produces the screen data without having the
TrustZone-protected data. Our design takes the normal-world screen-
shot as the secure-world UI. The secure world protects the sensitive
data display by overlapping the protected data on top of the screen-
shot and protects the users’ input by keeping the touch coordinates

Figure 3: UI Rendering Split Options

inside the secure world. Our splitting option allows us to protect
the UI interaction on a 2-dimensional surface.

3.2 Why securing a 2D UI is sufficient?
Here we explain why securing the display of sensitive data on a
2-dimensional surface is sufficient. First of all, users see the UI as a
2-dimensional image. Second, the sensitive data displayed on the
UI is also stored in a 2-dimensional format in the secure world. We
can directly perform image operation on the 2-dimensional surface
to overlap the sensitive data on top of the image, thus protecting
a 2-dimensional surface is sufficient to protect the sensitive data
display.

Next, we describe why securing the users’ sensitive input on a
2-dimensional surface is adequate. First of all, the initial form of the
touch event is touch coordinates, which are a pair of float numbers.
Second, all security-related inputs (i.e., confidential input, integrity-
preserved input) are consumed at the UI’s top layer, which users
can see. There is no need to propagate such touch events to lower UI
layers. For instance, when users type a password (i.e., confidential
input) through a keyboard, they intend to click on the keyboard
layer that they can see, not on the underlying invisible layers. The
touch event is always consumed in an area of the 2-dimensional
surface where users can see. Thus protecting the UI’s top visible
layer, a 2-dimensional surface that is enough to protect the UI input.

In this section, we convey our high-level isolation boundary. We
further performed a detailed security analysis in Section 6 to prove
the security of the 2-dimensional UI protection.

3.3 Recover UI Layer Information
The UI layer information is missing in the 2-dimensional surface
because our design decides to split the UI rendering at the last step.
However, some of the layer information is important to preserve
the consistent UI experience across worlds. For example, the se-
cure world needs to know how to protect the users’ input (e.g.,
keyboard layout) and know where to display the protected data in
the screenshot.

Our main idea of the recovery of the UI layer information is to let
the Android view system send views’ coordinates to TrustZone,
as shown in Figure 4. We observe that the UI layer information is
initially defined by the UI view that is the basic building block to
construct the UI in the normal world. Our design allows develop-
ers to label certain views as the TrustZone-protected when they
develop the UI. We follow the same UI development workflow and
create a TrustZone tag in the view system. Our modified view sys-
tem sends coordinates of TrustZone-enabled views to the secure
world. Based on these coordinates, our design can recover the UI

Figure 4: Recover UI Layer Information

layer information on a 2-dimensional surface. We have conducted
a thorough security analysis in Section 6 to prove that the normal
world cannot misuse the wrong view coordinates.

Our design provides easy-to-use TrustZone UI building blocks
for developers. Developers can simply add these UI building blocks
into an existing application’s UI. We further categorize these UI
building blocks into (1) confidential display, (2) confidential input,
(3) integrity-preserved interaction. In Section 4, we will describe
our UI building blocks design in detail.

4 UI DESIGN
In this section, we discuss our UI building blocks based on three cat-
egories: (1) confidential display, (2) confidential input, (3) integrity-
preserved UI interaction. We refer to such views as truz-views.

4.1 Confidential Display
Application developers can protect users’ confidential information
displayed on the screen by adding a truz-view.

Figure 5: Confidential Display Design

Our confidential display design enables the normal-world graph-
ics stack to recognize the truz-view and to work with TrustZone to
display the protected data stored in the secure world. The normal-
world graphics stack composites the app’s UI into an image but
leaves the area of truz-view blank, as shown in Figure 5 ➊.

Users first see the normal-world UI, as shown in Figure 6WeChat
example. To view the TEE-protected data, users click on the truz-
view’s area. Our design handles this particular click and takes a
screenshot of the current UI. The screenshot is then sent to the
secure world, as shown in Figure 5 ➋. Our design further transfers
the coordinate and size of truz-view to the secure world, as shown
in Figure 5 ➌, to guarantee that the protected data is filled in the
secure region of the app’s UI. The secure world then obtains the
exclusive control of the screen hardware and fills in the protected
data on the screenshot and displays the complete UI to the user,
as shown in Figure 5 ➍. Throughout this process, users see the
familiar app’s UI with the protected data filled in. We use WeChat
barcode payment UI to illustrate our UI in the secure world (Figure 6
WeChat secure world). Users scan the barcode in the secure world
and can click the back button to switch the control of the screen to
the normal world. When in the normal world, the protected data
disappears and the truz-view’s area is shown blank on the screen
(Figure 6 WeChat normal world). In Section 6.1, we explain why
the users’ confidential information will not be leaked during the
confidential display process.

We totally developed two types of confidential display UI build-
ing blocks, namely ImageView and TextView. Developers can simply
embed the confidential display UI into the app using the code in
Listing 1. They only require the secure world to perform image op-
eration to render the protected data. The confidential information
can be downloaded from servers to the secure world. Our design
returns a reference to the protected data to the normal world. De-
velopers then use the reference to display the TEE-protected data
in the secure world. We will discuss our implementation for data
downloading and reference management in Section 5.

Listing 1: Application change for confidential display
<View android:tzSecure ="true"

android:src=" reference to protected data" />

Figure 6: Confidential Display and Input Use Cases

4.2 Confidential Input
Application developers can protect users’ confidential input by
embedding a truz-view in the app’s UI. Apps commonly accept
users’ confidential input, such as password and account number,
through a keyboard, or let users sign on the smartphone to approve

a purchase request. Our design mainly focuses on two common
confidential input UI: typing password through a keyboard and
signing through a signature pad. We use the keyboard to explain
our main idea and the concept of securing users’ signature is similar.

The keyboard is a standalone application. Android allows apps
to use either a system keyboard or a customized keyboard to pro-
cess users’ input. Our design enables both types to protect users’
keystroke inside the secure world. To give feedback on users’ in-
puts, the app, which uses the TrustZone-enabled keyboard, needs
to display secure-world keystrokes on a text field (i.e., EditText). Ap-
plication developers can then embed a TrustZone-enabled EditText
to be bound with the secure-world keyboard.

The normalworld composites the app’s UI including the TrustZone-
enabled keyboard and EditText into an image. When the normal
world displays the UI, our design takes a screenshot and then sends
the image to the secure world. Then the secure world takes over
the control of the screen and lights on a LED to notify users that
they can securely enter their confidential input on the screen.

Users see the same app’s UI in the secure world, as shown in
Figure 6 Facebook example. To allow the secure world to handle
users’ click on the keyboard, our design sends the coordinates of
truz-views and the layout of the KeyboardView to the secure world.
Note that Android requires each Keyboard app to have an XML
layout file and our design reuses this file to gain the layout of the
keyboard in the secure world. When the user types in the keyboard,
the secure world knows how to fill in the corresponding character
on the EditText. Once users finish typing, they can click the back
button to switch the control of screen to the normal world. Our
design stores the user’s input in the secure world and returns a
reference to the input to the normal world.

The developers can simply embed the confidential input UI into
the app using the code in Listing 2. We assume that the input is
processed only by the server, not by the client. We will explain our
implementation of secret transmission in Section 5. In Section 6.2,
we explain why the users’ confidential information will not be
leaked during the confidential input process.

Listing 2: Application change for confidential input
<View android:tzSecure ="true" />

4.3 Integrity-preserved UI Interaction
App developers desire to obtain the user’s consent without it be-
ing modified by the compromised OS. Our integrity-preserved UI
design focuses on a number of UIs such as Dialog, Confirmation
Activity, PIN Pad, Pattern Locker, and Password Locker. The com-
mon characteristic of these UIs is that they all require a group of
view elements to display the confirmation message to the user and
to request the users’ agreement to move forward. We use Dialog
to illustrate our main idea, and the way to secure other integrity-
preserved UIs is similar.

Take Chase monetary transaction Dialog as an example – devel-
opers want to allow users to confirm the transaction information
displayed in the secure world, as shown in Figure 7. To display
the confirmation message, app developers can embed a TrustZone-
enabled TextBox. To obtain the user’s decision, app developers can
embed two TrustZone-enabled buttons, one for a positive decision

Figure 7: Chase Payment Confirmation Dialog

and the other for a negative decision. Our design recognizes these
specialized views and asks the normal-world graphics stack to com-
posite the app’s UI including the truz-view’s region, as shown in
Figure 8 ➊. When the normal world displays the UI, our design
takes a screenshot and sends it to the secure world. To fill in the
integrity-preserved content on the right region of the app’s UI, our
design transfers the views’ coordinates, the confirmation message,
and properties of buttons (i.e., positive or negative) to the secure
world, as shown in Figure 8 ➋. The secure world first erases the
normal-world text on the TrustZone-enabled views and then fills
in the text on these views, as shown in Figure 8 ➌. Two options
guarantee the integrity of the text: (1) the TrustZone provides the
text content and (2) the server attests the text. For example, the
secure world fills in ‘Yes’ on the positive button and ‘Cancel’ on
the negative button and the confirmation message on the TextView
region. Our design prevents the normal world from fooling users.
Preserving the integrity of the normal-world UI is nontrivial and
we have performed a thorough security analysis in Section 6.3.

Figure 8: Integrity-preserved UI Interaction Design

Users see the familiar app’s UI with the integrity-preserved data
filled in. When the user confirms the message, our design gener-
ates an attestation of the message inside TrustZone, as shown in
Figure 8 ➍. We will explain how the TrustZone and the server
exchange the attestation key in Section 5. Once the user clicks on
the button, our design injects the user’s click along with the attes-
tation back to the normal world. The normal-world OS continues
to propagate the touch event to the corresponding Dialog button.

Developers can simply embed the integrity-preserved UI into the
app using the code in Listing 3. In Section 6.2, we explain why the

users’ confidential information will not be leaked in our injecting
click design decision.

Listing 3: Application change for integrity-preserved UI
<View android:tzSecure ="true"

android:tzProperty =" Positive" />

4.4 Hardware Design

Figure 9: Hardware Design

Our hardware platform runs Android 9.0 in the normal world
and OPTEE [22] in the secure world. We built our prototype using
the HiKey board as our base platform [1]. We used a TFT LCD panel
as the screen. The screen uses the HDMI interface for the display
and the USB interface for controlling the touch.

As shown in Figure 9, to allow the secure world to drive the
screen, we introduce an additional board (i.e., Raspberry Pi) con-
trolled by the secure world. The secure world communicates with
the Raspberry Pi through the serial communication (i.e., UART)
and the secure world has the exclusive control of the UART. We
achieve the screen isolation at the circuit level. We connect the
screen I/O to the multiplexer/demultiplexer. The multiplexer takes
the HDMI signal from both worlds and outputs the signal from
one of the worlds to the screen. The demultiplexer takes the touch
input from the screen and gives it to one of the worlds. The secure
world controls the switch of the multiplexer/demultiplexer. Each
world has separate I/O ports that are connected to multiplexer/de-
multiplexer. Users are informed that the screen is controlled by the
secure world when an LED is turned on. We configure the Trust-
Zone Protection Controller (TZPC) to allow the secure world to
have exclusive control of the switch, LED indicator, and UART. Our
hardware implementation is shown in Figure 10.

The main reason to use a separate Raspberry Pi is that the
OPTEE does not have a series of device drivers for display and
input. Developing such drivers requires accessing the design refer-
ence documents of the hardware platform (e.g., HiKey). However,
the silicon vendors commonly conceal their implementations and
NDA-protected documents, making it a great challenge for third-
party developers to write drivers. We also consider that writing
drivers is unnecessary for our project as our design mainly targets
those vendors who have driver stacks for their own hardware. If
the vendors adopt our design, they can eliminate the Raspberry Pi
in our design by directly deploying the driver stacks in the secure
world. Our design only uses Raspberry Pi as a bridge between the
secure-world OS and the screen hardware. We do not use any other
Linux OS functionalities in Raspberry Pi. We consider that our hard-
ware design provides a reference for the research communities that

desire to conduct a hardware-related research but are discouraged
by device-driver accessibility in the secure world.

Figure 10: Hardware Implementation

5 DATA PROTECTION AND MANAGEMENT
In this section, we discuss how we protect the data during online
data transmission and during the offline data usage. During the
online data transmission, our system allows developers to use stan-
dard network protocols (e.g., HTTP, SSL) to transfer the confidential
data between the server and TrustZone. During the offline data us-
age, we allow normal-world applications to display the data stored
in TrustZone without it leaked into the normal world.

High-level solution. The high-level idea of data protection is
shown in Figure 11. Having strong incentives to protect users’
sensitive data stored in the cloud, the server establishes a TLS
encrypted channel with TrustZone and sends the protected data
through HTTPS. The normal world cannot eavesdrop on the net-
work traffic without obtaining the TLS encryption key protected
by TrustZone. The secure world decrypts the HTTPS packet and
protects the confidential data. Our solution returns a reference to
the protected data to the normal world and keeps the data in the
secure world. This design ensures that the normal world cannot
read and modify the data stored in TrustZone.

Figure 11: Data Protection High-level Solution

Split SSL. The pioneering researcher has invented a solution
called Split SSL [32] to protect the online data transmission by using
TrustZone. We build on top of the Split SSL to transfer confidential
data between the server and TrustZone. The Split SSL secures the
server-TEE communication through the TLS protocol and conducts
all crypto operations (e.g., encryption, PKI) inside TrustZone. One

advantage is that the Split SSL is entirely transparent to the server
so that the server can use standard network protocols for data
transmission. The other advantage of the solution is that it allows
the TrustZone-protected data and the normal-world data to be
mixed in a single HTTPS packet. Their solution is to use an HTTP
header to create a boundary between two types of data. They have
conducted a thorough security analysis to prove that no information
was leaked during the Split SSL connection. The Split SSL allows
TrustZone and the server to establish a mutual trust during the
login process and exchange the attestation key with TrustZone
through the Split SSL. By checking the attestation of the HTTP
requests after the login, the server can test whether the request
comes from TrustZone.

Engineering Challenges. The Split SSL [32] mainly focuses on
uploading a secret to the server. To apply the same solution to
the download of the protected data from the server, we need to
overcome two additional engineering challenges. Firstly, the HTTP
response may be fragmented into multiple TLS records and TEE
does not know what to return without having the complete data.
The fragmentation is caused due to the limitation of the TLS record
length. The protected data will be sealed into multiple TLS records
if the data size exceeds the TLS record limitation. Secondly, the
secure-world reference may break the normal-world application
logic because the logic written by developers should be operated
on the actual data, not on the reference to the protected data. The
delegation model requires developers to spend the minimum effort
integrating TrustZone protection. Thus our design needs to find a
way to let the application logic operate on our reference without
breaking it.

HTTPS Packet Fragment. The Figure 12 is the overview of our
TrustZone-protected HTTPS download. Our system can handle
the HTTPS packet fragmentation and return a partial reference
to the normal world. One single HTTP packet that is put into the
TLS layer could be potentially sealed into multiple TLS records
because the TLS record has a maximum of 16KB length, as shown
in Figure 12 ➋. Once the secure world knows the size of protected
data from the HTTP header, and if the size exceeds the TLS record
size limit, the secure world will start to track the offset of currently
received data. The protected data will be firstly saved in chunks
with the length of the TLS record. Our solution returns a partial
reference for each TLS record. The partial reference is combined
with the reference to the protected data and the sequence order of
the protected data. We embed the reference in a shadow copy of the
TLS record, which has the same length as the TLS record, and return
the shadow copy to the normal world, as shown in Figure 12 ➍.

Our solution manages all partial references and their correspond-
ing data in a reference management table. Table 2 is a simplified
example of our reference management table. We bind the protected
data with the server name. If the data is fragmented, we have meta-
data to describe the sequence and the position of the fragmented
data. Once the secure world gets all pieces, our solution concate-
nates all parts into one buffer and saves it in the secure world.

Reference Design. Applications typically store the data in two
places: memory and file. When applications save the data in the
memory, our design embeds the reference in a shadow copy that has

Figure 12: TrustZone-enabled HTTPS Downloading
Table 2: Reference Management Table

CN data ref metadata
a.com ptr1 12345678(1) Seq=1,offset=0:16KB
a.com ptr2 12345678(2) Seq=2,offset=16:32KB
a.com ptr3 12345678(3) Seq=3,offset=32:42KB

the same length as the protected data and returns the shadow copy
to the normal world. The shadow copy also preserves the file header
in the shadow copy to ensure that the returned reference does not
break the normal-world application logic. When applications save
the data in the file, the data will be saved in the secure-world file
system. The application can ask the secure world to save the content
and get a secure-world file path back. Application developers can
display the confidential data using both types of reference.

6 SECURITY ANALYSIS
In this section, we present the security analysis of our TrustZone UI
design. Our design can guarantee the confidentiality of UI display
and UI input, and the integrity of UI interaction when OS and
hypervisor are compromised. We also analyze the security of the
secure downloading feature that we built on top of the Split SSL [32].
Our analysis assumes that the TrustZone hardware platform is
trusted and the secure boot process has initialized the integrity-
verified secure-world OS. Hardware attacks, side-channel attacks,
shoulder surfing, and DOS attacks are considered out of scope.

6.1 Confidential Display Security Analysis
The objectives of adversary include stealing the TEE-protected data
stored in the secure world, accessing the data loaded in the secure-
world memory and that displayed on the screen, inferring the data
based on the normal-world view information, and accessing the
secrets without authorization of the real user.

The normal world cannot steal the protected data stored in the
TEE because the protected data is stored in the TEE trusted storage,
which is a standard TEE storage solution. When the TA inserts
the protected data into the secure-world framebuffer, the TA loads
the data into a piece of secure-world memory. Because of the TEE
memory isolation, the normal world cannot access the secrets in
the secure-world framebuffer.

The normal world cannot access the protected data displayed on
the screen. As mentioned in the hardware setup in Section 4.4, the

secure world has an exclusive control over the secure-world I/O
ports. The normal world thus cannot access the displayed content
when the secure world controls the display. We clean up the screen
cache before the CPU switches to the normal world to prevent the
normal world from reading the cache residue.

The normal world cannot infer the confidential data based on
the view information because the content of the view is protected
in the secure world. The untrusted normal world can only DOS
the confidential display with wrong view coordinates or the wrong
framebuffer content.

The unauthorized user who obtains the smartphone cannot see
the secrets protected by the secure-world Pattern Locker. For exam-
ple, some secrets, such as ID card, are visible to users only after the
authorization. Our design will not unlock the Pattern Locker if users
do not know the pattern and will prevent them from continuing to
brute force patterns after 10 failed attempts.

6.2 Confidential Input Security Analysis
The objectives of the adversary include stealing users’ inputs, trick-
ing users to type the secret in the normal world, and inferring users’
clicks from the secure-world return values.

The normal world cannot get the user’s input from the touch-
screen. As discussed in Section 6.1, the normal world cannot access
the touchscreen when the secure world controls the screen hard-
ware. Therefore, the normal world cannot get the user’s touch
coordinates generated by the touchscreen.

The normal world cannot fool users into typing secrets. Although
the normal world can fake the same UI look and trick the users
to type secrets, we use an LED light to indicate to users whether
they are typing in the secure world. The secure world obtains
the exclusive control over this LED, so the normal world cannot
control the indicator. The existing work [32] has done the survey
to study whether users can correctly recognize the LED as the
world indicator. The study result concludes that users are capable
of differentiating worlds based on the LED light.

The normal world cannot infer the touch coordinates from the
TA return values because both confidential-display and confidential-
input TAs only return the back button event to the normal world. In
the case of the Confirmation Activity, only the confirmation button
event is returned to the normal world. The normal world cannot
use the confirmation button to construct a confidential keyboard
and let the secure world return the user’s confidential input because
only the secure world can render the texts (e.g., Yes, Cancel) for
confirmation buttons. The normal world cannot fool users if it
cannot render contents on buttons.

The untrusted normal world can only DOS the confidential input
with wrong view coordinates or the wrong framebuffer content.

6.3 Integrity-preserved UI Security Analysis
The objectives of the adversary include fooling users into confirm-
ing the wrong action, and forging the attestation.

We prevent the normal world from drawing the untrusted con-
firmation content on the UI. Because the normal world has the
full control of the UI drawing, the normal world can draw the UI
in a way that makes the user’s intended message visible to users
and makes the actual attested message inconspicuous to users. To

prevent such an attack, the secure world blurs all non-sensitive
regions that are not labelled as TrustZone-enabled in the screen-
shot. Furthermore, before rendering the integrity-preserved text
on the truz-view, the TA cleans the secure view region to prevent
the normal world from displaying untrusted contents in the secure
view region. The TA fills in the text that is either from TrustZone
or is verified by the server.

The normal world cannot fool users into making a wrong deci-
sion by providing the wrong view coordinates. The normal world
can send the wrong coordinates of truz-views to the secure world.
For example, the normal world can swap coordinates of positive
and negative buttons and send them to the secure world. However,
the secure world renders texts including confirmation message and
button text. For example, the TA ensures that the negative button
only renders the negative text (e.g., Cancel) on the button.

We provide users with solutions to check the identity of the
TEE-protected data before the secure world displays the data. The
normal world can fool the secure world into displaying the wrong
data because the normal world controls the reference to the data. For
example, the attacker can ask the bank server to load the attacker’s
receiving payment barcode into the secure world. When the user
receives money by providing the barcode, the normal world can
provide the secure world with the reference to the attacker’s receiv-
ing payment barcode. In that case, users have to check the identity
of the data before the secure world shows the data. We allow the
authorized server to provide metadata along with the protected
data when the secure world downloads data from the server. If the
data needs additional metadata to describe the identity of the data
(e.g., barcode), the server can use our Pattern Locker to display the
barcode’s metadata in the secure world before it shows the barcode.
The TA allows users to confirm the metadata (e.g., account name)
in the secure-world LockPatternView before displaying the content.
In our design, we assume that the metadata from the authorized
server is trusted and the user can verify the integrity of the data
using our TrustZone-enabled LockPatternView.

The normal world cannot forge the secure-world attestation. The
server and TrustZone exchange the attestation key through the
Split SSL. The normal world cannot forge the attestation without
the key. Furthermore, we append a nonce when computing the
attestation to avoid replayability.

6.4 Data Download Security Analysis
Attackers’ goal includes stealing the protected data and loading
malicious data into the TEE.

To prevent the server from leaking the confidential data, when
developers send the download request to the server, our solution
inserts an attestation that the normal world cannot forge in the
HTTP header field. The server always verifies the attestation before
sending the protected data.

To avoid attackers from arbitrarily downloading data into the
TEE, the secure world has a whitelist that stores servers that users
sign in through the secure-world UI. The secure world refuses to
save data that comes from an untrusted domain.

The integrity of the HTTPS response cannot be changed by the
normal world because the HTTPS packet is first decrypted inside
the secure world.

During the data transmission, the untrusted normal world can-
not eavesdrop on the encrypted channel because we conduct the
SSL key exchange between the server and TrustZone. Without
knowing the SSL encryption key, the normal world cannot decrypt
the HTTPS response.

After the protected data is stored in the secure world, our design
prevents the data from being uploaded to an untrusted domain. Our
design binds each piece of data with a whitelist of trusted domains,
which can be set by the user or the trusted server.

7 EVALUATION
In Section 4, we have demonstrated applications of our design (i.e.,
ImageView, KeyboardView, etc.). In this section, we further evaluate
TruZ-View from three aspects: TCB reduction, ease of adoption, and
performance. For TCB reduction, we compare our TCB size with a
standard UI stack and network stack. We quantified the effort that
developers take to adapt our solution using the real-world apps and
measured the performance overhead that we introduced to both
the normal world and secure world. We conducted the evaluation
on HiKey 620 board [1], which runs both Android 9.0 in the normal
world and OPTEE OS [22] in the secure world.

7.1 TCB Reduction
Our solution eliminates large swaths of code, compared with the
existing TrustZone UI works [4, 20, 30], which installed an individ-
ual UI framework in the TEE. The comparison result is summarized
in the table 3. Take a standard UI stack as an example - Xlib [10]
is used for the UI display and the UI input. Xlib has more than
100k LOC. The widget toolkit called tk [8] that runs on top of Xlib
contains half a million LOC.

We installed a modified font rendering library [7] that contains
1453 LOC in the secure world. Our TA code is only approximately
2000 LOC. Notably, we require screen drivers in the secure world for
display and input. All existing works [4, 20, 30] also installed drivers
in the TEE to keep a robust TCB. Our solution only requires a SSL
crypto library in the secure world for secure server communication.

Table 3: TCB Reduction

Component Existing TCB size Our TCB size
UI stack 100k LOC 1453 LOC
UI widget 500k LOC 2000 LOC

7.2 Ease of Adoption

Methodology. We evaluated the ease of adoption of our design
by measuring how much effort developers need to take to add
TrustZone support to protect apps’ existing UI and to conduct a
system update. We quantify the effort as Line of code (LOC) added
to use our solution, time spent on making the change, and success
rate. We conducted the application evaluation using both open-
and closed-source apps. We downloaded the code of open-source
apps from F-Droid [2] and the closed-source apps from Google Play.
We manually identify the UI risks (e.g., screenshot attack, keylog
attack, etc) from the collected apps. Then we applied truz-views

to eliminate the UI risks. For open-source apps, we count the LOC
changes and modification time in order to integrate our solution
into apps. For closed-source apps, we count the success rate of our
integration. We initially implemented our solution on Android 7.0
and recorded the time to incorporated our solution on Android 9.0.

We need to solve one engineering challenge in order to evaluate
our system on closed-source apps. Our design is mainly designed for
open-source applications where we can label the view as TrustZone-
enabled. To overcome the limitation that we cannot label views
as TrustZone-enabled for closed-source apps, we customized the
view system just for the purpose of evaluation. Our main idea is
that each view object has a unique resource ID during runtime. We
provide a configure file for Android view system. We can label the
closed-source app’s view by adding the resource ID of view into the
configuration file. Our evaluation methodology on closed-source
apps does not need to repackage the binary files and thus avoids
all types of app crash caused by repackaging.

For use cases, we let apps display various types of sensitive data
in the secure world by using our ImageView and TextView. Apps
can further use our LockPatternView to display the data identity
or authenticate users. We allow apps to secure the users’ input in
the secure world using our KeyboardView and SignatureView, and
to confirm an important action inside the secure world using our
Confirmation Dialog and Confirmation Activity.

Result. We totally modified 14 open-source apps, and results
are shown in Table 4. It takes fewer than 5 minutes to modify all
apps. Most apps take 2 LOC. One of the 2 LOC labels the view as
TrustZone-enabled and the other LOC provides the reference to the
TEE-protected data. The Confirmation Activity depends on how
many views are needed to display in the secure world. The dialog
has a fixed pattern, which is two buttons (i.e., positive and negative
button) and a TextView for the confirmation message. Both Dialog
and Confirmation Activity need 1 LOC to extract the attestation
result from the MotionEvent.

Table 4: Evaluation Results for Open-Source Apps

App name Test Case LOC Time (min)
Bitcoin wallet ImageView 2 2
Bitcoin wallet LockPatternView 2 2
Loyalty card ImageView 2 3
Loyalty card LockPatternView 2 3
andOPT TextView 2 2
NoteCrypt TextView 2 2
Signal KeyboardView 1 1
Telegram KeyboardView 1 1
Android-
Signaturepad

SignatureView 2 2

Signatureview SignatureView 2 2
UPM Dialog 2 3
NoteCrypt Dialog 2 3
Peanut Encryp-
tion

Confirmation 6 5

Note Buddy Confirmation 6 5
Keypass DX LockPatternView 2 2
Sealnote LockPatternView 2 2

We collected 42 apps, including Chase,WeChat, Facebook, Linkedin,
Instagram, Twitter, Alipay, etc. We used 10 apps for each use cases.
Our result is shown in Table 5. All experiments were successful.

We migrated our design from Android 7.0 to 9.0. It took 6 hours
to migrate our design to the new view system. Our system update
is quick because our design of the view system follows its existing
workflow.

7.3 Performance
In this section, we present results of performance evaluation for
each major component in our system.

View system overhead. Our design modifies the view system in
the Android graphics stack. We measure the performance overhead
introduced to the Android graphics stack by running the benchmark
tool called Basemark OS, which runs a series of test cases and
provides a score report. We conducted the benchmark ten times,
with a reboot to remove the impact caused by other factors, and
then calculated the average score. As shown in Table 6, the major
impact is caused by our modification in Android view system and
by the memory access of framebuffer.

Input event latency. We calculated the touch input overhead by
measuring the additional logic added to the onTouchEvent() in
the view system. Because the logic added to each view is almost the
same, we used the ImageView to measure the touch input overhead.
The touch response overhead is less than 1 ms.

Figure 13: Image Rendering Overhead

Secure-world rendering overhead. Our image-operation TA
renders content on the secure-world framebuffer. We measured
the performance of the bitmap operations for both image and text
in OPTEE OS [22]. We measured the time needed to construct
the final framebuffer for various image sizes, word lengths, and
font sizes. Figure 13 shows the image rendering overhead with
common image sizes from 100*100 to 600*600. The overhead is
less than 4 ms. Figure 14 shows the text rendering overhead with
different lengths from 100 to 300 and different font sizes from 10 to
30. The overhead is less than 5 ms for the largest combination. Our
rendering performance evaluation shows that our bitmap rendering
approach is feasible to the real TrustZone platform with a low-
performance cost.

Framebuffer sharing overhead. We measured the overhead of
copying the normal-world framebuffer to the secure world. Because
we introduce a separate Raspberry Pi to control screen, the actual

Table 5: Evaluation Result for Closed-Source Apps

Test Case EditText ImageView TextView SignaturePadView Dialog/Confirmation LockPatternView
Success/Total 10/10 10/10 10/10 10/10 10/10 10/10

Table 6: Framebuffer Transfer Performance Overhead

Benchmark Origin Modified Overhead
System 1506 1499 0.4%
Graphics 306 302 1.4%

Figure 14: Text Rendering Overhead
Table 7: Framebuffer Transfer Performance Overhead

Data Size TCP (second)
for Emulation

SHM (second)
for Real System

2MB 2.28 0.013
4MB 4.45 0.025
8MB 8.76 0.046

framebuffer memory sharing is over TCP (from the normal world
to the Raspberry Pi). We also measured the OPTEE shared memory
to transfer various sizes of framebuffer (2 MB - 8 MB). Table 7
shows both our framebuffer transferring overhead and the projected
overhead. We argue that when vendors adopt our solution, the
extra cost introduced by the Raspberry Pi can be reduced easily
and replaced with the projected overhead because all vendors have
drivers to their screen hardware, but rare research groups can obtain
the access to drivers to a particular model of SOC.

Figure 15: Data Download Performance Overhead

Download data overhead. We measured the overhead of our
secure downloading feature. The overhead (average of 20 trails) is
calculated based on the downloading time of various file size (16KB
- 96KB). To eliminate the overhead caused by the Split SSL solution,

we only calculated the overhead introduced by the SSL_read() and
excluded the time for the TLS handshake. To eliminate the fact of
the network bandwidth, we used the following way to calculate the
overhead:

overhead = TZ download time - normal download time
Figure 15 summarizes our performance result. The main over-

head is caused by the world switch of each TLS record decryption.

8 DISCUSSION

Limitation. Our current approach cannot support dynamic UI
features, such as animation, scroll up/down, a timer, and touch
event propagation, in the secure world. Our design is mainly used
for static UI, which requires the TrustZone assistance. However,
most of the security-related tasks do not involve these dynamic
UI features (e.g., animation, timer, etc). If users need to use the
dynamic UI features, users can interact with the same app’s UI
(without the protected data on the UI) in the normal world. We
consider that the security benefits of our design are worth the cost
of these UI dynamic features in the secure world.

9 RELATEDWORK
In this section, we compare our work with other TrustZone UI
solutions. Our UI solution can benefit all research works that build
on top the TrustZone UI solution. We also list present Android UI
security-related research.

TrustZone UI solutions. TrustZone UI solutions provide appli-
cations a development platform to build secure-world UI. Our work
fits into this category. Several TrustZone UI solutions [4, 20, 30]
follow a self-contained model. These solutions require a large TCB
in the secure world. Another category of the solution [11] leverages
the normal-world hypervisor protection. Our work is different from
ShrodinText [11] in two aspects: (1) our threat model is stronger.
ShrodinText requires a trusted hypervisor in the normal world to
secure screen. We do not trust any normal-world components in-
cluding hypervisor since hypervisor can be compromised by the
untrusted OS [9, 25]; (2) our solution has a comprehensive UI cov-
erage. Our design offers a generic UI solution to protect both UI
input and UI display while ShrodinText mainly focuses on a single
use case of UI display (i.e., display text). It is difficult to generalize
ShrodinText design to protect both UI input and output like what
we do.

TrustZone UI applications. Several research works identified
the security UI risks and develop various solutions on top of the
TrustZone UI. Li et al. [17, 18] built on top of T6 [4] and improve
the integrity of mobile UI. Samsung KNOX [27] built on top of
Trustonic [30] and protected the confidentiality and integrity of
the UI interaction. TruZ-UI [32] provided generic secure-world UI
and bound with the normal-world application code. TrustOTP [28]
leveraged TrustZone UI to protect the one-time password display.

TrustPay [35] proposed a mobile payment framework on the Trust-
Zone platform to protect the display of the user’s payment informa-
tion. IM-Visor [29] and Li et al. [19] protected the users’ inputs by
capturing the users’ sensitive keystrokes inside the secure world.
Dmitrienko et al. [14] proposed a security architecture for the pro-
tection of electronic health records and authentication credentials
used to access e-health services. AEP-M [31] adapted TrustZone
to protect users’ money and critical data during the e-payment
process. Our research benefits all these works that built on top of
the TrustZone UI solution and provides an easy-to-use UI solution
for them.

Android UI Security. Researchers have discovered various vul-
nerabilities [12, 13, 15, 16, 24, 34] in Android UI system and pro-
posed several solutions [5, 12, 23, 26, 33] to mitigate the problems.
Different from TEE researches, Android UI researches assume that
the Android OS is robust and the malware wants to gain unau-
thorized access to the UI. Researchers discovered several UI task
hijacking techniques [13, 15, 24, 34] to render phishing UI. Antonio
et al. [12] and WindowGuard [23] proposed solutions to mitigate
the UI task hijacking. Yanick et al. [15] and Luo et al. [21] discov-
ered touch jacking in the Android UI. Android has been aware of
the screenshot attack and has allowed developers to set a secure
window to prevent the app’s UI from being taken screenshots [5].
However, the Android secure window cannot protect the UI in the
event of a compromised OS.

10 SUMMARY
In this paper, we proposed a TrustZone UI design model called
delegation model and systematically studied the design properties
of the delegation model. Based on our new model, we developed
truz-views that includes confidential display, confidential input, and
integrity-preserved interaction. We implemented our design on the
HiKey board and evaluated our system using real-world apps. The
evaluation results show that our solutions can be adopted easily by
existing apps with a low-performance overhead.

11 ACKNOWLEDGMENTS
We would like to thank our anonymous reviewers for their insight-
ful comments. This project was supported in part by the NSF grant
1718086. We also thank Xiaoyun Shen-Krizic for her detailed editing
suggestion.

REFERENCES
[1] 2017. Android Developers: Selecting Devices. https://source.android.com/source/

devices.html. (2017).
[2] 2017. F-Droid repository. https://f-droid.org/en/packages/. (2017).
[3] 2017. Samsung Pay. http://www.samsung.com/us/samsung-pay/. (2017).
[4] 2017. TrustKernel T6 Secure OS. https://www.trustkernel.com/en/products/tee/

t6.html. (2017).
[5] 2018. Android WindowManager FLAG SECURE. https://developer.android.com/

reference/android/view/WindowManager.LayoutParams. (2018).
[6] 2018. Google Android: Vulnerability Statistics. http://www.cvedetails.com/

product/19997/Google-Android.html?vendor_id=1224. (2018).
[7] 2018. MCUFont. https://github.com/mcufont/mcufont. (2018).
[8] 2018. Tk graphical user interface toolkit. https://www.tcl.tk/. (2018).
[9] 2018. XEN security vulnerability. https://www.cvedetails.com/vulnerability-list/

vendor_id-6276/XEN.html. (2018).

[10] 2018. Xlib X Language X Interface. https://www.x.org/archive/X11R7.5/doc/
libX11/libX11.html. (2018).

[11] Ardalan Amiri Sani. 2017. SchrodinText: Strong Protection of Sensitive Textual
Content of Mobile Applications. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys ’17). ACM, New
York, NY, USA, 197–210. https://doi.org/10.1145/3081333.3081346

[12] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio, Christo-
pher Kruegel, and Giovanni Vigna. 2015. What the App is That? Deception and
Countermeasures in the Android User Interface. (2015).

[13] Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao. 2014. Peeking into Your App
without Actually Seeing It: UI State Inference and Novel Android Attacks. In 23rd
USENIX Security Symposium (USENIX Security 14).

[14] Alexandra Dmitrienko, Zecir Hadzic, Hans Löhr, Ahmad-Reza Sadeghi, and
Marcel Winandy. 2013. Securing the Access to Electronic Health Records on
Mobile Phones. In Biomedical Engineering Systems and Technologies.

[15] Yanick Fratantonio, Chenxiong Qian, Simon Chung, and Wenke Lee. 2017. Cloak
and Dagger: From Two Permissions to Complete Control of the UI Feedback
Loop. In Proceedings of the IEEE Symposium on Security and Privacy (Oakland).

[16] Tongxin Li, Xueqiang Wang, Mingming Zha, Kai Chen, XiaoFeng Wang, Luyi
Xing, Xiaolong Bai, Nan Zhang, and Xinhui Han. 2017. Unleashing the Walking
Dead: Understanding Cross-App Remote Infections on Mobile WebViews. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’17).

[17] W. Li, H. Li, H. Chen, and Y. Xia. 2015. AdAttester: Secure Online Mobile Ad-
vertisement Attestation Using TrustZone. In Proceedings of the 13th Annual
International Conference on Mobile Systems, Applications, and Services. NY, USA.

[18] Wenhao Li, Shiyu Luo, Zhichuang Sun, Yubin Xia, Long Lu, Haibo Chen, Binyu
Zang, and Haibing Guan. [n. d.]. VButton: Practical Attestation of User-driven
Operations in Mobile Apps. In Proceedings of the 16th Annual International Con-
ference on Mobile Systems, Applications, and Services (MobiSys ’18).

[19] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C. Chu, and T. Li. 2014. Building trusted path
on untrusted device drivers for mobile devices. In Proceedings of 5th Asia-Pacific
Workshop on Systems. Beijing, China.

[20] D. Liu and L. Cox. 2014. VeriUI: Attested Login for Mobile Devices. In Proceedings
of the 15th Workshop on Mobile Computing Systems and Applications. CA, USA.

[21] T. Luo, X. Jin, A. Ananthanarayanan, and W. Du. 2012. Touchjacking Attacks on
Web in Android, iOS, and Windows Phone. In Proceedings of the 5th International
Symposium on Foundations & Practice of Security.

[22] OP-TEE. 2015. OPTEE OS. (2015). https://github.com/OP-TEE/optee_os
[23] Chuangang Ren, Peng Liu, and Sencun Zhu. 2017. WindowGuard: Systematic

Protection of GUI Security in Android. In NDSS.
[24] Chuangang Ren, Yulong Zhang, Hui Xue, Tao Wei, and Peng Liu. 2015. Towards

Discovering and Understanding Task Hijacking in Android. In 24th USENIX
Security Symposium (USENIX Security 15).

[25] B. Robert, V. Julian, and N. Jan. 2016. The Threat of Virtualization: Hypervisor-
Based Rootkits on the ARM Architecture. In Information and Communications
Security.

[26] Franziska Roesner and Tadayoshi Kohno. 2013. Securing Embedded User In-
terfaces: Android and Beyond. In Presented as part of the 22nd USENIX Security
Symposium (USENIX Security 13). USENIX.

[27] Samsung. 2013. KNOX White Paper. (2013).
[28] H. Sun, K. Sun, Y. Wang, and J. Jing. 2015. TrustOTP: Transforming Smart-

phones into Secure One-Time Password Tokens. In Proceedings of the 22nd ACM
Conference on Computer and Communications Security. Denver, Colorado, USA.

[29] Chen Tian, Yazhe Wang, Peng Liu, Qihui Zhou, Chengyi Zhang, and Zhen Xu.
2017. IM-Visor: A Pre-IME Guard to Prevent IME Apps from Stealing Sensitive
Keystrokes Using TrustZone. 2017 47th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN) (2017).

[30] Trustonic. 2012. Trustonic TEE Trusted User Interface. (2012).
[31] Bo Yang, Kang Yang, Zhenfeng Zhang, Yu Qin, and Dengguo Feng. 2016. AEP-M:

Practical Anonymous E-Payment for Mobile Devices Using ARM TrustZone and
Divisible E-Cash. In Information Security.

[32] Kailiang Ying, Amit Ahlawat, Bilal Alsharifi, Yuexin Jiang, Priyank Thavai, and
Wenliang Du. 2018. TruZ-Droid: Integrating TrustZone with Mobile Operating
System. In Proceedings of the 16th ACM International Conference onMobile Systems,
Applications, and Services (June 10-15) (MobiSys ’18). Munich, Germany.

[33] Xiao Zhang, Yousra Aafer, Kailiang Ying, and Wenliang Du. 2016. Hey, You,
Get Off of My Image: Detecting Data Residue in Android Images. In Computer
Security – ESORICS 2016.

[34] Xiao Zhang, Kailiang Ying, Yousra Aafer, Zhenshen Qiu, and Wenliang Du. 2016.
Life after App Uninstallation: Are the Data Still Alive? Data Residue Attacks on
Android. In NDSS.

[35] Xianyi Zheng, Lulu Yang, Jiangang Ma, Gang Shi, and Dan Meng. 2016. TrustPAY:
Trusted mobile payment on security enhanced ARM TrustZone platforms.. In
ISCC.

https://source.android.com/source/devices.html
https://source.android.com/source/devices.html
https://f-droid.org/en/packages/
http://www.samsung.com/us/samsung-pay/
https://www.trustkernel.com/en/products/tee/t6.html
https://www.trustkernel.com/en/products/tee/t6.html
https://developer.android.com/reference/android/view/WindowManager.LayoutParams
https://developer.android.com/reference/android/view/WindowManager.LayoutParams
http://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
http://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
https://github.com/mcufont/mcufont
https://www.tcl.tk/
https://www.cvedetails.com/vulnerability-list/vendor_id-6276/XEN.html
https://www.cvedetails.com/vulnerability-list/vendor_id-6276/XEN.html
https://www.x.org/archive/X11R7.5/doc/libX11/libX11.html
https://www.x.org/archive/X11R7.5/doc/libX11/libX11.html
https://doi.org/10.1145/3081333.3081346
https://github.com/OP-TEE/optee_os

	Abstract
	1 Introduction
	2 Problem
	2.1 Threat Model
	2.2 Problem Statement
	2.3 UI Design Models Design Trade-off
	2.4 UI Design Challenges

	3 Idea
	3.1 Splitting the UI Rendering Process
	3.2 Why securing a 2D UI is sufficient?
	3.3 Recover UI Layer Information

	4 UI Design
	4.1 Confidential Display
	4.2 Confidential Input
	4.3 Integrity-preserved UI Interaction
	4.4 Hardware Design

	5 Data Protection and Management
	6 Security Analysis
	6.1 Confidential Display Security Analysis
	6.2 Confidential Input Security Analysis
	6.3 Integrity-preserved UI Security Analysis
	6.4 Data Download Security Analysis

	7 Evaluation
	7.1 TCB Reduction
	7.2 Ease of Adoption
	7.3 Performance

	8 Discussion
	9 Related Work
	10 Summary
	11 Acknowledgments
	References

