SEED: A Suite of Instructional Laboratories for Computer
SEcurity EDucation-

Wenliang Du, Zhouxuan Teng, and Ronghua Wang
Department of Electrical Engineering and Computer Science
Syracuse University. Syracuse, New York 13244

wedu@ecs.syr.edu, zhteng@syr.edu, rwangOl@ecs.syr.edu

ABSTRACT

To provide students with hands-on exercises in computer
security education, we have developed a laboratory environ-
ment (SEED) for computer security education. It is based
on VMware, Minix, and Linux, all of which are free for ed-
ucational uses. Based on this environment, we have devel-
oped ten labs, covering a wide range of security principles.
We have used these labs in our three courses in the last
four years. This paper presents our SEED lab environment,
SEED labs, and our evaluation results.

Categories and Subject Descriptors

K.3.2 [Computer & Information Science Education]:
Computer Science education

General Terms

Computer Security

Keywords

Security, laboratory, instructional operating system

1. INTRODUCTION

The importance of experiential learning has long been
recognized in the learning theory literature. Lewin (1951)
claimed that learning is attained through active participa-
tion in the learning process; and Piaget (1952) stated that
learning occurs as a result of the interaction between the in-
dividual and the environment [7]. Computer scientist Den-
ning (2003) also indicated that if we adopt a picture that
ignores practice, our field (computing) will end up like the

*This work is supported in part by the National Science
Foundation’s Course, Curriculum, and Laboratory Improve-
ment (CCLI) program under Award No. 0618680 and
0231122. The lab materials from this work can be obtained
from http://www.cis.syr.edu/~wedu/seed/.

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

S GCSE'07, March 7-10, 2007, Covington, Kentucky, USA.

Copyright 2007 ACM 1-59593-361-1/07/000355.00.

failed “new math” of the 1960s—all concepts, no practice,
lifeless; dead[4].

The importance of experiential learning has also been rec-
ognized in computer science education. Traditional courses,
such as Operating Systems, Compilers, and Networking,
have effective laboratory exercises that are widely adopted.
Unfortunately, computer security education, which is still at
its infancy, has yet had widely-adopted laboratory exercises.
Although there does exist a small number of good individual
laboratories [5, 6, 8], their coverage on security principles is
quite narrow; many important security principles, concepts,
and innovative ideas are not covered by the existing lab-
oratories. Moreover, since these existing laboratories are
developed by different people, they are built upon a variety
of different lab environments (operating systems, software,
etc.). Usually, there is a steep learning curve to learn a new
lab environment. If an instructor wants to use several labo-
ratories, students need to learn a few different environments,
which is impractical for a semester-long course.

To fill the aforementioned void in security education, we
propose a general laboratory environment and a comprehen-
sive list of laboratory activities that are essential to security
education. We call our laboratory environment the SEED
environment (SEcurity EDucation), and each laboratory ac-
tivity a lab. SEED has a number of appealing properties:
(1) SEED is a general environment. It supports a variety
of labs that cover a wide spectrum of security concepts and
principles, as well as important security engineering skills.
It provides a common laboratory environment for computer
security education. (2) SEED is based upon a proven peda-
gogic method. The core of the SEED environment consists
of an instructional operating system. Using instructional
operating systems has proven to be effective in traditional
computer science courses, such as Operating System, Net-
working, etc [2, 3, 9]. This project is the first to apply such
a pedagogical method in security education. (3) SEED is a
low-cost environment. It can be easily set up on students’
personal computers using free software.

Based on the SEED environment, we have developed ten
labs for computer security education. During the last four
years, we have used these labs in three different courses,
including Internet Security, Computer Security, and Intro-
duction to Computer Security. The first two are graduate
courses, and the last one is a undergraduate course. We have
conducted evaluation after students finish each lab. The re-
sults are quite encouraging. In this paper, we describe the
SEED lab environment, lab setup, and various practical is-
sues (Section 2). We also describe a suite of SEED labs that

we have developed, along with our experience with them
(Section 3). Finally, we report our evaluation results.

2. SEED LAB ENVIRONMENT

The design goal of our labs is intended to ask students
to conduct one or a few of the following tasks in each lab:
(1) explore (or “play with”) an existing security component
of the OS, (2) modify an existing security component, (3)
design and implement a new security functionality, (4) test
a security component, and (5) identify the vulnerabilities
in the OS, and exploit such vulnerabilities. Some of these
tasks can be conducted without looking at the source code,
and thus, can be conducted in most of the modern operat-
ing systems. However, some tasks, such as tasks 2, 3, and
perhaps 4 (for white-box testing), do require code reading
and/or code writing; using a production operating system
(e.g. Linux and Windows) for these tasks is not an effective
approach. Most of the security components that students
need to address are not stand-alone components, they in-
teract with various other components within the OS, such
as file system, process management, memory management,
and network services. Students need to understand these
interactions in order to conduct the tasks. Understanding
these interactions in a production operating system is not a
feasible task during a single semester for average students.

This challenge is not unique in security education, similar
problems have been faced by instructors of traditional com-
puter science courses when they chose platforms for their
course projects. A successful pedagogical approach emerged
from the practice; that is, the use of instructional systems.
For example, Operating System and Networking courses of-
ten use instructional operating systems, such as Minix [9]
Nachos [2], and Xinu [3]; compiler courses often use instruc-
tional languages such as miniJava [1]. These systems are
designed solely for educational purposes. Unlike the pro-
duction systems, they do not have many fancy features;
they only maintain the components that are essential for
their designated educational purpose. As a result, rather
than having millions of lines of code as many production
operating systems do, instructional OSes only have tens of
thousands of lines of code. Understanding the interaction
of the components in these systems has proven to be feasi-
ble in the educational process of the traditional computing
courses [2, 3, 9]. The use of instructional systems allows
students to apply knowledge and skills to a manageable sys-
tem, thus allowing them to remain active participants in the
learning process.

To achieve our design goals, we run two types of OSes in
the SEED environment. One type runs Minix, an instruc-
tional operating system. For the labs that require students
to read, understand, and modify source code, we use Minix
as the platform because supporting coding-related tasks is
the strength of the instructional OSes. In the SEED en-
vironment, we also use a production OS (we chose Linux).
Production OSes provide a rich set of security systems. We
use them primarily for exploration-type labs, in which stu-
dents play with a security system to learn how things work
and how security breaches can occur. Students do not need
to read or modify the source code of these operating systems.

Virtual Machines: To be able to run Minix and Linux
(sometimes multiple instances of them) conveniently in a
general computing environment, we use the virtual machine

technologies. Students can create “virtual computers” (called
guest computers) within a physical computer (called host
computer). The host computer can be a general computing
platform, while each guest computer can run its own operat-
ing system, such as Minix and Linux. The guest computers
and the host computer can form virtual networks. All of
this can be accomplished using virtual machine softwares,
such as VMware and Virtual PC. VMware has recently es-
tablished an academic program, which makes the license of
all VMware software free for educational uses. Since Minix
and Linux are also free, the software cost for establishing
SEED environment is zero.

Due to the virtual machine technologies, the SEED lab en-
vironment does not require a physical laboratory. Students
can create the entire SEED environment on their personal
computers. We did a survey in our classes; 85% of our stu-
dents actually prefer to use their own computers for their
lab assignments, while another 15% feel ok to use their own
computers, but prefer to use public computers for the labs.
An alternative is to install VMware on the machines in pub-
lic laboratories. However, since each virtual machine needs
300 MB to 1 GB disk space, this approach creates a high
demand on disk space on public machines, which is imprac-
tical in many institutions. There is an easy solution to this
problem: just ask students to buy a portable hard-disk (cost
less than $100). They can store their virtual machines on
the portable hard-disks, and work on their lab assignments
on any public machines with VMware installed.

3. SEED LABS

Based on the SEED environment, we have developed two
types of labs: implementation labs and exploration labs. (1)
The objective of the implementation labs is to provide stu-
dents with opportunities to apply security principles in de-
signing and implementing systems. Since coding is neces-
sary for these labs, we use Minix as the platform. (2) The
objective of the exploration labs is two-fold: the first is to
enhance students’ learning via observation, playing and ex-
ploration, so they can see what security principles “feel” like
in a real system. The second objective is to provide students
with opportunities to apply security principles in analyzing
and evaluating systems. The target systems for students to
explore include the systems that come with the underlying
operating systems (both Minix and Linux) and the systems
that we build in the implementation labs. We have devel-
oped and used 10 different labs in our classes. Due to page
limitation, we only describe three selected labs in detail,
while giving brief summaries to the others.

3.1 set-urp Lab

The learning objective of this lab is for students to inves-
tigate how the Set-UID security mechanism works in Minix,
discover how program flaws in Set-UID programs can lead
to system compromise, and identify how modern operat-
ing systems protect against attacks on vulnerable Set-UID
programs. Set-UID is an important security mechanism in
Unix operating systems. When a Set-UID program is run,
it assumes the owner’s privileges. For example, if the pro-
gram’s owner is root, then when anyone runs this program,
the program gains the root’s privileges during its execution.
Set-UID allows us to do many interesting things, but unfor-
tunately, it is also the culprit of many bad things.

In this exploration lab, students’ main task is to “play”

with the Set-UID mechanism in Minix and Linux, report and
explain their discoveries, analyze why some Set-UID behav-
iors in Linux are different from that in Minix. In particular,
they need to accomplish the following tasks:

Task 1 (Understanding Set-UID). Figure out why chsh,
passwd, and su commands need to be Set-UID programs.
Using the Minix source code, figure out how Set-UID is im-
plemented in the OS, and how it affects the access control.

Task 2 (Potential risks of Set-UID programs) The li-
brary function system(const char *cmd) can be used to ex-
ecute a command within a program. The way system(cmd)
works is to invoke the /bin/sh program, and then let the
shell program to execute cmd. Because of the shell program
invoked, calling system() within a Set-UID program is ex-
tremely dangerous. This is because the actual behavior of
the shell program can be affected by environment variables,
such as PATH; these environment variables are under user’s
control. By changing these variables, malicious users can
control the behavior of Set-UID programs.

To see how this type of attack works, students are given
a Set-UID program that simply calls system("1s"). This
program is supposed to execute the /bin/ls command, but
the programmer “forgets” to use the absolute path for the
1s command. Students need to find ways to “trick” this
Set-UID program into running another command instead of
/bin/ls. Students need to observe whether the new com-
mand is executed with the root privilege. Students need to
conduct the tasks in both Linux and Minix.

Task 3 (An alternative). To convince students to never
use system(), and instead to use execve(), two Set-UID
programs are given to students. The first one simply calls
system("1s"), and the second one replaces system() with
execve(), the one that does not invoke a shell program.
Students need to run both programs in Minix and Linux,
and explain their observations.

Task 4 (Another potential risk). To be more secure,
Set-UID programs usually invoke the setuid() system call
to permanently relinquish their root privileges. However,
this is not enough in certain circumstance. For example,
when the program has already opened a file (e.g. the pass-
word file) with root privileges, after the program drops its
root privileges, it can still access that file because the file
descriptor is still valid. Therefore, although the privileges
are already dropped, systems can still be compromised. To
demonstrate this, we give students a Set-UID program (omit-
ted due to page limitation), ask them to run it, and then
explain their observations.

Experience: This lab takes one to two weeks to finish.
Students were very interested in this lab; in particular, they
were intrigued by the difference between Minix and Linux.
For example, in Task 2, students were first surprised to see
that Linux, unlike Minix, was immune to the attack. Many
students were curious about that, and they tried very hard
to find out why Linux was protected. They investigated
various hypothesis. Eventually, they traced the protection
to the shell program /bin/sh, which by default, automat-
ically dropped the Set-UID privilege when invoked. There
was a lot of discussion in the class on this protection mea-
sure. From this lab, the best lesson we have learned is the
benefit of “comparison studies”. Minix, an instructional OS
not specifically designed for security courses, is a much less

secure OS than Linux; there are many other security-related
differences between these two OSes. We will continue using
this comparison strategy to develop our future labs.

3.2 Capability Lab

The learning objective of this lab is for students to apply
the capability concept to enhance system security. In Unix,
there are a number of privileged programs (e.g., Set-UID
programs); when they are run by any user, they run with
the root’s privileges. Namely the running programs pos-
sess all the privileges that the root has, despite of the fact
that not all of these privileges are actually needed for the
intended tasks. This design clearly violates an essential se-
curity engineering principle, the principle of least privilege.
As a consequence of the violation, if there are vulnerabil-
ities in these programs, attackers might be able to exploit
the vulnerabilities and abuse the root’s privileges.

Capability can be used to replace the Set-UID mecha-
nism. In Trusted Solaris 8, root’s privileges are divided into
80 smaller capabilities. Each privileged program is only as-
signed the capabilities that are necessary, rather than given
the root privilege. A similar capability system is also devel-
oped in Linux. In a capability system, when a program is
executed, its corresponding process is initialized with a list
of capabilities (tokens). When the process tries to access an
object, the operating system should check the process’ ca-
pability, and decides whether to grant the access or not. In
this lab, students need to implement a simplified capability
system for Minix.

Required Capabilities: To make this lab accomplishable
within a short period of time, we have only defined 5 ca-
pabilities. Due to our simplification, these five capabilities
do not cover all of the root’s privileges, so they cannot to-
tally replace Set-UID. They can only be used for privileged
programs that just need a subset of our defined capabili-
ties. For those programs, they do not need to be configured
as a Set-UID program; instead, they can use our capability
system. Our system supports the following capabilities:

1. CAP_READ: Allow read on files and directories. It
overrides the ACL restrictions regarding read on files
and directories.

2. CAP_.CHOWN: Overrides the restriction of changing
file ownership and group ownership.

3. CAP_SETUID: Allow to change the effective user to
another user. Recall that when the effective user id
is not root, callings of setuid() and seteuid() to
change effective users are subject to certain restric-
tions. This capability overrides those restrictions.

4. CAP_KILL: Allow killing of any process. It overrides
the restriction that the real or effective user ID of a
process sending a signal must match the real or effec-
tive user ID of the process receiving the signal.

5. CAP_.SYS_REBOOT: Allow rebooting the system.

We intentionally made the above description of capabili-
ties vague. If not carefully designed, a system that follows
this vague description might have loopholes. For example,
more restriction must be put on the CAP_SETUID capabil-
ity; otherwise, a process with such a capability can gain all

the other capabilities. Students are given the responsibility
to identify potential loopholes in the above description and
further clarify the description.

Managing Capabilities: A process should be able to man-
age its own capabilities. For example, when a capability is
not needed in a process, the process should be able to per-
manently or temporarily remove this capability. Therefore,
even if the process is compromised, attackers are still unable
to gain the privilege. In this lab, students need to support
a list of standard functionalities, including (temporarily)
Disabling/Enabling, (permanently) Deleting, Delegating,
and Revoking capabilities.

Experience: Before we used this lab in our class, we pre-
dicted that students might have trouble figuring out how
the system calls work in Minix, and how different compo-
nents of Minix exchange data (Minix is a micro-kernel oper-
ating system, it uses messages for components to exchange
data). We have developed corresponding documents to help
students. Students have found these documents extremely
useful. However, we failed to predict another difficulty: stu-
dents spent a lot of time on figuring out how to store in-
formation in i-nodes. We decided that this task was not
essential to computer security. Therefore, we have devel-
oped another document to describe detailed instructions on
how to manipulate the i-node data structure.

3.3 IPSecLab

The learning objective of this lab is for students to in-
tegrate a variety of security principles to enhance network
security. IPSec is a good candidate for this purpose. IPSec
is a set of protocols developed by the IETF to support secure
exchange of packets at the IP layer. It has been deployed
widely to implement Virtual Private Networks (VPNs). The
design and implementation of IPSec require one to integrate
the knowledge of networking, encryption, key management,
authentication, and security in OS kernels.

In this lab, students need to implement IPSec in Minix,
as well as to demonstrate how to use it to set up VPNs.
IPSec consists a set of complex protocols; a full implemen-
tation is infeasible for a course project. Since the focus of
this lab is not on mastering all the details of IPSec, but
rather on the integration and application of various security
principles, a number of simplifications can be made without
compromising the learning objectives.

First, IPSec has two types of header (ESP and AH) with
two different modes (Tunneling and Transport). Students in
this lab only need to implement the ESP header in Tunnel-
ing mode. Second, IPSec supports a number of encryption
algorithms; in this lab, we only support the AES encryption
algorithm. Third, there are many details in IPSec to ensure
interoperability among various operating systems. Since in-
teroperability is not a focus of this lab, we make students
aware of this issue, but allow them to make reasonable as-
sumption to simplify the interoperability. Fourth, in IPSec,
there are two ways for computers to agree upon a shared
secret key: one is to use the IKE (Internet Key Exchange)
protocol, and the other is through manual configuration.
In this lab, students only need to implement the second
method, i.e. we assumes that shared secret keys are manu-
ally set by system administrators at both ends.

Experience: With such simplifications, most students fin-
ished the lab within 5 weeks. Moreover, what interested us

o 5% E 12% A 8% D 23%

&5 B: 29%
\‘ ‘ B:38%
D: 309% V . D
9
Esse O 2% D: 47% C: 31%

(a) Set-UID (b) Capability (C) IPSec

Figure 1: The supporting materials are useful.

“m % E: 35%
c 14o?ii D: 59% .

D: 52“

CB%BZ%ES%

D: 82%

(a) Set-UID Capablhty () IPSec

Figure 2: The lab is difficult.

the most was that students were highly motivated. Students
attributed their motivation to the fact that this lab was built
upon the IP stack: being able to learn the internals of the
IP stack has already fascinated many students, much less
being able to modify it to enhance security. Most students
were proud to put this experience in their resumes, and they
told us that recruiters were quite impressed by what they
did in this lab. This has reinforced our belief that students
get motivated when a security lab is based on a meaningful
and useful system, such as TCP/IP, operating systems, etc.
Our capability lab and encrypted file system lab have also
reinforced such a belief.

3.4 Other Labs

Encrypted File System (EFS): The learning objective
of this lab is for students to demonstrate how to integrate
encryption with systems to protect confidentiality. EFS is
a mechanism to protect confidential files from being com-
promised when file storages (e.g., hard disks and flash mem-
ories) are lost or stolen. EFS builds encryption into file
systems, so files are encrypted/decrypted on the fly before
they are written to or read from their storages. The pro-
cess is transparent to users. EFS has been implemented in
a number of operating systems, including Solaris, Windows
NT, and Linux. In this lab, students need to implement EFS
for Minix. This lab takes 4-5 weeks to finish.

Role-Based Access Control (RBAC): RBAC has be-
come the predominant model for advanced access control,
and has been implemented in Fedora Linux and Trusted
Solaris. We have integrated the RBAC concept to our ca-
pability lab; it results in a more comprehensive lab.

Sandbox Lab: The learning objective of this lab is for stu-
dents to substantiate an essential security engineering prin-
ciple, the compartmentalization principle. This principle is
illustrated by the Sandbox mechanism in computer systems.
It is intended to provide a safe place to run untrusted pro-
grams. Almost all the Unix systems have a simple built-
in sandbox mechanism, called chroot jail. In this explo-

B: 10% E: 10% B: 6% X B: 8%

E: 29% E: 54%
C:29% C: 15%
| 29%
C: 52% D: 350/’ D: 23!:.

(a) Set-UID (b) Capability (C) IPSec

Figure 3: Your level of interest in this lab is high.

ration lab, we have designed a series of tasks that are in-
tended to help students understand the implementation of
chroot and its existing loopholes.

Four Other Labs: We have also developed four other labs,
including one for implementing an extended Access Control
List for Minix, one for exploring Pluggable Authentication
Modules (PAM) in Linux, one for exploring various vulner-
abilities in Minix, and another for implementing a simple
sandbox mechanism in Minix.

4. EVALUATION

We conducted an anonymous survey after students finish
each lab. Each survey consists of a number of statements,
and students need to choose how much they agree or dis-
agree with the statements. They can choose the following:
(A) Strongly disagree, (B) Disagree, (C) Neutral,
(D) Agree, (E) Strongly agree. The partial results of
these surveys for the Set-UID lab, capability lab, and IPSec
lab are plotted in Figures 1 to 5. The average number of
students participating in each lab is 30.

Figure 1 measures whether the supporting materials are
satisfactory. From Figure 1(c), we realized that students
were not happy with the supporting materials in the IPSec
lab. After interviewing students, we found out that, due to
the lack of documentation, students spent too much time on
figuring out how packets flow within the IP stack in Minix.
We decided that this part was not essential to the security
principles intended in this lab. We plan to develop support-
ing materials to reduce the time spent on this subject.

Figure 2 measures how difficult each lab is. The data in-
dicates that most students found the labs challenging. How-
ever, from their performance, we feel that the labs have suc-
cessfully pushed students, but without causing them to fail.
Most students have succeeded in these labs.

Figure 3 to 5 evaluate the students’ perspective in our
labs, including how interested they are, whether they think
the labs are worthwhile, and whether these labs spark their
interests in computer security. From the results, we can see
that students’ responses are quite positive.

5. CONCLUSION AND FUTURE WORK

We have developed a general laboratory environment for
computer security education. Our SEED environment is
built upon an instructional OS (Minix) and a production
OS (Linux). The environment can be setup on students’
personal computers or public computers with zero software
cost. Based on the SEED environment, we have developed
ten labs. We tested these labs in our three computer secu-
rity courses in the last four years; the evaluation results are
quite encouraging. Two other universities have started to

E: 10% B: 6% D: 17% - 83%

C:69

:59%

B: 38%

D:20% D29
@c: 24%

(a) set-uip

¢

(b) Capability (c) 1PSec

Figure 4: The lab is a valuable part of this course.

A: 5% B: 18% - 299 B: 8%
E: 67% =: 29% C: 8% E: 46%
D: 29%, & .
D: 53% D: 3&

1
(a Set-UID (b) Capability (C) IPSec

Figure 5: The lab sparks your interest in computer
security.

use the SEED environment and labs in their courses. Sev-
eral more universities have shown interests in adopting our
labs in their courses. In our future work, we plan to further
improve the existing labs, as well as developing more labs to
cover a broader scope of computer security principles.

6. REFERENCES

[1] A. W. Appel and J. Palsberg. Modern Compiler
Implementation in Java. Number 0-521-82060-X.
Cambridge University Press, 2nd edition, 2002.

[2] W. A. Christopher, S. J. Procter, and T. E. Anderson.
The Nachos instructional operating system. In
Proceedings of the Winter 1993 USENIX Conference,
pages 481489, San Diego, CA, January, 25-29 1993.

[3] D. Comer. Operating System Design: the XINU
Approach. Prentice Hall, 1984.

[4] P. J. Denning. Great principles of computing.
Communications of the ACM, 46(11):15-20, 2003.

[5] J. M. D. Hill, C. A. Carver, Jr., J. W. Humphries, and
U. W. Pooch. Using an isolated network laboratory to
teach advanced networks and security. In Proc. of the
32nd SIGCSE Technical Symposium on Computer
Science Education, Charlotte, NC, Feb. 2001.

[6] C. E. Irvine, T. E. Levin, T. D. Nguyen, and G. W.
Dinolt. The trusted computing exemplar project. In
Proc. of the 2004 IEEE Systems Man and Cybernetics
Information Assurance Workshop, June 2004.

[7] D. Kolb. Ezperiential learning: Experience as the
source of learning and development. Prentice Hall,
Englewood Cliffs, NJ, 1984.

[8] W. G. Mitchener and A. Vahdat. A chat room
assignment for teaching network security. In Proc. of
the 32nd SIGCSE technical symposium on Computer
Science Education, Charlotte, NC, 2001.

[9] A.S. Tanenbaum and A. S. Woodhull. Operating
Systems Design and Implementation. Prentice Hall, 2nd
edition, 1997.

