
Privacy-Preserving Top-N Recommendation on Horizontally Partitioned Data

Huseyin Polat and Wenliang Du
Department of Electrical Engineering and Computer Science

Syracuse University, CST 3-114, Syracuse, NY 13244-1240, USA
hpolat,wedu@ecs.syr.edu

Abstract

Collaborative filtering techniques are widely used by
many E-commerce sites for recommendation purposes.
Such techniques help customers by suggesting products to
purchase using other users’ preferences. Today’s top-

�
recommendation schemes are based on market basket data,
which shows whether a customer bought an item or not.
Data collected for recommendation purposes might be split
between different parties. To provide better referrals and in-
crease mutual advantages, such parties might want to share
data. Due to privacy concerns, however, they do not want
to disclose data.

This paper presents a scheme for binary ratings-based
top-N recommendation on horizontally partitioned data, in
which two parties own disjoint sets of users’ ratings for
the same items while preserving data owners’ privacy. If
data owners want to produce referrals using the combined
data while preserving their privacy, we propose a scheme to
provide accurate top-N recommendations without exposing
data owners’ privacy. We conducted various experiments
to evaluate our scheme and analyzed how different factors
affect the performance using the experiment results.

1. Introduction

Collaborative filtering (CF) is a recent technique for pre-
diction and recommendation purposes that helps users cope
with information overload using other users’ preferences.
The concept of CF originated in the early nineties with the
Information Tapestry project [3]. CF techniques are widely
used in E-commerce, direct recommendations, and search
engines to suggest items to users [1, 2].

CF systems work by collecting ratings for items and
matching together users sharing the same interest or styles.
The goal of CF is to predict how well a user, referred to as
the active user (�), will like an item that he/she did not buy
before based on a community of users’ preferences [5]. The
key idea is that � will prefer those items that like-minded

users prefer, or that dissimilar users do not. Filtering sys-
tems provide predictions for single items. They also per-
form top-

�
recommendation (TN), in which an ordered list

of items that will be liked by � is provided.
Today’s TN schemes [14, 9, 10] are based on market bas-

ket data where users’ preferences are represented by 1 if
they bought the items, or 0 otherwise. We present a TN
scheme on binary ratings where customers rate products
they bought as 1 if they liked them, or 0 otherwise. In our
scheme, neighbors are selected among similar and dissimi-
lar users because � will prefer those items that like-minded
users prefer, or that dissimilar users do not.

To provide referrals, data collected from many users is
used. Some online vendors, especially those newly created
ones, might have problems with available data and own a
limited number of users. It becomes difficult for them to
form large enough reliable neighborhoods. Holding a low
number of users might cause a cold start problem and re-
stricts the CF systems to provide referrals for only a limited
number of items. Recommendations then might be unreli-
able and sometimes are not computable at all.

Data collected for CF purposes might be horizontally or
vertically partitioned between different parties. They hold
disjoint sets of users’ preferences for the same items in hori-
zontal partition while in vertical partition, they own disjoint
sets of items’ ratings collected from the same users. Com-
bining horizontally partitioned data (HPD) is helpful for CF
systems when they own a low number of users. To pro-
vide more accurate recommendations, there should be large
enough number of neighbors selected from available users;
this might be achieved by integrating HPD.

Users buy products from different online vendors. Some
users purchase books from Amazon.com while others buy
from Barnes � Noble.com. Amazon.com’s and Barnes �
Noble.com’s databases, which include ratings for the same
books, recorded from disjoint sets of users, can be jointly
used for better referrals. Joint data is beneficial for them be-
cause customers prefer returning to stores with better refer-
rals. Combined data will also benefit customers by making
it more likely to receive more accurate and reliable referrals.

Mutual advantages due to collaboration between parties
can arise from TN grounded on joint data. Data sharing
might occur between online vendors, search engines, or
even competing E-commerce companies and allows data
owners to provide richer recommendation services. TN
qualities might be increased if data owners are able to com-
bine their data. Recommendations computed from the com-
bined data are likely more accurate than the ones calculated
from one of the disjoint data sets alone because combined
data allows the parties to find more reliable neighborhoods.
Therefore, TN on HPD is essential. However, due to pri-
vacy, legal, and financial reasons, they do not want to share
their data. If privacy measures are provided, they can share
data. Providing privacy measures is a key to achieve HPD-
based TN. Therefore, we investigate the privacy-preserving
TN (PPTN) on HPD problem defined as follows:

To maximize the mutual profits, two online vendors,
which own disjoint sets of users’ preferences of the same
items, want to provide TN to their future customers using
the combined data while preserving their privacy. How can
they produce recommendations on the integrated data with-
out exposing their privacy?

A

nB

nA
A B(n + n) x m

A

B

 Joint Data

Recommendation

x m

x m

Figure 1. PPTN on HPD

Fig. 1 shows PPTN on HPD. Two vendors, � and �
holding ��� and �	� number of users’ ratings, respectively
of the same
 number of items. They perform TN using the
joint data, which is an ��������	������
 matrix while preserv-
ing their privacy. Since privacy and accuracy are conflicting
goals, the proposed protocol should achieve a good balance
between them. We conducted experiments using two well-
known real data sets to show the overall performance of our
scheme and how accuracy changes with varying factors.

2. Related work

Canny proposes two schemes for PPCF [1, 2]. In these
schemes, users control all of their own private data; a com-
munity of users can compute a public “aggregate” of their
data, which allows personalized recommendations to be
computed without disclosing individual users’ data. Po-
lat and Du use randomized perturbation techniques for
PPCF [11, 13]. In their scheme, a server collects disguised

ratings from users, creates a central database, and starts
providing CF services based on the existing database. Al-
though their schemes are based on numerical ratings, pro-
vide predictions for single items, and required data is avail-
able to the server, we investigate binary ratings-based TN on
HPD while preserving data owners’ privacy. PPCF on ver-
tically partitioned data (VPD) problem is discussed in [12]
while we investigate HPD-based TN with privacy.

Privacy-preserving naı̈ve Bayes classifier for HPD is dis-
cussed in [7]. They show that using secure summation and
logarithm, they can learn distributed naı̈ve Bayes classi-
fier securely. Privacy-preserving association rules on HPD
are discussed in [6]. They address secure mining of asso-
ciation rules over HPD while incorporating cryptographic
techniques to minimize the shared data. TN in reduced
space is discussed by [14]. Customer preference data is
considered as binary by treating each non-zero entry of the
user-item matrix as 1. Item-based TN is discussed in [8]
where Karypis presents item-based CF algorithms that first
determine the similarities between various items and then
used them to identify the set of items to be recommended.

3. HPD-based TN with privacy

After data collected for recommendations, � sends
his/her known ratings and a query for which items he/she
is looking for referrals to a server, which first selects neigh-
bors. Then a frequency count is performed on the items
neighbors bought. The item list is sorted and its most fre-
quently purchased

�
items are returned as referrals. TN

algorithms proposed by [14, 9, 10] are based on market
basket data. However, purchasing and consuming items do
not necessarily mean that consumers liked them. Customers
buy products they might like; sometimes, however, they dis-
like what they bought. Referrals might not be accurate cal-
culated from market basket data. Therefore, we hypothesize
that it is likely to provide more accurate recommendations
if data showing users’ preferences as like or dislike is used.

It is imperative to select those users who have high pos-
itive and high negative correlations with � as neighbors be-
cause � will prefer those items that like-minded users pre-
fer, or that dissimilar users do not. However, dissimilar
users are not considered in TN process in [9, 10]. Accu-
racy might be increased if we select the best similar and
dissimilar users as neighbors.

Similarities between � and other users are computed us-
ing different metrics. For market basket data, Tanimoto co-
efficient [9, 10] is used and can be defined as:

��������� ��� ��� � � �� ��� �� � � � (1)

where � �!�"� represents the number of elements in the basket� . We modify it as follows and use it as a similarity metric:

�$�%� � �!&('��*) � �+&�,-�� �!&�� (2)

where � �+& ' � and � �+& , � represent the number of similarly
and dissimilarly rated items by users . and � , respectively
and � �!&%� is the number of commonly rated items by them.
For example, if � ’s ratings vector is �0/213/213/-154"1 �76 184"19/9�
and . ’s ratings vector is �0/-19/-19/-13/213/2184"1 �76 � , then

���:���;%)</9�8=-> � 4"?A@ where
�B6

means not rated. Similarities
range from -1 to 1. If

���DC 4 , users � and . are simi-
lar; otherwise they are dissimilar. When

�$� � 4 , they are
not correlated at all. After finding similarities, neighbors
are selected using threshold or best-

�%E
methods to form

the neighborhood. In the case of using threshold F E , those
users whose similarities satisfy the condition G # �$� G C F E
are selected while in best-

� E
method,

� E
number of best

users are selected as neighbors.
Unlike the scheme defined in [14], in our scheme, fre-

quency count is not performed because users rate items as
1 or 0 and the neighbors composed of similar and dissim-
ilar users. We find the number of 1s (HJI) and 0s (K-I) in
each item’s column after we reverse the ratings of dissimi-
lar users because � will like the items that dissimilar users
do not. We then compute H!K I � H I)LK I . If H+K I C 4 , then
the item will be liked by � , otherwise not. After finding all
items that will be liked by � , they are sorted according to H!K I
values and first

�
items are returned as top-

�
recommen-

dation. During TN, some computations can be done off-line
while others online. Since online computation cost is crit-
ical to the performance, instead of finding referrals for all
unrated items, � sends a query stating he/she is looking for
recommendations for

� � items where
�NMD� � M
O)QP

where P is the number rated items by � .
Without privacy as a concern, two companies, � and �

can exchange their own data, create a central database, and
provide filtering services using the combined data. To get
referrals, � sends his/her known ratings and a query to one
of the parties, which finds referrals. However, with privacy
as a concern, the companies should not be able to learn each
other’s data. They want to conduct TN using the joint data
without disclosing data. Since either party can act as an ac-
tive user in multiple scenarios to derive information about
other party’s data, the proposed protocol should be secure
against such attacks coming from both parties. They com-
municate through � during online recommendation compu-
tation. The challenge is how they can provide TN services
using HPD without exposing their privacy.R�SUT	SWVXVZYX[]_^a`bVZc

To find neighbors in TN, threshold and best-
�%E

methods
are used. Since different neighbor selection methods fol-
low different steps, we divided our proposed scheme into

threshold-based and best-
� E

-based schemes and explained
them in the followings. Data owners exchange data to find
referrals. One party should get all required data for recom-
mendation computations. Either party can act as a server
to get required data and find the final referrals. They can
switch their roles. We assume that � acts as a server.

3.1.1. Threshold-based PPTN on HPD. In threshold-
based TN, users are selected as neighbors based on a a pre-
defined threshold (F E) value. Both parties can find simi-
larities between users they hold and � and select neighbors
using F E . � sends required data to � , which finds recom-
mendations. The details of the scheme are as follows:

Step 1. � sends his/her ratings and a query (for which
� �

total number of unrated items he/she is looking for top-
�

recommendation) to both parties.
Step 2. � computes similarities between users it holds

and � and selects neighbors based on F E . To prevent �
from learning F E , � can use a random threshold rather than
a fixed one. Therefore, it creates a uniform random num-
ber (d9�(e) from a range fg)Wh_�i15h*�	j and adds that number toF E , finds F E kd9�(e , and uses it as a random threshold. � will
not be able to learn the threshold due to the random number.

Step 3. It then finds H+Kl� I � H�� I)DKl� I values for allm � /-1$?3?$?�1 � � from the neighbors’ data and sends them to� through � . Since � does not know the threshold value,
the neighbors, which neighbors rated which items, and the
values of H � I and K � I , it will not be able to learn true ratings.

Step 4. � finds similarities for users it holds, selects
neighbors based on F E , and finds H+Kl� I � H�� I)nKl� I for allm � /-1$?3?$?31 � � . It computes H!K I values and finds referrals as
explained before and sends the sorted item list to � .

Both parties can send the H!K"� I and H!Kl� I values for all
� �

to � without sending it to each other and � can find recom-
mendations. However, since � gets

� � number of referrals
rather than

�
recommendations, they exchange data and

one of them provides recommendations to � .

3.1.2. Best-
��E

-based PPTN on HPD. After similarities
between all users and � are found, best

�%E
number of users

are selected as neighbors. � finds similarities between those
users it holds (.o�) and � and sends G # ���qp G values to � ,
which first finds similarities between users it holds and �
and selects best

� E
users as neighbors. Since � can act

as an active user in multiple scenarios to derive data, the
scheme should not allow � to derive data from similarities
found by � . The scheme’s details are as follows:

Step 1. � sends his/her ratings and a query to � and � .
Step 2. � estimates similarities between users it holds

and � using private similarity computation protocol, which
is described in the following section to prevent � from de-
riving data. Then it permutes them using a permutation

function r � , which is only known by it, and sends per-
muted G # �$� p G values to � through � . � will not be able to
learn true ratings due to rs� and private similarity computa-
tion protocol. It also does not know the types of correlations
between users � holds and � .

Step 3. � finds similarities for users it owns and selects
best

� E
users among all � users as neighbors.

Step 4. It then finds H!K � I values for those
� � items and

sends them and the neighbors selected among users � holds
to � through � . Since � does not know the neighbors that �
selected among users it holds, which neighbors rated which
items, and the values of H � I and K � I , it will not be able to
learn true ratings.

Step 5. � finds H!K"� I and computes H!K I values for all
� �

items. It then finds top-
�

recommendation and sends to � .
R�S!t_SWVZuwv+xoyoz2{}|2vU~�v���y�ulv+z3����_~<����z�yoz�v�*^

We propose to use private similarity computation proto-
col to find the similarities without exposing privacy. Since
customers only buy and rate a few, active users’ ratings vec-
tors are usually sparse. However, since either party can act
as an active user, they might use dense ratings vectors. We
only explain the protocol for � because � also follows the
same steps to find similarities for users it holds.

After � gets � ’s data, it finds P . If P is less than�
7=-��� , then � finds the items that � did not rate. �
then creates a uniform random integer

6 � � from the range�0/-18
�)�P�� and randomly selects
6 � � number of unrated

items. It then fills those randomly selected
6 � � number

of unrated items’ cells in � ’s ratings vector with the cor-
responding default votes (� , s) calculated using private de-
fault votes computation protocol, which is explained in the
following section. If P is bigger than

�
7=-��� , � finds the
items that � rated and creates a uniform random integer

6 �(�
from the range �0/-15P�� . It then randomly selects

6 �(� num-
ber of rated items and removes their ratings from � ’s ratings
vector. � then forms � ’s new ratings vector and can es-
timate similarities using it. Since � does not know

6 � � ,6 �(� , and randomly selected rated and unrated items, it will
not be able to figure out

�$� p values from
#����� p values

calculated using new ratings vector even if it acts as an ac-
tive user in multiple scenarios where . � represents users
that � holds. For each user held by � , � independently
creates

6 � � or
6 �(� , finds new ratings vectors, and esti-

mates similarities based on them. The ranges for
6 � � and6 �(� can be adjusted based on how much privacy and ac-

curacy wanted. Removing some of the ratings and adding�-, s might make accuracy worse because number of avail-
able ratings decreases and non-personalized ratings might
not represent � ’s true preferences. However, when there are
enough ratings, we can still estimate reliable similarities af-
ter removing some of them. Since � , s are non-personalized

ratings for � , it is likely to estimate similarities with decent
accuracy using private similarity computation protocol after
inserting �-, s.

R�S�R�S�VZuwv+xoyoz2{}��{���y	���!z�x�\�z2{�|7��_~<���iz2yoz�v�_^
Our scheme follows online and off-line computation

components: Finding � , s is done off-line while other com-
putations are conducted online. Since default votes (� , s)
are used for finding referrals, before providing predictions
to their new customers, data owners find � , s off-line using
private default votes computation protocol as follows:

Step 1. Each party finds HJI and K-I values for all
m �/-13?$?$?$1�
 .

Step 2. � randomly selects
7� � �
�=2��� number
of items. It creates large enough random values dq� I form � /21$?$?3?�1�
�� , adds them to H!� I and Kl� I values, and
finds H �� I � H�� I �d�� I and K � � I � Kl� I �d9� I . SinceH!K � I � H � I()kK � I � H �� I)�K �� I , � finds H+K � I values without
using random numbers. Since � does not know how many
users owned by � rated item

m
and how many of them rated

as 1 or 0, it will not be able to learn true ratings for itemm
. Even if it learns ratings for
 � items, it does not know

ratings for remaining � �
�)�
 � items.
Step 3. � then sends H+K � I values to � , which calculatesH!K-I � H!K � I_�H!K � I values, compares them with 0, and finds�-, s for those
�� items. If H!K I C 4 , �-, is 1, or 0 otherwise.
Step 4. � finds H+Kl� I � H�� I)}Kw� I values for � items

where
m � /-13?$?$?315� and sends them and ��, s for
�� items

to � that will not be able to learn H!K"� I values for
�� items.
Step 5. � finds �2, values for � items and tells � . They

then store them into
���/ matrices.

4. Analysis

We analyzed our scheme in terms of online overhead
costs because off-line costs are not critical to the perfor-
mance. We show how much additional costs are introduced
due to privacy. The number of communications is 2 without
privacy as a concern. The overhead communication costs
due to privacy are only 3 and 5 for threshold- and best-

� E
-

based schemes, respectively. The storage overhead due to
privacy is relatively small �¡��!
:�£¢ because � and � store
default votes in two
¤��/ matrices.

The overhead computation cost is negligible in
threshold-based scheme because one party creates a ran-
dom number d9e for random threshold and conducts one
more addition. In best-

�%E
-based scheme, one party uses

private similarity computation protocol, which increases or
decreases the number of comparisons by

6 � � I or
6 �$� I , on

average, respectively depending on P where
m

is � or � .
The same party also uses a permutation function to permute
similarities and creates �(I random integers.

We claim that our threshold-based scheme is secure.
Since d �(e is only known by � , � does not know random
threshold. It does not know how many and which users were
selected as neighbors because � only sends H+K"� I values af-
ter it selected neighbors using random threshold. � also
does not know the types of correlations between users held
by � and � . Even if � finds out neighbors and the types
of correlations, it will not be able to derive true ratings for� � items because after it gets H+K � I values for

� � items form � /-13?$?3?�1 � � , the probability of guessing the correct H � I
and K � I values for it is 1 out of ��� �):H!K � I�¥/9� . The prob-
abilities of guessing the like and dislike ratings of item

m
are 1 out of ¦ E p§ p-¨ and ¦ E p(© § p-¨, p2¨ , respectively. Therefore, the
probability of guessing � ’s data for

� � number of items for� is 1 out of ���	�X)�H!Kl� I L/�����¦ E p§ p-¨ �$��¦ E po© § p2¨, p2¨ � ¢qª*« where¦�¬ is the number of ways of picking ® unordered outcomes
from ¯ possibilities. The probability for � can be found
similarly when it acts as a server.

Our best-
� E

-based scheme is secure due to permutation
and private similarity computation protocol. For one user,
the probability of guessing

6 � is 1 out of �!
°)DP�� and
the probability of guessing the correct

6 � number of items
is 1 out of ¦�± ©�²³ « . The probability of guessing the cor-
rect type of correlation is 1 out of 2 and the probability of
guessing the correct � �!&%� value is 1 out of �!P´ 6 � � . For� , the probability of guessing the correct � �!&�'�� or � �!&�,q�
value is 1 out of �!P] 6 � ���£/µ)aG # �$��p G � ¢ . The proba-
bilities of guessing similarly or dissimilarly rated items are
1 out of ¦·¶U¸J¹*º¶U¸J¹�»£º and ¦�¶U¸J¹	º © ¶U¸J¹ » º¶U¸J¹�¼5º , respectively. Finally, the
probability of guessing the correct users for � is 1 out of� � !. Therefore, the probability of guessing the � ’s data for� is 1 out of ½w�!� �i¾ �"¿À�Á��
¤)bP��$��¦�± ©o²³ « ���+PÂ 6 � ���0/Ã)
G # ��� p G ���U¦·¶U¸J¹*º¶U¸J¹ » º ���U¦·¶U¸J¹*º

© ¶U¸Ä¹ » º¶U¸J¹ ¼ º �UÅ E p�Æ when default votes are
appended. The probability can be found similarly when rat-
ings are removed.

We claim that our proposed protocol for finding default
votes is secure due to the following reasons. Each party
sends H!K-I values for corresponding items to each other.
Since they do not know how many users held by each other
rated item

m
and how many of them rated as 1 or 0, they will

not learn true ratings. Since they exchange data for half of
the items, even if a party derives data about them, it will not
be able to learn data about others. The probability for � to
guess � ’s data can be found similarly as explained above
for threshold-based scheme.

5. Experimental resultsÇÈSUT	SWcny�z2yÉ|-{�z2|By	^·�Ê{�xoy	�U�·yoz�v�_^���uwv+z2{�ulv+y
We used two well-known real data sets in our ex-

periments. Jester has 100 jokes and records of 17,988

users where the ratings range from -10 to +10 and they
are continuous [4]. MovieLens (ML) consists of rat-
ings made on a 5-star scale for 3,591 movies made by
7,463 users. It was collected by the GroupLens Research
Project (www.cs.umn.edu/research/Grouplens).

We measured the accuracy of our scheme using classifi-
cation accuracy (CA), coverage, and Ë -Measure (FM). CA
is the ratio of number of correct classifications to number
of classifications. Coverage is the percentage of items for
which a CF algorithm can provide referrals. FM [14] is
a weighted combination of precision and recall, which are
used for information retrieval tasks where:

ËÃP � ��Ì�¯�dqÍ�ÎÐÏ0Ñ3ÏÒ®��ZÌ$dqÍ�Î��lH!H¯�dqÍ�ÎÐÏ0Ñ$ÏÒ®��ÓndqÍ�Î��lH!H
ÇÈS!tÈS�ÔÕ{�z�Ö·\���*��*×	�

We first transformed numerical ratings into binary rat-
ings. We labelled items as 1 if the numerical rating for the
item was bigger than 3, or 0 otherwise in ML. We labelled
them as 1 if the numerical rating for the item was above 2.0,
or 0 otherwise in Jester. We randomly selected 9,000 and
6,000 users from Jester for training and testing sets, respec-
tively. ML was randomly divided into training and testing
sets with 4,000 and 3,000 users, respectively. We then ran-
domly selected 2,000 users for training among those 9,000
and 4,000 users. 500 users were randomly selected among
those 6,000 and 3,000 users as test users.

ÇÈS�R�S�Ø%Ù��W{�ulv�~Ú{(^*z2y	�Ãuw{�|��·�+z2|
To evaluate the overall performance of our scheme, we

conducted several experiments. First, we ran experiments to
find the optimum F E value for neighbor selection. We used
2,000 and 500 users for training and testing, respectively.
We held 5 rated items from each test user’s data and tried
to find predictions for them using our scheme while varyingF E . We then compared predictions with the true ratings. We
only showed CAs in Fig. 2 for both data sets. As seen from
the figure, the results are best when F E is 0.1 and 0.2 for
Jester and ML, respectively. Therefore, we selected them
as optimum F E values. The results are slightly becoming
worse when F E is away from its optimum value.

To show how accuracy changes with different numbers
of best neighbors (

� E
), we conducted experiments using

the same 2,000 and 500 users for training and testing, re-
spectively. Since results for both data sets are similar, we
only showed FM values for Jester in Fig. 3. We again held 5
rated items’ ratings, tried to find recommendations for them,
and compared them with true ratings. As seen from Fig. 3,
the results are becoming better with increasing

� E
up to

1,000 best neighbors and they become steady after that.

0 0.05 0.1 0.2 0.3 0.4
0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

Threshold (τ
n
)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(C
A

)

Jester Dataset
ML Dataset

Figure 2. CA vs. threshold (F E)

50 100 200 500 1,000 1,500 1,900
0.64

0.645

0.65

0.655

0.66

0.665

0.67

0.675

0.68

0.685

Total Number of Best Neighbors (N
n
)

F−
M

ea
su

re
 (F

M
)

F−Measure

Figure 3. FM vs.
� E

We then ran experiments to show how different numbers
of users (�) affect the results. We hypothesize that with
increasing � , it is more likely to find large enough neigh-
borhoods for accurate referrals. Since HPD-based recom-
mendation scheme combines two disjoint sets, it is likely to
increase accuracy. We used threshold selection scheme for
neighbor selection using optimum F E values while varying� from 100 to 2,000. We randomly selected training users
from training sets where we used the same 500 test users.
Using our scheme, top-10 recommendations were found for
randomly selected rated items from each test user’s ratings
vector. We then compared predictions with true ratings, cal-
culated CA and FM values for both data sets, and showed
results in Table 1. With increasing � , the results become
better. Therefore, combining HPD helps CF systems to pro-
vide more accurate referrals.

Table 1. Accuracy vs. �Û 100 200 500 1,000 2,000
Jester CA 0.7010 0.7048 0.7078 0.7102 0.7116

FM 0.6586 0.6619 0.6642 0.6662 0.6703
ML CA 0.6530 0.6726 0.6874 0.6970 0.7062

FM 0.7269 0.7480 0.7683 0.7769 0.7863

CF algorithms are not able to provide referrals for all
items due to low available data. When there is a low num-
ber of users, it becomes difficult to find predictions for some
items. Since HPD-based scheme integrates split data, it is
more likely to find recommendations for more items. To
show how different � values affect coverage, we conducted
experiments using ML. We found coverage values while
varying � from 50 to 2,000 and showed results for differ-
ent F E values in Fig. 4. As seen from the figure, coverage
increases with increasing � because it becomes more likely
to have items rated by more users.

0 500 1,000 1,500 2,000
30

40

50

60

70

80

90

Number of Users (n)
C

ov
er

ag
e

(%
)

τ
n
 = 0.2

τ
n
 = 0.1

Figure 4. Coverage vs. �
In threshold-based scheme, we propose to use a random

threshold. � selects F9�(� values based on hÈ� . As seen from
Fig. 2 where we showed CAs with varying F E values, if F E
is changed from 0.2 to 0.1 or 0.3 for ML, 1 Ü accuracy is
lost. Since F3�(� values are uniformly created, when hÈ� is
0.01, on average, we lost 0.5 Ü accuracy.

Finally, we ran experiments to show how different
6 �

and
6 � values affect the overall performance. In private

similarity computation protocol, we either remove ratings
or add default votes for randomly selected items based onP . We hypothesize that inserting default votes might in-
crease accuracy because � ’s available ratings increases and
makes it possible to find more reliable matchings and ac-
curate referrals. However, since default votes might not
match � ’s true preferences for those items, inserting them
might make accuracy worse. We conducted experiments
while varying

6 � values using both data sets and showed
FMs for only ML in Fig. 5. We used the same 2,000 train-
ing users while 500 users who rated less than 60 items were
randomly selected for testing. We then found top-10 recom-
mendations for randomly selected 10 rated items from each
test user’s data. Predictions for those items were compared
with true ratings. As seen from the figure, when

6 � is 10,
accuracy improves while it becomes worse when it is 20 or
more. However, when

6 � is 100, accuracy loss is only 1 Ü .
To show how accuracy changes with

6 � , we conducted
experiments using both data sets and showed results for

0 10 20 40 60 80 100
0.75

0.755

0.76

0.765

0.77

Total Number of Appended Ratings (R
a
)

F−
M

ea
su

re
 (F

M
)

F−Measure

Figure 5. Accuracy vs.
6 �

only Jester in Fig. 6. We used the same 2,000 training users
while 500 users who rated more than 80 items were ran-
domly selected for testing. We then found top-10 recom-
mendations for randomly selected 10 rated items from each
test user’s data while varying

6 � from 0 to 60. Predictions
for those items were compared with true ratings. As seen
from the figure, when half of the ratings are removed, ac-
curacy loss is only 1 Ü while it is 2 Ü when

6 � is 60. With
increasing

6 � , results are becoming worse as we expected.

0 10 20 30 40 60
0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

Total Number of Removed Ratings (R
r
)

F−
M

ea
su

re
 (F

M
) &

 C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(C
A

)

F−Measure
Classification Accuracy

Figure 6. Accuracy vs.
6 �

6. Conclusions and future work

We have presented a solution to PPTN on HPD. Our so-
lution makes it possible for two parties to conduct TN using
joint data with privacy. Our experiments have shown that
our solution can achieve accurate referrals. Our proposed
private similarity computation protocol can achieve a good
balance between accuracy and privacy by adjusting param-
eters. Predictions for single items can be computed with
privacy using our scheme. We will study how aggregate
data disclosure affects the accuracy and the privacy of our
scheme. We will also study VPD-based TN with privacy.
We will investigate how our scheme works when there is an
overlap between users held by data owners.

References

[1] J. Canny. Collaborative filtering with privacy. In Proceed-
ings of the 2002 IEEE Symposium on Security and Privacy,
pages 45–57, Oakland, CA, USA, May 2002.

[2] J. Canny. Collaborative filtering with privacy via factor anal-
ysis. In Proceedings of the 25th Annual International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval, pages 238–245, Tampere, Finland, 2002.

[3] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Us-
ing collaborative filtering to weave an Information Tapestry.
Communications of the ACM, 35(12):61–70, 1992.

[4] D. Gupta, M. Digiovanni, H. Narita, and K. Goldberg. Jester
2.0: A new linear-time collaborative filtering algorithm ap-
plied to jokes. In Workshop on Recommender Systems Al-
gorithms and Evaluation, 22nd International Conference on
Research and Development in Information Retrieval, Berke-
ley, CA, USA, August 1999.

[5] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. T. Riedl.
An algorithmic framework for performing collaborative fil-
tering. In Proceedings of the 1999 Conference on Research
and Development in Information Retrieval, August 1999.

[6] M. Kantarcioglu and C. Clifton. Privacy preserving data
mining of association rules on horizontally partitioned
data. Transactions on Knowledge and Data Engineering,
16(9):1026–1037, 2004.

[7] M. Kantarcioglu and J. Vaidya. Privacy preserving naive
bayes classifier for horizontally partitioned data. In Proceed-
ings of the IEEE ICDM Workshop on Privacy Preserving
Data Mining, pages 3–9, Melbourne, FL, USA, 2003.

[8] G. Karypis. Evaluation of item-based top-N recommenda-
tion algorithms. In Proceedings of the 10th International
Conference on Information and Knowledge Management,
pages 247–254, Atlanta, GA, USA, 2001.

[9] A. Mild and T. Reutterer. Collaborative filtering methods for
binary market basket data analysis. Lecture Notes in Com-
puter Science, 2252:302–313, 2001.

[10] A. Mild and T. Reutterer. An improved collaborative filter-
ing approach for predicting cross-category purchases based
on binary market basket data. Journal of Retailing and Con-
sumer Services, 10(3):123–133, 2003.

[11] H. Polat and W. Du. Privacy-preserving collaborative fil-
tering using randomized perturbation techniques. In Pro-
ceedings of the 3rd IEEE International Conference on Data
Mining (ICDM’03), Melbourne, FL, USA, November 2003.

[12] H. Polat and W. Du. Privacy-preserving collaborative filter-
ing on vertically partitioned data. Submitted to the 9th Eu-
ropean Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD), October 3–7 2005.

[13] H. Polat and W. Du. SVD-based collaborative filtering with
privacy. In Proceedings of the 20th ACM Symposium on Ap-
plied Computing Special Track on E-commerce Technolo-
gies, Santa Fe, NM, USA, March 13–17 2005.

[14] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl.
Application of dimensionality reduction in recommender
system-A case study. In Proceedings of the ACM WebKDD
2000 Web Mining for E-commerce Workshop, 2000.

