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Broadcast authentication is an important functionality in sensor networks. Energy constraints
on sensor nodes and the real-time nature of the broadcasts render many of the existing solutions
impractical: previous works focusing primarily on symmetric key schemes have difficulties in
achieving real-time authentication. Public Key Cryptography (PKC), however, can satisfy the
real-time requirements, and recent trends indicate that public key is becoming feasible for sensor
networks.

However, PKC operations are still expensive computations. It is impractical to use PKC in the
conventional ways for broadcast authentication in sensor networks. To reduce costs, we propose
ShortPK, an efficient Short-term Public Key broadcast authentication scheme. The basic idea is
to use short-length public/private keys, but limit their lifetime to only a short period of time.
To cover a long period of time, we need to use many public/private key pairs; distributing these
public keys to sensors is a challenging problem. We describe a progressive key distribution scheme
that is secure, efficient, and packet-loss resilient. We compare our scheme with the traditional
160-bit ECC public-key schemes, and show that our scheme can achieve a significant improvement
on energy consumption.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Architecture and
Design—Wireless Communication

General Terms: Security, Design, Performance

Additional Key Words and Phrases: Sensor Networks, Public Key, Communication

1. INTRODUCTION

Wireless sensor networks are being used in a wide variety of applications, such as military
sensing and tracking, environment monitoring, patient mornitoring, etc. Usually, sensor
networks are composed of one or more base stations and a number of sensor nodes. The
base stations serve as the commanders and the data sinks, which broadcast commands to
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sensors; the sensor nodes, upon receiving those commands, will send the results back to
the base stations. When deployed in hostile environments, sensor networks are susceptible
to a variety of attacks. For example, adversaries can easilylisten to the communication
between the sensor nodes and the base stations, impersonatebase stations to deceive the
sensor nodes, or send back wrong information to fool the basestations. Many counter-
measures have been developed to defeat or remedy these attacks; among them, broadcast
authentication is intended to prevent attackers from impersonating base stations. The goal
is to authenticate the broadcast messages, and make sure they are indeed sent by the base
stations (base stations are usually secured).

Broadcast authentication originated from the applications in the Internet environment,
but energy constraints on sensor nodes and the real-time nature of the broadcasts in sen-
sor networks render many of the existing solutions impractical. A number of broadcast
authentication schemes have been proposed [Gennaro and Rohatgi,Wong and Lam,Miner
and Staddon, Song et al., Golle and Modadugu, Canetti et al.,Perrig et al., Rohatgi], some
for the Internet and some for sensor networks. However, these schemes are not the perfect
solutions for broadcast authentication in sensor networksdue to the resource constraints of
sensor networks.

An ideal broadcast authentication scheme for sensor networks should satisfy the follow-
ing requirements:

— Computation efficiency: sensor nodes usually do not have powerful CPUs or suffi-
cient power to conduct expensive computations. Even if theydo, the amount of energy
consumed is quite significant.

— Communication efficiency: broadcast in sensor networks is usually conducted in a
relay fashion because sensor nodes may not hear the base station directly. If broadcast
authentication turns a packet into a much larger one, energycost on communication
becomes very expensive.

—Packet-loss resilience: packet loss is more prominent in sensor networks than in the
Internet environment; it can be caused by unreliable wireless communication, or even
worse, by malicious jamming. Therefore, being able to tolerate packet loss is extremely
important.

—Real-time: broadcasts in sensor networks are usually real-time, so for senders, once a
message is ready, it should be transmitted without delay; for receivers, once a message
is received, it should be authenticated immediately.

—Intrusion resilience: broadcasts in sensor networks are especially susceptibleto intru-
sions; attackers can broadcast any message, meaningless ornot, to the sensor nodes.
So intrusion resilience should be an important property of abroadcast authentication
scheme.

Most existing broadcast authentication schemes do not satisfy the aforementioned prop-
erties. For example, Perrig et al. proposed�TESLA in [Perrig et al. 2001], which is quite
efficient and robust to packet loss, but it cannot achieve real-time authentication. Public
key cryptography (PKC), on the other hand, is desirable for broadcast authentication. How-
ever, public key operations had been widely considered as impractical for sensor networks
because of their high computation costs and large signaturesize. Recent research has shed
light on the public key schemes in sensor networks [Gura et al., Wander et al., Ning]. For
example, it was pointed out that Elliptic Curve Cryptography (ECC) is computationally
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feasible for MICA2, a popular CPU used in Berkeley motes [Wander et al.]. With the ad-
vance of hardware technology, it is reasonable to assume that future sensor nodes will be
equipped with PKC implementations.

However, as practical as they may become, PKC operations arestill expensive for sensor
nodes; the cost of public key operations may dominate the cost of transmitting packets in
sensor networks. Since broadcast authentication requiressensors to conduct a large number
of PKC operations, using PKC in the traditional ways is stillimpractical. It is desirable if
we can significantly reduce the cost of PKC operations. Thereare two viable approaches
toward this goal: one is to optimize the implementation of public key algorithms, like what
has been done in existing works [Wander et al.,Gura et al.]; alternatively, we can optimize
the broadcast authentication protocols. In this paper, we take the latter approach.

We proposeShortPK, an efficient Short-term Public Key broadcast authentication scheme.
Our basic idea is to use short-length public/private keys. This will reduce the security
strength of public keys; so, instead of the traditional approach that uses one long key that
is hard to break for a long period of time measured by years, welimit the lifetime of short
public keys to a small period of time that is measured by minutes. We call the lifetime of
each short public key aterm. We divide the lifetime of a sensor network into a number
of such terms, and we assign a different public/private key pair for each term. A public
key is only valid within its own lifetime, so broadcast authentication is still safe even if a
public/private key pair is broken after its term, because any signature generated using that
pair will be invalid.

With the ShortPK approach, broadcast authentication becomes less expensive, but we
face the challenge of distributing these public keys to sensors. The reason is, due to
memory limitation, we cannot preload all the public keys into sensor’s memory prior to
deployment; even if we can, they must be kept secret until their corresponding terms.
Therefore, the public keys need to be broadcasted by the basestations.The broadcasted
public keys must also be authenticated. This becomes another broadcast authentication
problem. However, there is an essential difference betweenthis new broadcast authentica-
tion problem and the original broadcast authentication problem: this is anofflinebroadcast
authentication problem. In this new problem, the broadcastmessages are the public keys;
all these public keys can be generated offline, even before sensors are deployed. In the
original broadcast authentication problem, however, the broadcast messages are generated
online(i.e. in real-time); it is unrealistic to assume that they can be generated offline. Solv-
ing offline broadcast authentication problems can be easierthan solving online broadcast
authentication problems. Therefore, in the ShortPK approach, the original message broad-
cast authentication problem is reduced to public key distribution problem. We propose a
progressive public key distribution scheme (PPKD) in this paper. Our scheme is secure,
efficient, and packet loss resilient.

Organization The organization of our paper is as follows: Section 2 discusses the related
work, and in Section 3 we present the basic idea of the ShortPKscheme. We describe a
progressive key distribution scheme in Section 4. Section 5presents the evaluation results
of our scheme, and finally, Section 6 concludes the paper.

2. RELATED WORK

A number of broadcast authentication schemes have been proposed, especially for the
Internet environment. Gennaro et al. proposed a one-time signature scheme for stream
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authentication in [Gennaro and Rohatgi]. In this scheme, packets are considered as a se-
quence, packetMi carries a one-time public key for packetMi+1, after the receiver verifies
Mi, it buffers the one time public key forMi+1. The proposed one-time public key scheme
is efficient in signature signing and verification, but when used in sensor networks, it has
two disadvantages. First, the scheme does not tolerate packet loss; if one packet is lost,
all the future packets cannot be verified. Second, signatures generated by the proposed
one-time public key scheme are quite large; they are more than 1000 bytes long.

One approach to reduce the cost of public-key based signature signing and verification
is to sign a number of packets together. In this way, the amortized cost of signature is
reduced. A number of amortized approaches have been proposed, including [Wong and
Lam, Miner and Staddon, Song et al., Golle and Modadugu]. A common property of the
amortized approach is the need for buffering (either senderbuffering or receiver buffer-
ing). In many applications, such as the authentication of digital streams, the sender knows
the whole packet sequence, buffering is reasonable. However, in sensor networks, broad-
cast messages are usually unpredictable and time sensitive. In these cases, sender and
receiver buffering will compromise the performance of the broadcasting authentication.
The scheme we present in this paper does not require buffering; signature signing and
verification can be conducted instantly.

Message authentication codes (MAC) has been proposed as another approach. In a
MAC approach, senders and receivers share a secret key; senders append a MAC to each
message. This approach is not secure in sensor networks, because if one sensor is com-
promised, the master key will be compromised. An improved MAC scheme is described
in [Canetti et al. 1999]. Instead of using one MAC key, a key pool is suggested in this
scheme to improve the robustness against spoofing. However,the communication over-
head in this scheme is undesirable because the number of MAC keys attached to each
packet is as large as the key pool size.

To achieve broadcast authentication which is both efficientand resilient to packet loss,
Perrig proposed BiBa [Perrig 2001], which provides very fast signature verification. It
exploits the birthday paradox to achieve efficiency and security. Signature verification
of BiBa is very efficient, but the size of public keys in BiBa isvery large, and so is the
communication overhead. In contrast, our scheme has much shorter public key sizes and
much smaller signature size.

Perrig et al. [2001] proposed�TESLA for broadcast authentication in sensor networks
in. Based on one-way hash chain of commitments,�TESLA is resilient to packet loss
and has a low communication overhead, but receivers cannot verify signature instantly.
In [Perrig et al. 2001],�TESLA was extended to an immediate authentication mechanism
by replacing receiver buffering with sender buffering. As we discussed earlier, sender
buffering is not suitable for broadcast authentication in sensor networks. Compared to
the hash-chain based�TESLA scheme, our scheme is less efficient; however, broadcast
authentication in our scheme can be instant without buffering in either sender or receiver
side.

Previous schemes on multicast authentication are also shown in [Canetti et al.,Rohatgi,
Wong and Lam]. However, these schemes are mostly impractical for sensor networks due
to their packet-loss tolerance, computation costs, and communication costs.
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3. BROADCAST AUTHENTICATION USING SHORT-TERM PUBLIC KEYS

To make a public key system secure, keys need to be long enough. Most of the public
key systems in use today use 1024-bit parameters for RSA, while 160-bit ECC keys can
achieve the same security level [Gura et al.]. The costs of using the traditional public key
scheme in sensor networks are high in both computation and communication. The high
costs are due to the length of the public/private keys, whichnot only makes computation
complicated, but also makes the length of signatures long, and thus requires more energy
to transmit the signatures.1

To reduce the costs while still using the existing public keyalgorithms for sensor net-
works, we can reduce the length of public/private keys. However, doing so compromises
security. Traditional public key schemes make sure that thepublic/private keys are long
enough, so it takes very long time to breaking the scheme (i.e., finding the private keys,
forging signatures, or decrypting ciphertexts). In these schemes, “long time” means years.
For encryption, “long time” is necessary; if the encrypted information should be kept secret
for n years, then the public keys cannot be broken withinn years.

However, if we only use public keys for signatures, rather than for encryption, we do not
need the public key to be strong for such a long time. This is because the signature itself
(the product of signing) is not confidential; it is the signing process that we need to protect.
In other words, we only need to guarantee that the public key is hard to break between the
signing time and the signature delivering time. If we can puta small bound on this time
window, we can use public/private keys with a much shorter length.

We propose a short-term public key scheme for broadcast authentication for sensor net-
works. We divide the lifetime of a sensor network into short terms, and we use one public
key for each term. We also refer to a term as the lifetime of a public key. Public keys
in different terms are independent and will only be disclosed to the receivers during their
corresponding terms. A public key must be unbreakable during its lifetime (plus the bound
of communication delay and the bound of error in clock synchronization). Because the
lifetime requirement for a public key system is reduced to hours or even minutes instead
of years, we can significantly reduce the length of public/private keys, and thus lower the
costs, especially the computation cost. For example, if we reduce an ECC public key from
160 bits to 80 bits, the computation cost for signature verification is reduced to roughly one
eighth and the length of signatures is reduced to half. As a tradeoff, such an ECC public
key may only survive tens of minutes. By limiting their life to a short period of time, the
signature is still reasonably secure.

3.1 Security Strength of Short Public Keys

Shorter public keys reduce the security strength of their public key systems. In this subsec-
tion, we study the relationship between key length and security strength. Such relationship
can serve as the guideline for us to choose key length and the lifetime for each public key.

3.1.1 Short exponent RSA.
In certain applications where there is a large difference incomputing power between two
communication devices, the idea of using short public components or secret components
is natural. The typical example is the RSA used in communications between a smart card

1Although in RSA, the public keye can be very small, which makes the signature verification much more efficient
than signature generation, but the length of signature is too large compared to ECC.
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and a large computer [Wiener], where it would be desirable for the smart card to have a
short secret component and the computer to have a short public exponent in order to reduce
the processing for smart card. However, there is a risk in this practice: short RSA keys are
vulnerable to attacks.

There have been some researches focusing on the security weakness of the short expo-
nent RSA [Blomer and May,Boneh and Durfee,Wiener]. For example, Weiner pointed out
in [Wiener] that if the private exponentd used in RSA is less thanN0.25, then the system is
insecure. Boneh et al. further studied the problem and proved that if the private exponent
d is less thanN0.292 then the system is not secure [Boneh and Durfee]. Further more, in
their paper, Boneh believed that using their approach, security system is not secure as long
asd < N0.5.

Compared to the study of short exponent RSA, as far as we know,other than the fact
that the security strength of the public keys will deteriorate with the reduction of key sizes,
there is no active study in the field of short ECC keys yet.

3.1.2 Short ECC keys.
In our studies, we focus on how long it takes an adversary to find the private key from a
public key in ECC. This problem is equivalent to break the elliptic curve discrete logarithm
problem (ECDLP). It is widely believed that the ECDLP problem is computationally hard
to solve when the point used in the elliptic curve has large prime order. Among all the
know algorithms to break ECDLP, such as Shanks’ baby-step-giant-step method [Shank],
Pollard’s methods [J.M.Pollard], the Menezes-Okamoto-Vanstone (MOV) attack [Menezes
et al.], the Pohlig-Hellman algorithm [Washington], the only algorithms that are applicable
for all elliptic curves are the methods of Shanks and Pollard, and these methods have
exponential complexity.

General purpose processors can be used to execute ECC operations; for example, Pen-
tium 100MHz machines can perform roughly 16000 operations of 89-bit elliptic curves [Cer-
ticom]. However, several processors have been designed specifically for the ECC opera-
tions, such as [Wolkerstorfer, Eberle et al., Puhringer]. One of the fastest ECC-processors
is presented by Eberle et al. [Eberle et al.], which is a very powerful processor that can also
perform RSA calculations: using a 64 bit multiplier, it achieves a very high performance
of 6000 ECC-operations per second for public keys of 224-bitlong. The implementation
was based on the then-current processor technology of 1.5 GHz. Notice that the sizes of
the ECC keys are different in the above examples: the longer the size of public keys, the
smaller number of ECC-operations the processor can executewithin the same period of
time.

Let Tm denote the time for an attacker to break anm-bit ECC challenge problem. That
is,Tm is the time to find out the private key from a given public key. An improved Pollard’s
rho algorithm takes approximately

√
�2m/2 elliptic curve addition operations to solve

a key challenge problem withm-bit key length. Assume the ECC-processor presented
in [Eberle et al.] is used to break the elliptic curve key, we can estimateTm (in machine
days) as the following:

Tm =
1

6000× 60× 60× 24
×

√
2m�

2× (
⌈ 224

32
⌉

⌈ m
32

⌉ )
2
≈ 10−5 × 2

m
2

6000× ( 7
⌈ m
32

⌉

2
)

. (1)

In the above equation,( 7
⌈m/32⌉ )

2 is an adjustment for them-bit elliptic curves; this
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Table I. Time to break anm-bit ECC public key using ECC-processor in [Eberle et al.] (inMacℎineDays)
Key Length (bits) 64 80 89 96 112 128 160
Tm(machine days) 0.5 233 4360 86166 3.01× 107 1.01× 1010 1.02× 1015

adjustment is based on the fact that on a 32-bit machine an elliptic curve addition in an
m-bit field takes( ⌈224/32⌉⌈m/32⌉ )2 as much time as that in an m-bit field. Table I shows the
estimated number of machine days to solve anm-bit ECC challenge problem based on the
above equation.

Using the data from Table I, we can choose a suitable size for our short public keys.
For instance, based on the table, it will take 233 machines towork together for about24
hours to break an 80-bit ECC key. Therefore, if the lifetime of an 80-bit key is set to
5 minutes, to break it within this lifetime, adversaries needat least 66,000 computers to
work simultaneously. If this kind of risk is still unacceptable to an application, or if the
adversary use more powerful machines, we can further shorten the lifetime.

3.2 The Key Distribution Problem

With short-term public keys, a sensor network needs a lot of public keys. Distributing
these keys securely to sensors is a challenging problem. Using the traditional public key
schemes, there is only one public key, which can be preloadedinto sensors’ memory before
they are deployed. In our scheme, we have a number of public keys, sensors might not
have enough memory to store all of them. Even if they do, we cannot simply preload those
public keys in the same way as we do in the traditional schemes, because short public
keys need to be kept secret before their terms; otherwise, attackers can get the public keys
by compromising a sensor, and might break these public keys before the keys’ lifetime
periods. Therefore, a secure and efficient key distributionscheme is needed for the short-
term public key scheme.

Naively, we can let the base stations simply broadcast the public keys to sensors during
their corresponding terms. However, this is not secure because of the well-knownman-in-
the-middleattack: without any means to authenticate the public keys, sensors cannot tell
whether the received public keys belong to the base stationsor not, because attackers can
impersonate the base stations and send their own public keysto sensors. In the Internet en-
vironments, public keys are authenticated using certificates. We cannot use the certificates;
otherwise, our scheme will be more expensive than the traditional public-key-based broad-
cast authentication schemes. We need a more efficient solution to distribute the short-term
public keys. We formulate our problem in the following:

Problem 1 (The Public Key Distribution Problem) The base station hasN public keys
Pki, for i = 1, . . . , N . These public keys need to be distributed to the sensor network.
Sensors need to authenticate the public keys efficiently.

This problem becomes another broadcast authentication problem. As we discussed ear-
lier, there is an essential difference between this problemand the original broadcast au-
thentication problem that we are trying to solve in this paper. This problem is anoffline
broadcast authentication problem, i.e., the broadcast messages (the public keys) are known
a priori, and can be generated offline. In the original broadcast authentication problem,
messages are usually unknowna priori.
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A straightforward solution to this problem is to use Merkle tree [Merkle] which turns
the public-key-based certificate scheme into a much more efficient hash-function-based
scheme. However, the communication overhead is undesirable for sensor networks be-
cause the size of the certificate for each public key is large:O(logN), whereN is the
number of public keys in the Merkle tree. Although this does not have much effect on
senders because senders (base stations) usually have sufficient power, it does increase the
power consumption on sensors: sensors not only need to listen to this larger message,
but also need to relay it for those who cannot hear the base station directly. The energy
overhead caused by listening and relaying the certificates might negate the savings on the
computation. Therefore, from the energy point of view, Merkle tree is not a practical solu-
tion to our public key distribution problem.

One way to save energy in the Merkle tree solution is to let sensor nodes store the
public keys that they have received (and authenticated). These keys will be served as
the proof of the future public keys; to verify an incoming public key, the communication
cost is minimized: only one additional key is transmitted. One of the most important
shortcomings of this approach is that this approach is not resistant to packet loss: if one
public key is lost in the transmission, we will not be able to authenticate future public keys.
Another issue of this solution is the memory cost: it could bevery large because the sensor
nodes may need to store all the nodes in the Merkle tree. Du, Wang and Ning studied this
issue in [Du et al.]. So from the point of view in packet-loss resiliency and the memory
requirement, this approach is not quite feasible in sensor networks.

Another solution is to use the Graph-Based Scheme (GBS) [Miner and Staddon, Song
et al.]. GBS considers packets as vertices in an authentication graph. In this graph, a
directed edge−→e (i, j) denotes that packetMi carries a hash of packetMj , thusMj can be
verified by the hash ifMi is received and verified. One of those packets, denoted byMsig,
carries a signature generated by a public key algorithm.Mj can be verified if there is at
least one path fromMsig toMj .

One of the important properties GBS needs to maintain is the resilience to packet loss. In
the Internet environment, packet loss is mostly due to unreliable broadcasting, but in sensor
networks, packet loss can also be caused by malicious attackers; even worse, attackers can
launch selected jamming attacks that only target at a few selected (“important”) broadcast-
ing packets. While this type of attack might not be viable for the Internet environment, it is
an effective attack in sensor networks. If there are important broadcasting packets, whose
loss can have catastrophic impact, attackers can selectively target those packets. The GBS
schemes are subject to this type of selective attack becausein GBS, the packets broadcasted
at the early stage are more important than those at the later stage. In particular, the first
few packets (e.g.Msig) are extremely important; if a sensor does not receive theseimpor-
tant packets, it will be unable to authenticate future broadcast messages. Therefore, in our
scheme, in addition to tolerate random packet loss, we also need to tolerate targeted packet
loss. We can achieve this goal by exploiting a unique property of sensor networks that does
not exist in the Internet environment: that is, sensors usually belong to the same authority
before their deployment; thus, a certain degree of trust canbe bootstrapped before sensors
are deployed in the field.

To recover the lost public keys broadcasted during a specificterm due to packet loss,
one solution is to let the sensor nodes query their neighborsonce they find out they do
not receive a message. This approach has been adopted in manyresearches, such as [In-
tanagonwiwat et al.]. However, some reasons prevent this approach from being effective:
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(1) Communication overhead associated with this approach:now sensor nodes need to
query their neighbors each time they think they miss a message, and this will be a huge
burden for the sensor nodes; (2) The delay associated with the query: query messages in-
volve sending out and receiving query messages, in additionto the processing time of the
sensor nodes. This will incur extra delay for the sensor nodes; (3) The security issue related
with this approach: malicious nodes may send out faked public keys when they receive a
query message, so the honest nodes are very likely to be fooled. For the above reasons, we
do not adopt the the query-neighbor approach in our study.

4. THE PROGRESSIVE PUBLIC KEY DISTRIBUTION SCHEME (PPKD)

4.1 The Basic Scheme

AssumeN public keys will be used during the lifetime of a sensor network. We usePKi,
for i = 1, . . . , N to denote these keys. Each public key has a fixed lifetime. We use
t1, . . . , tN to represent the starting time of each public key’s lifetime, i.e.,PKi’s lifetime
starts atti and ends atti+1. Because of delay in broadcasting and errors in clock synchro-
nization (between sensors and base stations), the actual lifetime forPKi should take these
into consideration. Assume that synchronization errors are bounded by�s, and broadcast-
ing delay is bounded by�b, the lifetime ofPKi is indeed[ti − �s, ti+1 + �s + �b]. Since
usuallyti+1 − ti is relatively large compared to�s and�b, the estimation of these bounds
does not need to be tight, and the clock synchronization doesnot need to be very accurate.
For the sake of simplicity, we omit these bounds in the rest ofthe paper, and refer lifetime
periods of a public key using justti’s.

Let us first assume that sensors have enough memory to hold alltheseN short-term
public keys. This is an impractical assumption in many applications, and we will lift this
assumption in our next scheme; this scheme only serves as a base for our next scheme.
With enough memory, we load all of theN public keys into sensor’s memories before
sensor deployment, but the public keys must be encrypted, such that nobody, including
all the sensors, knowsPKi before timeti, the starting time of its lifetime. The encryp-
tion keys, denoted asK1, . . . ,KN , are symmetric encryption keys. If the public keys are
not encrypted, adversaries can immediately get all the public keys, and will have much
longer time to find the corresponding private keys. Encryption prevents adversaries from
obtaining the public keys that have not yet become “alive”.

When the time reachesti, the keyPKi becomes alive, so the base station needs to
disclose the encryption keyKi to sensors. This can be achieved by attachingKi in each of
the broadcasting packets during[ti, ti+1]. However,Ki must also be verified by sensors;
otherwise, the broadcasting is not secure at all using the following attacks:

(1) Beforeti, the adversary obtains(PKi)Ki
, the encrypted public keyPKi. This can be

done by capturing a sensor.

(2) The adversary randomly chooses a keyK ′, decrypt(PKi)Ki
usingK ′, and getsPK ′.

Obviously,PK ′ is gibberish becauseK ′ is different fromKi. However, the adversary
treatsPK ′ as a public key and finds its private key using the brute force method. If
the length of private key is short, the adversary might be able to find the private key
beforeti.

(3) At time ti, the adversary broadcasts a malicious message, signed by the private key
derived fromPK ′. The keyK ′ is also attached to the message.
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Fig. 1. Decrypting Public keys using verified symmetric keys.

(4) If sensors do not verifyK ′, they will get the same gibberishPK ′ if they decrypt
(PKi)Ki

usingK ′. They will usePK ′ as the public key to conduct signature ver-
ification. The verification will be successful, so sensors will accept the malicious
message.

Therefore, sensors need to verify whether the receivedKi is from the base station or
not. This can be achieved by using one-way hash chain. LetKi’s be the nodes on a one-
way hash chain, withKi = ℎasℎ(Ki+1). The end (denoted asℎ0) of the hash chain is
pre-loaded into sensor’s memories. When receiving a secret keyK ′

i, the sensor just need
to verify whetherℎasℎi(K ′

i) is equal toℎ0 or not 2. If not, the receivedK ′
i is not the

authenticKi, and must be discarded. Figure 1 depicts the one-way hash chain.
We can use AES for the symmetric-key encryption, but alternatively, we can use ex-

clusive OR (XOR) because eachKi is a one-time key (public keys are encrypted using
different secret keys). It is possible that the length ofKi is not enough to encrypt a public
key. For example, if we use an 80-bit hash function, the size of Ki will be 80 bits, which
is not enough to encrypt a 100-bit public keys. This problem can be solved by usingKi

as a seed to generate a pseudo-random bit sequence of the required length, and use this bit
sequence as the key to encrypt and decrypt the public keys. Many papers have proposed
different ways to generate the pseudo-random bit sequences, such as [Hall et al.,Naor and
Reingold,Luby and Rackoff]. We use the approach proposed in[Hall et al.] to generate the
required length pseudo-random bit sequences; that is, we first useKi as a seed to generate
a hash value, and then process the hash function output with apseudo-random permutation
(PRP). After that, we use the pseudo-random number (PRN) generator to generate the bit
sequence of the required length. We depict the process in Figure 1.

In the above example, we use a weak 80-bit hash function to create a one-way hash
chain. Recent researches have shown that it is not very difficult to find multiple data with
same hash value [Wang and Yu, Wang et al., Wang et al.]. We notice that these researches
only break the collision-free property of hash functions, but so far, the one-way property
remains secure: it has not been broken yet. Since in our scheme, we mainly utilize the
one-way property of the hash chain instead of the collision-free property, we reasonably
assume that the 80-bit hash functions used in our scheme is secure enough to achieve the
desired security level necessary.

2ℎasℎi(x) is defined asℎasℎi−1(ℎasℎ(x)). It is well known that we do not need to conducti hash functions:
sinceℎasℎ(Ki) = Ki−1, if Ki−1 has already been verified,Ki can be verified usingKi−1 with just one hash.
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Fig. 2. Illustration of the progressive scheme

As we said before, this basic scheme assumes that sensors have enough memory to hold
all the encrypted public keys. Although this assumption is impractical in general, it is
feasible for some applications in which sensor nodes are only useful for a short period of
time. For example, in typical rescue missions, a sensor network is quickly deployed to
help the rescue. The lifetime of sensor nodes is expected to be within several hours to one
day. If each public key’s lifetime is 10 minutes, then 150 public keys will be sufficient
for the entire mission (the total memory usage for 80-bit ECCpublic keys is 3K bytes).
Assuming one message will be broadcasted per minute, these 150 public keys will be able
to authenticate 1,500 messages. In this case, it is feasibleto pre-load all the public keys
(in encrypted forms) into sensor’s memories. Therefore, apart from serving as the base for
our next improved scheme, this scheme has its own merits in these special situations.

4.2 A Progressive Public Key Distribution Scheme (PPKD)

When the number of public keys is large, sensors do not have enough memory to hold all
the public keys. Therefore, some public keys have to be distributed by the base station
after the deployment. If there is no packet loss during broadcasting, the simple chaining
approach is sufficient: we broadcastPKi’s hash before its lifetimeti, along with a signa-
ture produced usingPKi−1’s private key. Sensors can authenticate the hash usingPKi−1,
and later authenticatePKi using the hash. This works perfectly if sensors can receive
every broadcasting packet. However, if a sensor fails to receive one public key, it will
be unable to authenticate any future public key, and hence unable to authenticate future
broadcasting messages either. We propose a progressive scheme to achieve efficient public
key distribution in a lossy communication environment.

We divide the entire lifetime of a sensor network into time periods with a fixed length;
we call themphases, and usePℎi to represent thei-th phase. Each phase is further divided
into n time slots, and we call themterms. We useT to represent a term,PK

(i)
j to refer to

the public key used in thej-th term (denoted asTj) of phasePℎi, andK(i)
j to refer to the

symmetric key used inTj of phasePℎi. A public key is only “alive” in its own term, so we
also call a term the lifetime of a public key. During each term, a number of messages might
be broadcasted by the base station, and we use∣T ∣ to represent the number of messages
broadcasted during each term. The relationship betweenphaseand term is depicted in
Figure 2. Our main idea for key distribution is to broadcast the encrypted public keys for
phasePℎi+1 during phasePℎi. The protocol is described in the following:

1. Setup Prior to deployment, each sensor is preloaded with the encrypted public keys of
the initial phasePℎ0. There aren public keys for each phase.

2. Authentication At termTj during phasePℎi, the public keyPK
(i)
j should be disclosed
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to each sensor. This is achieved using the basic scheme described in Section 4.1. Namely,
we attach the symmetric keyK(i)

j with each broadcast packet; sensors use the hash chain to
authenticate the symmetric key, and then use this symmetrickey to decrypt the encrypted
public keyPK

(i)
j that is already stored in their memories. Finally sensors use PK

(i)
j to

authenticate broadcast messages within the termTj .

3. Key Distribution In addition, duringTj , the base stations also broadcast a set of
public keys (encrypted) for the next phase (Pℎi+1). These keys are carried along with the
broadcast messages, and signatures of the packets also include these public keys. As long
as the receiving sensors have the public keyPK

(i)
j , they can verify the signature to make

sure that both message and the encrypted public keys are authentic. Figure 2 also depicts
this process.

If the lifetime of sensor nodes is expected to be one week, andif each public key’s
lifetime is 10 minutes, then the total number of public keys needed is about 1000. Assum-
ing one message will be broadcasted per minute, these 1,000 public keys will be able to
authenticate 10,000 messages.

To resist packet loss, keys must be sent with a certain degreeof redundancy. We can use
sophisticated error correcting codes to minimize communication overhead; however, the
increased decoding cost might negate the intended savings of computation cost. For exam-
ple, Havinga studied two types of error correction code, EVENODD and Reed-Solomon,
and pointed out that compared with the computation cost, communication cost is negli-
gible [Havinga]. It is estimated that the energy cost to transmit 1-bit packet using Intel
StrongARM 1100 processor is about1�J [Yu and Pransanna], which means transmitting
a packet 10-bytes long about80�J , while the energy cost of implementing error correc-
tion using either EVENODD or Reed-Solomon codes may take up to several hundredmJ .
We can see that the difference between the error correction code and transmission cost
is several magnitudes. Therefore, we decide to use a straightforward but much more
computation-efficient scheme, i.e., simply broadcasting each public key multiple times:
within each termT , we let those∣T ∣ broadcast messages together carry a total ofk differ-
ent encrypted public keys. On average, each public key is sent k ∗ n/n = k times (n is
the number of terms in each phase, and is also the number of public keys in each phase,
because one public key is used for each term). The cost of sending thesek public keys
is amortized by the∣T ∣ messages; on average, each message carriesk

∣T ∣ public keys. The
packet format of the ShortPK scheme is depicted in Figure 3. In this figure,LPK is the
size of public key andLdecrypt is the size of symmetric key.

It should be noted that since∣T ∣ is usually larger thank, each packet in practice car-
ries either one or zero public key. Therefore, the length of each packet is either4Lpk +
Ldecrypt + 12 bits or 2Lpk + Ldecrypt + 4 bits. To further reduce the size of a packet,

we do not need to carry the decryption keyK(i)
j for each packet, because the key is the

same for all the packets during termTj . Due to potential packet loss, we need to let more
than one packet carry this decryption key. If in each term we let z of ∣T ∣ packets carry
the decryption key, the average packet size can be further reduced by(1 − z

∣T ∣ )Ldecrypt,
while the chance that all of them get lost isqz if packet loss is uniformly random and the
packet loss rate isq. For the sake of simplicity, we do not consider this improvement in
our evaluation.

We want to emphasize that in the proposed solution, it is possible that packet loss still
exist. Resistant to packet loss is one of the design goals of our scheme; in hostile environ-
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Fig. 3. Format of broadcast packets in the termTj of phasePℎi: (R, s) is theECDSA signature.

ment where packet loss is inevitable, to achieve packet-loss resistant, we always need to
make tradeoff between the packet loss rate and the cost associated with the packet loss rate.
Our scheme is addressing this issue with redundancy by sending same key multiple times.
We can adjust the parameters of the scheme so that the impact of packet loss is reduced to
the minimum (based on the cost allowed).

4.3 Selecting Public Keys in Each Phase

In the PPKD scheme, in each termT , k different encrypted public keys for the next phase
are broadcasted along with the broadcast messages. The choice of thesek public keys is
important to the packet-loss resilience property of the next phase. We study the following
two approaches and analyze their packet-loss resilience: (1) selectingk public keys ran-
domly; (2) selectingk keys randomly, but guaranteeing that all the public keys areselected
equal number of times. In each phase of the PPKD scheme, there aren public keys to
send during then terms in each phase. If we sendk public keys (k < n) in each term, the
average number of times each public key is sent isk. The second approach guarantees that
each public key is sentexactlyk times. We call the first approach theRandom-Kscheme
and the second one theExact-Kscheme.

In the PPKD scheme, if broadcasting is lossless, the public keys for phasePℎi will all be
in sensors’ memory after phasePℎi−1. However, because packets can be lost, after phase
Pℎi−1, it is likely that some public keys (sayPK) for phasePℎi will not be in a sensor’s
memory. This is caused by two reasons: (1) all the packets carrying PK are lost; (2) one
or more packets carryingPK are received, but the sensor cannot verify the signatures of
these packets. We usePi to denote the probability that a public keyPK of phasePℎi

is in memory after phasePℎi−1. Since the loss ofPK prevents a sensor from verifying
signatures during its corresponding term in phasePℎi, we also callPi theverification ratio
for phasePℎi. We can calculatePi using the following theorems (we useq to represent
the packet loss ratio):

THEOREM 4.1. For theRandom-Kscheme, the verification ratioPi for phasePℎi is
the following:

Pi = 1− {(1− Pi−1) + Pi−1 ⋅ [q + (1− q)(1− k

n∣T ∣ )]
∣T ∣}n.

The proof of this Theorem is long, so we put it in Appendix A.

THEOREM 4.2. For theExact-Kscheme, the verification ratioPi for phasePℎi is the
following:

Pi = 1− {q + (1− q) ⋅ (1− Pi−1)}k.
PROOF. Since each public keyPK (needed in Phasei) is guaranteed to be carried by

exactlyk independent packets during Phasei − 1, let us take any one of them (sayM ),
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and compute the probability thatM does not causePK to be accepted into memory dur-
ing Phasei. There are two events that preventPK from being accepted: (1) the packet
M is lost; (2) the packetM is not lost, but it cannot be verified because the sensor does
not have the corresponding public key (sayPKM ) in the memory. It should be noted that
Pr(M cannot be verified inPℎi−1) is the same asPr(PKM is not in the memory duringPℎi−1),
which is1−Pi−1, because the definition ofPi−1 isPr(PKM is in the memory duringPℎi−1).
Therefore:

Pr(M does not cause PK to be accepted inPℎi−1)

= Pr(M is lost) + Pr((M is not lost)∧ (M cannot be verified inPℎi−1))

= q + (1− q) ⋅ (1− Pi−1).

Since there are exactlyk packets likeM (i.e., they all carryPK), we have the following
equation:

Pi = 1−Pr(M does not cause PK to be accepted inPℎi−1)
k = 1−{q+(1−q)⋅(1−Pi−1)}k.

Note that the above formulae ofPi are recursive because the right hands of the formulae
containPi−1. It is difficult to obtain a closed form forPi. However, the following theorems
give us an important property ofPi:

LEMMA 4.3. Pi is monotonic, fori = 0, ...,∞.

PROOF. To prove thatPi is monotonic, we just need to prove the following cases: (1) if
Pi > Pi−1 thenPi+1 > Pi wheni > 0; and (2) ifPi < Pi−1 thenPi+1 < Pi wheni > 0.

By definition, we havePi = 1− {q + (1− q) ⋅ (1− Pi−1)}k and Pi+1 = 1− {q +
(1− q) ⋅ (1− Pi)}k.

Therefore,

Pi+1 − Pi = {1− {q + (1− q) ⋅ (1− Pi)}k} − {1− {q + (1− q) ⋅ (1− Pi−1)}k}
= {q + (1− q) ⋅ (1− Pi−1)}k − {q + (1− q) ⋅ (1− Pi)}k.

We now prove case (1). That is, ifPi > Pi−1 thenPi+1 > Pi wheni > 0:

{Pi > Pi−1} ∧ {0 < q < 1} ⇒ {(1− Pi−1) > (1− Pi)} ∧ {(1− q) > 0}
⇒ (1− q) ⋅ (1− Pi−1) > (1− q) ⋅ (1− Pi)

⇒ {q + (1− q) ⋅ (1− Pi−1)} > {q + (1− q) ⋅ (1− Pi)}
⇒ {q + (1− q) ⋅ (1− Pi−1)}k > {q + (1− q) ⋅ (1− Pi)}k

⇒ {q + (1− q) ⋅ (1− Pi−1)}k − {q + (1− q) ⋅ (1− Pi)}k > 0

⇒ Pi+1 − Pi > 0

⇒ Pi+1 > Pi.

That is, we have proved case (1): ifPi > Pi−1 thenPi+1 > Pi wheni > 0. Similarly,
we can prove case (2): ifPi < Pi−1 thenPi+1 < Pi wheni > 0. And from both cases,
we knowPi is monotonic.

Based on the fact thatPi is monotonic and bounded between0 and 1, we have the
following convergence theorem onPi:

ACM Transactions on Sensor Networks



ShortPK: Short-Term Public Key Scheme for Broadcast Authentication ⋅ 15

0 5 10 15 20
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Phase

ve
rif

ic
at

io
n 

ra
tio

q=0.05
q=0.1
q=0.2

(a)Pi for Rondom-K scheme.

0 5 10 15 20
0.99

0.992

0.994

0.996

0.998

1

Phase

Ve
rif

ic
at

io
n 

ra
tio

q=0.05
q=0.1
q=0.2

(b)Pi for Exact-K scheme.

Fig. 4. Verification rationPi for Random-K and Exact-K schemes (k = 3).

THEOREM 4.4. Pi converges. IfP0 = 0, Pi converges to0; if P0 ∕= 0, Pi converges to
a number between0 and1.

Figure 4(a) and 4(b) depict the results for the Random-K scheme and the Exact-K
scheme, respectively, when the packet loss rateq changes from 0.05 to 0.20. The results
clearly show that the Exact-K scheme is significantly betterthan the Random-K scheme.
Therefore, in the rest of the paper, we assume that the Exact-K scheme is used. Figure 4(a)
and 4(b) also show thatPi does converge. Although it is difficult to obtain a closed form for
the convergence value forPi, we can simply use numeric methods to find the values. The
convergence values for the Exact-K scheme are depicted in Figure 5(a) for differentk val-
ues and different packet loss rateq. The figure shows that the convergence value increases
whenk increases; the value decreases when the packet loss becomesmore severe.

Packet Loss due to our scheme. Given the packet lossq, the actual packet lossqactual
is the sum of the packets that are lost during the transmissions and the packets that are
discarded because a sensor cannot verify their signatures.Therefore,qactual = q + (1 −
q)(1 − Pi). The first part is not caused by our scheme; only the second part is due to our
scheme. We call the second part the additional packet loss. It was shown in Figure 5(a)
that whenk becomes larger and larger,1−Pi approaches zero exponentially. For example,
whenq = 0.1, if k = 3 public keys are sent within each termT , the additional packet loss
caused by our scheme is only0.1%. In other words, when a packet is received by a sensor,
there is only0.1% chance that the sensor cannot verify this packet.

The role of n. We also observe that in Exact-k scheme, the convergence value does not
depend onn. It is interesting to know what rolen plays in this scheme. Let us look at the
phasei. The expected percentage of the public keys (for the next phase) received by each
sensor isPi = Pi ∗ n/n. However, this is just an expected value, the actual occurrence of
the events deviates from this value (thus we have variance);in other words, the actual per-
centage (denoted byPactual) of the next-phase public keys received by each sensor might
be lower than the expected valuePi. WhenPactual becomes zero for some sensors during
phasei, these sensors will never be able to authenticate any futurebroadcast message. The
probability of this event is(1− Pi)

n. Therefore, to make this event improbable, the value
of n cannot be too small. On the other hand,2n represents the total number of public keys
that can be stored in a sensor’s memory, son is bounded by sensors’ memory size.
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Fig. 5. Convergence value and tolerance of burst packet lossfor Exact-K schemes.

Tolerance of Burst Packet Loss. After we choose an appropriate value forn, although
it is improbable forPactual to be zero, it is still possible thatPactual becomes significant
lower than the expected valuePi. If the packet loss is uniform random, the likelihood for
Pactual to be small is rare (this likelihood follows the Binomial Distribution), but when the
packet loss occurs in burst, it is highly likely thatPactual at Phasei deviates fromPi and
becomes significantly lower thanPi. This will further affectPi+1, Pi+2, and so on. How-
ever, regardless of whatPactual is at Phasei, the futurePi+t values will always (quickly)
converge to the same convergence value so long as the burst loss rate is not 1. This is
demonstrated in Figure 5(b), in which we emulate burst packet loss by intentionally letting
thePi’s at certain points deviate from the theoretic values. The results show that thePi

values after the burst packet loss can quickly bounce back toward the original convergence
value. This demonstrates the resilience of our scheme against burst packet loss.

It is possible that adversaries may implement jamming attack that targets at selected
Phases: if all the keys in a specific Phase is lost, future public keys will not be able to be
verified. Our scheme can handle the attack by adjusting the length of the Phases. We can
increase the length of the Phases so that the adversaries cannot jam the communication of
the whole Phases. So long as the packet loss rate during a Phase is not 1, our scheme can
always recover from the packet losses. If the adversaries keep jamming the whole commu-
nication, then their cost will be dramatically increased, which might not be desirable for
the adversaries.

5. PERFORMANCE EVALUATION

We compare the performance of ShortPK with the traditional public-key scheme. Since
we assume that ECC is used, we use the performance of the 160-bit ECC scheme as our
baseline. We focus on both computation cost and communication cost. As our scheme
assume loose synchronization between the base station and the sensor nodes, synchroniza-
tion will also consume energy. The added energy cost is mostly the added communication
cost by the synchronization messages, which are independent of the broadcasted authenti-
cation messages. Research in the field of synchronization insensor networks has produced
many interesting and innovative approaches to implement efficient time synchronization
schemes [Sichitiu and Veerarittiphan, Ostrovsky and Patt-Shamir, Dai and Han]. In real
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applications, the synchronization will not be performed frequently, and these costs are in-
dependent from the broadcast messages, so in analyzing the synchronization costs, we can
consider the costs amortized by the broadcast messages. We will discuss these costs in
more detail in this section.

There are a number of parameters that can affect the performance of our scheme, in-
cluding the broadcasting protocols, the actual packet lossrate (q andk), the number of
messages broadcasted during the lifetime of each public key(i.e., the value of∣T ∣), and
elliptic curve domain parameters. In this section, we studyhow these parameters affect the
performance of our scheme.

In our evaluation, the following notations are used to assist our analysis and discussion
of the scheme:

Notation Explanation
N Total number of one-time public keys
n Number of short-term public keys in each phase
T Lifetime of each individual short-term public key
∣T ∣ Number of broadcast messages in termT .
q Packet loss rate,0 ≤ q ≤ 1
k Number of next-phase public keys sent in each term
Pi Probability that a public keyPK in phasei is in a sensor’s memory
Lpk Length of the public key
Pℎj Thejth phase

[ti, ti+1] Lifetime ofPKi in a phase

5.1 Computation Cost

Computation cost is a critical issue in our scheme since our goal is to provide a broadcast
authentication scheme that is both secure and efficient. We do not consider computation
cost of base stations because we assume that the base stations are powerful machines with-
out resource constraints. Sensor nodes’ computation cost comes from two sources: (1) de-
crypting the public keys using symmetric-key cryptography, and (2) verifying the ECDSA
signature. The time synchronization may also incur some computation cost, but the syn-
chronization is not performed very frequently. Compared topublic-key signature verifi-
cation, the cost for symmetric-key decryption and the computation cost in synchronization
is negligible. Therefore, we only consider the cost of public-key signature verification in
our evaluation.

It is difficult to compute the energy consumption of the 160-bit elliptic curve operations
directly. Noticing that the energy cost of the ECC operations is proportional to the number
of instructions the CPU executes while the number of instructions the CPU executes is di-
rectly related to the time these instructions are executed,we take an alternative approach:
we measure the energy consumption of the ECC operations by counting the time these
operations execute. That is, in our evaluation, we use the processing time of the 160-bit
ECC operations as the benchmark of the energy cost of the 160-bit ECC operations. We
adopt two approaches to evaluate the signature verificationcost: First, we present a theo-
retical estimation to compare the cost of ShortPK scheme with that of 160-bit ECC; and
second, we implement the ECDSA algorithm on MICAz motes to measure the signature
verification time for short keys.

An important property for ECC operations is that, computation cost is proportional to
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Fig. 6. Computation cost (all the curves are generated using the CM method and the field primesp are chosen as
pseudo-Mersenne primes).

the cube of key sizes [Vanstone]. Let us useC(Lpk) to represent the computation cost of
public key operations with key sizeLpk. Computation cost ratio of ShortPK scheme to the
160-bit ECC scheme can be estimated in the following:

C(Lpk)

C(160)
= (

Lpk

160
)3. (2)

Equation (2) provides a theoretical guideline of how much computation advantage we
can gain by using short keys. For example, if we use 80-bit ECCcurves in our scheme,
then the computation cost is about one-eighth of that of the 160-bit ECC. To verify the
actual relationship, we implemented ECDSA on Berkeley MICAz motes for various key
sizes, and we measured the signature verification time.

In ECC, the signature verification time is affected by multiple factors. One of the most
important factors is the curve domain parameters. When the key size is the same, different
elliptic curves can lead to very different signature verification time. Finding efficient ellip-
tic curves is an active research area, and a number of “good” curves have been found in the
literature. One way to generate a “good” curve is to use the Complex Multiplication (CM)
method [Atkin and Morain] to generate random elliptical domain parameters while keep-
ing field primep as pseudo-Mersenne primes [Konstantinou et al.]. In our implementation,
we adopted this approach, i.e., we use the CM method to generate the curves with various
key sizes. The signature verification time using these curves are depicted in Figure 6. We
can see that the relationship roughly follows Equation (2).

It should be noted that some special curves may have smaller verification times than
others. For example, the curvesecp160k1 is an elliptic curve recommended by the Stan-
dards for Efficient Cryptography Group (SECG). Its domain parameters are defined over
Fp [Certicom], and it has a very small running time (12.7 seconds) in our test. Compared to
this curve, the savings of the 80-bit ECC curve generated in our experiments using the CM
method is75.6%, which is quite different from the theoretical guideline (about 87.5%)
derived from Equation (2); this is because the two curves arefrom two different curve
families, and the curves generated using the CM method are not the most optimal ones.

Another important factor that can affect signature verification time is the supportive
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software and hardware, such as optimization on instructionsets and specially designed
hardware. The implementation by Gura et al. shows that with specialized optimization for
Mica2, the 160-bit ECC signature verification can be greatlyreduced to 1.6 second [Gura
et al.]. Because we could not get its details to optimize the implementation for shorter keys,
the results depicted in Figure 6 have not taken this kind optimization into consideration.
However, projecting from the results by Gura et al. based on Equation (2), we reasonably
believe that 80-bit ECC signature verification can be reduced to 0.2 second. With more
research on the optimization of executing elliptic curve operations, the 80-bit ECC sig-
nature verification time will be further reduced. In the cases where this delay is still not
acceptable, we can further reduce the size of the public keysused in signature verification,
thus reduce the time to authenticate these signatures. In that case, we should adjust the
lifetime of the public keys accordingly.

5.2 Communication Cost

The ShortPK scheme can achieve significant cost reduction oncomputation. However, we
need to make sure that such reduction is not achieved at the cost of communication. An
important goal of the ShortPK scheme is to achieve a significant improvement on compu-
tation while keeping the communication cost the same or less(compared to the standard
public-key scheme).

As shown in Figure 3, a broadcast packet carries the following parts: the header (4 bits),
k
∣T ∣ (on average) public keys of sizeLpk, 3 the indices of the public keys (8 bits each), the
messageM , the signature (in ECC, the length of the signature is2 ⋅ Lpk [Washington]),
and the decryption key of sizeLdecrypt. Because the messageM is the actual payload, we
exclude it from the overhead calculation. We calculate the average number of bits for each
broadcast packet (excludingM ), and use the result as the measure for communication cost.
We assume that ECDSA algorithm is used:

Communication Cost=
k

∣T ∣ ⋅ (2Lpk + 8) + 2Lpk + Ldecrypt + 4. (3)

Notice that loose synchronization is assumed in our scheme,we need to consider the
communication cost associated with the synchronization messages. Compared with the
broadcast messages, however, the synchronization is not performed very frequently [Si-
chitiu and Veerarittiphan]. So in analyzing the effect of the synchronization costs to the
ShortPK scheme, we can amortize the synchronization cost tothe broadcast messages. If
we useEsync to refer to the added synchronization cost, andTsync to refer to the time
interval during which time synchronization is performed, then for each broadcast message,
the added communication cost would be

Added Sync Cost=

Esync⋅T ⋅n
Tsync

∣T ∣ ⋅ n =
Esync

∣T ∣ ⋅ T

Tsync
(4)

In [Dai and Han], Dai and Han proposed an efficient Hierarchy Referencing Time Syn-
chronization Protocol, in which20 messages are necessary to maintain accurate time syn-
chronization for a typical network where each node has 6 neighbors. If we assume this
scheme is used, and the synchronization packet is8 bytes each, the added communication

3Note that each public key contains bothX andY , so the size of a public key is2Lpk.
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Fig. 7. Communication costs versus packet loss rate and∣T ∣.

cost would be8 × 8 × 20 = 1280 bit. If the synchronization is performed each8 hours,
then the amortized cost of each message is1280

∣T ∣ ⋅ T
8×60 = 8

3 ⋅ T
∣T ∣ . So we modify Equation

(3) to the following:

Communication Cost=
k

∣T ∣ ⋅ (2Lpk + 8) + 2Lpk + Ldecrypt + 4 +
8

3
⋅ T

∣T ∣ . (5)

In the rest of this section, we study how packet loss rateq, T , ∣T ∣, andLpk affect the
communication costs. Since our goal is to compare with the 160-bit ECC scheme, we
measure the communication cost ratio of our scheme to that ofthe 160-bit ECC scheme.

Packet Loss Rate q In the ShortPK scheme,k measures the degree of redundancy, and
represents the number of times each public key is sent. The higherk is, the better the
verification ratio, but at the same time, the communication cost becomes higher too. We
study the communication cost for various packet loss rateq. Figure 7(a) and 7(b) depict
the relationship between the communication cost and the packet loss rate when we fix∣T ∣,
Lpk, T , and verification ratio.

The figures show that whenq becomes larger, communication costs become larger. The
reason is simple: whenq turns larger, to maintain the same verification ratio, each message
needs to carry more public keys for the next phase, i.e., the value ofk is larger; this causes
higher communication overhead. The figures also show that whenLpk = 80, T = 60 min-
utes, and∣T ∣ = 20, even if the packet loss rate is as high as40%, the ShortPK scheme still
achieves a saving between12% to 18%. This does show that the savings on computation
cost is not achieved by sacrificing the communication cost.

The value of ∣T ∣ In the ShortPK scheme, during each short term, the base stations broad-
cast∣T ∣ messages, all using the same public key; during the same term, k next-phase public
keys are piggy-backed in these∣T ∣ broadcast messages. On average, each broadcast mes-
sage carriesk∣T ∣ public keys. Therefore, when∣T ∣ is larger, the average number of public
keys carried by each broadcast message is lower, and hence the communication overhead
becomes lower. We plot the results in figure 7(c).

From the figure, we can see that when∣T ∣ is too small (e.g.∣T ∣ = 5), to achieve99%
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Fig. 8. Communication costs versusT and∣T ∣/T .

verification ratio, the communication cost is a little bit more than the 160-bit ECDSA for
Lpk = 80. However, as the frequency of broadcasting increases, the communication cost
of ShortPK decreases and drops below the standard 160-bit ECDSA.

The value of∣T ∣ is decided by several factors. First, it is decided by the frequency of
broadcasting in applications. Second, it is affected by thesize of short-term public key.
If the key is longer, the security is better, and therefore, the key can be used for longer.
For a fixed frequency, this means that the number of broadcasting messages (i.e.,∣T ∣)
becomes larger during each short term. Therefore, althoughthe communication cost for
Lpk = 100 is larger than the standard ECDSA when∣T ∣ is small, in practice, due to the
security strength ofLpk = 100, we can use a longer term, i.e., we can use a larger∣T ∣,
which can reduce communication cost.

The lifetime duration of T Time synchronization will introduce additional communica-
tion cost to the proposed ShortPK scheme. Because the synchronization is not performed
frequently, the added cost can be amortized by the frequent broadcast messages. The
amortized cost on each broadcast message depends on severalfactors: the length ofT ,
the frequency the synchronization is processed, and the number of messages broadcasted
duringT , i.e.,∣T ∣. When the frequency of the synchronization is fixed, the values ofT and
∣T ∣ will affect the performance of ShortPK. The results are shown in figure 8

Figure 8(a) illustrates the impact ofT when we fix the number of messages broadcasted
in T . We make sure that the message verification ratio is 99%. Because we fix the fre-
quency of time synchronization, the larger the value ofT , the smaller number of messages
broadcasted between the two synchronizations. As a result,each broadcast message will
consume a larger portion of energy to perform time synchronization. We can see from the
figure that for this scenario, the lifetime of public keys should be reduced.

We are more interested in the impact of ratio between∣T ∣ andT on the communication
cost. The result is shown in Figure 8(b). Again, we make sure that the message verification
ratio is 99%. From this figure, we can see that when there are more messages duringT ,
i.e., the ratio between∣T ∣ andT is large, each broadcast message will consume relatively
smaller portion of its energy on time synchronization.

The Length of Public Keys Lpk In addition to affecting computation cost and security
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Fig. 9. Communication costs versus Key LengthLpk.

strength, the length of public keys also affects communication cost. We plot the relation-
ship between communication cost and key length in Figures 9(a) and 9(b).

Figure 9(a) is plotted when we fix the value of∣T ∣ = 20; namely, we always assume that
each term lasts for the same amount of time for differentLpk values. It is not surprising
to see from this figure that communication cost increases when the length of public key
increases. However, we know that when a public key becomes longer, its security becomes
stronger, so the lifetime of the key can be increased accordingly. Figure 9(b) is used to
study this observation. We define the frequency of broadcasting as the number of messages
broadcasted within a time unit. We use the term forLpk = 80 as our time unit, and thus
the value∣T ∣ for Lpk = 80 equals the broadcast frequency. We use the security strength
and frequency ofLpk = 80 as our baseline. When we changeLpk, to maintain the same
security strength and broadcast frequency, we use Equation(1) to adjust the value of∣T ∣.
The results are plotted in Figure 9(b). The curves reach an interesting lowest point between
Lpk = 80 andLpk = 85 for the given frequency values. Therefore, for a given application
(i.e., the frequency is fixed), if we want to maintain the pre-determined level of security,
we can find the optimal key length.

6. CONCLUSION & FUTURE WORK

Broadcast authentication is a very important issue in sensor networks. With the “expen-
sive” public key operations finding their way into sensor networks, the problem of how
to save energy of the sensor nodes becomes imminent. In this paper, we present an effi-
cient public-key-based broadcasting authentication scheme that can save energy on sensor
nodes. Unlike the existing public-key-based authentication schemes that use a single strong
public key, our scheme uses many weaker public keys (i.e., keys with shorter length). The
security strength of our scheme is achieved by limiting the lifetime of each public key. The
main challenge of our scheme is how to distribute these public keys. We have proposed a
progressive distribution scheme to distribute these public keys in a way that is secure and
resilient to packet loss. Compared to the standard public key authentication scheme that
uses strong keys, our scheme significantly reduces the energy cost on signature verification.

Given the length of the public key and similar hardware environment, the effectiveness of
our scheme depends on how fast the signature can be verified using ECDSA. This involves
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the choice of optimized curve domain parameters. Although many research groups are
actively studying various optimization methods, they mostly focus on stronger ECC keys;
optimal domain parameters for shorter ECC keys are still unavailable. In our future work,
we will use the methods developed from those studies to find better curves for shorter ECC
keys.
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A. PROOF OF THEOREM 3.1

PROOF. To make the notation for subscripts less confusing, we prove the following
equivalent equation:

Pi+1 = 1− {(1− Pi) + Pi ⋅ [q + (1− q)(1− k

n∣T ∣ )]
∣T ∣}n,

instead of its original form:Pi = 1−{(1−Pi−1) +Pi−1 ⋅ [q+ (1− q)(1− k
n∣T ∣ )]

∣T ∣}n.

We usePK → Pℎi to denote the event that the public keyPK is accepted during
phasePℎi (note thatPK is used in phasePℎi+1). The probability of such an event is
denoted asPr(PK → Pℎi); the probability that such event does not occur is denoted as
Pr(¬(PK → Pℎi)). Similarly, we definePK → T as the event thatPK is accepted
during the termT , whereT is a term in phasei. Because there aren terms in a phase, we
have the following relationship:

Pr(¬(PK → Pℎi)) = Pr(¬(PK → T ))n. (6)

Let PKT represent the public key used during the termT of phasePℎi. SincePKT

is broadcasted during phasePℎi−1, Pr(PKT → Pℎi−1) represents the probability that
PKT is accepted into memory during phasePℎi−1. As we know, this probability isPi. In
other words, during the termT , the probability that a sensor is able to verify signatures is
Pi.

We now computePr(¬(PK → T )), the probability thatPK is not accepted during
termT . For the event¬(PK → T ) to occur, there are two possibilities. First,PKT is
not in the memory, i.e.,Pr(¬(PK → T ) ∣ ¬(PKT → Pℎi−1)) = 1. Second,PKT is in
the memory, but the packets sent by the base station duringT do not causePK → T to
occur (due to packet loss or that no packet actually carriesPK). Therefore, we have the
following:

Pr(¬(PK → T )) = Pr(¬(PK → T ) ∣ ¬(PKT → Pℎi−1)) ∗ Pr(¬(PKT → Pℎi−1))

+Pr(¬(PK → T ) ∣ (PKT → Pℎi−1)) ∗ Pr(PKT → Pℎi−1)

= Pr(¬(PKT → Pℎi−1) + Pr(¬(PK → T )

∣ (PKT → Pℎi−1)) ∗ Pr(PKT → Pℎi−1)

= (1− Pi) + Pi ∗ Pr(¬(PK → T ) ∣ (PKT → Pℎi−1)). (7)

Next, we computePr(¬(PK → T ) ∣ (PKT → Pℎi−1)). A termT has∣T ∣ broadcast
messages, we divideT into ∣T ∣ time points, at each of which one broadcast message is sent.
We uset to represent any one of these time points, and definePK → t as the event that
PK is accepted at the pointt. We first computePr(¬(PK → t) ∣ (PKT → Pℎi−1)),
the probability thatPK is not accepted at timet whenPKT is in the memory. In the
following discussion, for the sake of simplicity, we omit the condition(PKT → Pℎi−1)
from the expressions.

Pr(¬(PK → t) ∣ (PKT → Pℎi−1))

= Pr(“Packet is lost”) + Pr(“Packet is not lost”) ⋅ Pr(“Packet does not carry PK”)

= q + (1− q)
n− k

∣T ∣

n
, (8)
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wherePr(“The packet does not carry PK”) is calculated in the following way: since each
packet carriesk∣T ∣ public keys that are selected fromn keys (without duplicate), the proba-
bility that these keys do not includePK is the following

n− 1

n
⋅ n− 2

n− 1
⋅ ⋅ ⋅

n− k
∣T ∣

n− k
∣T ∣ + 1

=
n− k

∣T ∣

n
= 1− k

n∣T ∣ .

Since there are∣T ∣ messages within each termT , we have

Pr(¬(PK → T ) ∣ (PKT → Pℎi−1)) = Pr(¬(PK → t) ∣ (PKT → Pℎi−1))
∣T ∣

= [q + (1− q)(1− k

n∣T ∣ )]
∣T ∣. (9)

Combining Equations (6), (7), and (9) together, we have the following:

Pi+1 = Pr(PK → Pℎi)) = 1− Pr(¬(PK → Pℎi))
n

= 1− {(1− Pi) + Pi ⋅ [q + (1− q)(1− k

n∣T ∣ )]
∣T ∣}n.
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