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The security and assurance of our computing infrastructure has become a national priority. To
address this priority, higher education has gradually incorporated the principles of computer and
information security into the mainstream undergraduate and graduate computer science curric-
ula. To achieve effective education, learning security principles must be grounded in experience.
This calls for effective laboratory exercises (or course projects). Although a number of laboratories

have been designed for security education, they only cover a small portion of the fundamental se-
curity principles. Moreover, their underlying lab environments are different, making integration
of these laboratories infeasible for a semester-long course. Currently, security laboratories that
can be widely adopted are still lacking, and they are in great demand in security education.

We have developed a novel laboratory environment (referred to as SEED). The SEED environ-
ment consists of Minix, an instructional operating system (OS), and Linux, a production OS; it
takes advantage of the simplicity of Minix and the completeness of Linux, and provides a uni-
fied platform to support a rich set of laboratories for computer security education. Based on the
SEED environment, we have developed a list of laboratories that cover a wide spectrum of secu-
rity principles. These labs provide opportunities for students to develop essential skills for secure
computing practice. We have been using these labs in our courses during the last five years. This
article presents our SEED environment, laboratories, and evaluation results.
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1. INTRODUCTION

The importance of experiential learning has long been recognized in the
learning theory literature. Dewey (1938) pointed out that learning must
be grounded in experience; Lewin (1951) claimed that learning is attained
through active participation in the learning process; and Piaget (1952) stated
that learning occurs as a result of the interaction between the individual and
the environment [Kolb 1984]. Computer scientist Denning (2003) also indi-
cated that if we adopt a picture that ignores practice, our field (computing) will
end up like the failed “new math” of the 1960s—all concepts, no practice, life-
less; dead [Denning 2003]. Learning from these philosophic views, we should
engage students in hands-on experience in security education, and therefore,
having effective and well-designed laboratory exercises (or course projects) is
critically important to the success of security education [Irvine 1999].

Traditional courses, such as Operating Systems, Compilers, and Network,
have effective laboratory exercises that are widely adopted. Unfortunately,
computer security education, still at its infancy, has yet had widely-adopted
laboratory exercises. Although there does exist a small number of good indi-
vidual laboratories, their coverage on security principles is quite narrow; many
important security principles, concepts, and innovative ideas are not covered
by the existing laboratories. Moreover, since these existing laboratories are
developed by different people, they are built upon a variety of different envi-
ronments (operating systems, software, etc.). Usually there is a steep learning
curve to learn a new environment. If an instructor wants to use several labo-
ratories, students need to learn a few different environments, which is imprac-
tical for a semester-long course.

To fill the aforementioned void in security education, we have developed
a general laboratory environment and a comprehensive list of laboratory ac-
tivities that are essential to security education. We call our laboratory envi-
ronment the SEED environment (SEcurity EDucation), and each laboratory
activity a lab. SEED has a number of appealing properties: (1) SEED is a
general environment. It supports a variety of labs that cover a wide spectrum
of security concepts and principles, as well as important security engineering
skills. It provides a common laboratory environment for security courses. (2)
SEED is based upon a proven pedagogic method. The core of the SEED en-
vironment consists of an instructional operating system. Using instructional
operating systems has proven to be effective in traditional computer science
courses, such as Operating System, Networking, etc. [Christopher et al. 1993;
Comer 1984; Tanenbaum and Woodhull 1997; Howatt 2002]. Our work applies
such a pedagogical method in security education. (3) SEED is a low-cost envi-
ronment. It can be easily set up on students’ personal computers with almost
zero cost.

Based on the SEED environment, we have developed a list of labs that cover
a wide spectrum of principles, innovations, and cutting-edge research ideas es-
sential to computer security. These labs are divided into three classes, each
meeting a different educational need. (1) The design/implementation labs:
The goal of these labs is to achieve learning by system development. They
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allow students to apply security principles, concepts, and ideas to build secu-
rity systems in a lab environment. (2) The exploration labs: The goal of these
labs is to achieve learning by exploring. They permit students to explore an
existing system to understand the intended security principles, concepts, and
ideas. Exploration labs are like a “guided tour” of a system, in which students
can “touch” and “interact with” the key components of a security system. (3)
The vulnerability labs: The goal of these labs is to achieve learning from mis-
takes. Vulnerabilities are often caused by mistakes in design, implementation,
and configuration. These labs give students the opportunity to have hands-on
experience with real vulnerabilities. In these labs, students need to identify
vulnerabilities, develop attacks to exploit vulnerabilities, fix the vulnerabili-
ties, and defend against the attacks.

2. DESIGN PHILOSOPHY AND RELATED WORK

2.1 Design Philosophy

The design of our SEED laboratories is guided by three objectives, which are
based upon our firm belief in two teaching philosophies.

Philosophy 1: Computer security education should focus on both
the fundamental security principles and security-practice skills.
Students should be given opportunities to apply, to integrate, and
to experiment with these principles and skills.

Because security education has a much broader scope than many traditional
courses, the contents of security courses and the course projects are very diver-
sified. However, regardless of their different “flavor”, the underlying principles
of security are the same; they are simply taught within different contexts. In
our work, we focus on fundamental security principles, including authentica-
tion, access control, privilege, auditing, intrusion detection, basic cryptogra-
phy, security policies, security protocols, vulnerabilities, security engineering
principles, security testing, etc. These principles shape the first objective of our
work: to develop laboratories that cover a wide spectrum of security principles.

In successful security education, students not only learn how to explain se-
curity principles, but more importantly, they learn security practices that char-
acterize our skills as professionals. Peter Denning pointed out in his article,
Great Principles of Computing, that “our competence is judged not by our abil-
ity to explain principles, but by the quality of what we do.” He summarized
five main categories of computing practice: (1) programming, (2) engineering
systems, (3) modeling and validation, (4) innovating, and (5) applying [Den-
ning 2003]. These five skills are the general skills that need to be covered
in computer science curricula. In computer security education, not only do
we need to foster the development of these general skills, we also want stu-
dents to attain specialized skills specific to secure-computing practice. We pro-
vide a specialized interpretation of the five general skills defined by Denning:
(1) Programming: using programming languages securely to build software
systems that meet specifications, especially security-related specifications.
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(2) Engineering systems: designing and constructing systems and hardware
components that are trustworthy. (3) Modeling and validation: formulating se-
curity requirements, analyzing security properties, and testing systems for se-
curity purposes. (4) Innovating: designing and implementing lasting changes
to improve the security of computing systems. (5) Applying: applying security
principles to solve real-world security problems. These five skills shape the
second objective of our work: to develop laboratories that jointly provide the
coverage of these five essential skills in security practice.

Philosophy 2: Computer security education should be integrated
into many other courses, including Operating Systems, Networking,
Computer Architecture, Compilers, Software Engineering, etc.

Like most other fields, computer security principles can be taught in stand-
alone courses, such as Computer Security and Network Security. However,
due to the cross-disciplinary nature of security, these principles should also
be taught within the context of other non-security courses, such as Operat-
ing Systems, Computer Architecture, Software Engineering, etc. For example,
in Software Engineering, students can be exposed to the principles of engi-
neering secure systems; in Computer Architecture, students can ascertain the
access control principles through an understanding of how the Intel 80386 se-
curity architecture works. Actually, the need for incorporating security across
many courses in computer science has already been recognized [Mullins et al.
2002; Vaughn Jr. 2000]; textbooks in many fields have added contents on secu-
rity in their recent editions. For example, networking textbooks usually have
chapters for firewalls and IPSec [Comer 2000]; operating system textbooks
generally have chapters for reference monitor, access control, and authentica-
tion [Tanenbaum and Woodhull 1997]. However, since security is a relatively
new subject in those fields, there are very few effective course projects designed
for the security subject within the scope of those fields. Because of this, profes-
sors may feel reluctant to incorporate security into their syllabi; even if they
do, it will be difficult for them to find suitable course projects.

This philosophy shapes the third objective of our work: the laboratories de-
veloped in this project should benefit not only the courses that focus primarily
on security, but also those that include security as a component. To achieve
this goal, when developing laboratories for various security principles, we pro-
duce a variety of laboratories to cover different contexts. For example, for the
principle of encryption, we have developed an “Encrypted File System” lab that
can be used by operating system courses; we have also developed an “IPSec”
lab that can be used by networking courses; needless to say, they can also be
used by standalone security courses. To further facilitate the incorporation
of security education into many non-security courses, we design each lab as a
self-contained module, with its targeted scope and education outcome clearly
specified. In this way, instructors can easily identify whether a lab is suitable
for their courses.
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2.2 Related Work

Many laboratory exercises already exist within security education. An obvious
question to ask is whether one can compile a list of existing laboratories for
his/her security courses. Unfortunately, doing so is hard, if possible. There are
two major reasons.

First, the combined existing labs do not provide comprehensive coverage of
the five key skills for secure-computing practice. A popular approach in many
security courses is the attack-based labs [Hill et al. 2001; Schafer et al. 2001;
Micco and Rossman 2002; Hu et al. 2004; Wagner and Wudi 2004; Lie 2005], in
which students analyze systems, discover their vulnerabilities, and exploit the
vulnerabilities. These labs primarily focus on the “modeling and validation”
skills formulated by Denning. The second approach is the administration-

based labs [George and Valeva 2006; Mayo and Kearns 1999; O’Leary 2006;
Crowley 2004; Romney and Stevenson 2004], in which students learn to use
security tools to enhance the security of a system. These labs primarily focus
on the “application” skills. The third approach is to let students use various se-
curity tools, such as firewalls and intrusion detection systems [Ross 2005]; the
goal is to achieve learning by playing with a system. The fourth approach is for
students to design and implement systems with security components [Joseph
et al. 2005; Irvine et al. 2004; Mitchener and Vahdat 2001]. The last two ap-
proaches cover system building and secure programming skills, but the choices
are quite limited. Moreover, each of these labs tends to cover several security
principles; while this makes them more appropriate for comprehensive labs,
they are quite inappropriate for focus labs, the goal of which is to target an in-
dividual security principle. Our labs fill the void of the existing lab practices.
In addition to a variety of comprehensive labs, we have also developed labs for
individual security principles.

Second, putting existing labs together for a semester-long course is further
complicated by the fact that these labs were developed on a variety of plat-
forms: some use different applications [Mitchener and Vahdat 2001; Irvine
and Thompson 2003; Lie 2005; Joseph et al. 2005; Memon 2005; Bishop 1997];
some use different operating systems [Hill et al. 2001; Irvine et al. 2004; Mayo
and Kearns 1999; O’Leary 2006; Crowley 2004; Romney and Stevenson 2004;
Wagner and Wudi 2004]; some use databases [George and Valeva 2006]. Learn-
ing these different platforms is not a trivial task. If students spend too much
time learning a new platform for each lab, they will not have sufficient time to
work on the tasks that are essential to security. A unified environment would
be preferable.

3. THE SEED LAB ENVIRONMENT

3.1 A Unified Platform

To achieve our objectives, we decide to use a unified platform as the basis,
and have each lab either deal with an existing component of the platform or
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introduce a new component. To provide a comprehensive coverage (i.e., the
first objective of our design), a unified platform should have either already cov-
ered or provided a fertile ground to cover all the essential security principles.
We chose open-source operating systems as our platform, and used the compo-
nents of operating systems (including the application programs in OSes) as the
basis for each lab. This is primarily because an operating system is a single
system that provides the most comprehensive coverage of security principles.
Many security principles are the basics for all the trustworthy OSes, such as
authentication, access control, auditing, encryption, vulnerability, etc. Many
other security principles, although not in every OS, exist in some modern OSes,
such as capability, mandatory access control, role-based access control, intru-
sion detection, packet filtering, IPSec, etc. Therefore, operating systems are
the best candidate for our unified platform.

In addition to supporting the security principles, a platform should also be
effective for students to practice and attain the five computing practice skills
described in our second design objective. To foster these skills, based on the
platform, we ask students to conduct one or some of the following tasks in each
lab: (1) explore (or “play with”) an existing security component of the OS; (2)
test a security component; (3) identify and exploit vulnerabilities in the OS; (4)
modify an existing security component; and (5) design and implement a new
security functionality. Some of these tasks can be conducted without looking
at the source code, and thus can be conducted in most of the modern operating
systems. However, some tasks, such as tasks 4, 5, and perhaps 2 (for white-
box testing), do require code reading and/or code writing; using a production
operating system (e.g., Linux and Windows) for these tasks is not an effective
approach. This is because most of the security components that students need
to address are not standalone components: they interact with various other
components within the OS, such as file system, process management, memory
management, and network services. Students need to understand these inter-
actions in order to conduct the tasks, but understanding such interactions in a
production operating system is not a feasible task during a single semester for
average students.

This challenge is not unique in security education; similar problems have
been faced by instructors of traditional computer science courses when they
chose platforms for their course projects. A successful pedagogical approach
emerged from the practice; that is, the use of instructional systems. For exam-
ple, operating system and networking courses often use instructional operating
systems, such as Minix [Tanenbaum and Woodhull 1997], Nachos [Christopher
et al. 1993], and Xinu [Comer 1984]; compiler courses often use instructional
languages such as miniJava [Appel and Palsberg 2002]. These systems are de-
signed primarily for educational purposes: unlike the production systems, they
do not have many fancy features; they only maintain the components that are
essential for their designated educational purpose. As a result, rather than
having millions of lines of code as many production operating systems do, in-
structional OSes only have tens of thousands of lines of code. Understanding
the interaction of the components in these systems has proven to be feasible
in the educational process of the traditional computing courses [Christopher
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et al. 1993; Comer 1984; Tanenbaum and Woodhull 1997; Howatt 2002]. The
use of instructional systems allows students to apply knowledge and skills to
a manageable system, thus allowing them to remain active participants in the
learning process [Felder and Silverman 1988].

We use Minix, a widely used instructional operating system in our secu-
rity education. However, there are two limitations of instructional OS. First,
instructional OSes do not have the many interesting security systems that
production OSes offer, such as mandatory access control and capability-based
system. These systems may provide invaluable experience for students. Sec-
ond, if we only use instructional OSes, we will not be able to use the many tools
developed by the open-source community for the production OSes, while these
tools would be quite useful for our labs.

The aforementioned limitations of instructional OSes are inevitable since
limiting the features actually defines instructional OSes, and ultimately
makes their use a successful pedagogical method. Taking a closer look at
the purpose of these instructional OSes, we realized that their strength lies
in the capability to support design and implementation tasks, rather than
the exploration tasks; the former tasks require a significant amount of ef-
fort in coding and code reading, which is not necessary for the latter tasks.
For security education, a unified platform should be able to support both de-
sign/implementation and playing/exploration types of activity.

3.2 The SEED Environment

The limitations of instructional OSes are the strength of production OSes, and
vice versa. To harness their power, we use a hybrid approach to construct
our SEED instructional laboratory environment. In the SEED environment,
we run both types of OSes. One type runs Minix, an instructional operating
system. For the labs that require students to read, understand, and modify
source code, we use Minix as the platform because supporting coding-related
tasks is the strength of the instructional OSes. Borrowing the terminology
from software engineering, we call this type of lab the white-box lab. In the
SEED environment, we also use a production OS.1 The purpose of using this
type of OS is two-fold. First, these OSes provide a rich set of security systems.
We will use them primarily for exploration-type labs, in which students play
with a security system to learn how things work, and how security breaches
can occur. Students do not need to read or modify the source code of these sys-
tems. We call this type of lab the black-box lab. Second, the open-source com-
munity has developed many useful tools for production OSes, such as packet
analyzers, packet filtering, system monitoring tools, and intrusion detection
systems. These tools will be extremely useful for many of our labs. By using
production OSes, we can take advantage of these tools. To summarize, we use
Minix as the platform for white-box labs, and Linux for black-box labs.

1In this project, we mostly use Linux. However, other types of Unix OS, such as FreeBSD can
also be used. Actually, some students in our class conducted their labs in several versions of Unix
simultaneously.

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 3, Pub. date: March 2008.



3: 8 · W. Du and R. Wang

Fig. 1. The SEED environment.

Virtual Machines. To be able to run Minix and Linux (sometimes multiple
instances of them) conveniently in a general computing environment, we use
virtual machine technologies. Students can create “virtual computers” (called
guest computers) within a physical computer (called host computer). The host
computer can be a general computing platform, while each guest computer can
run its own operating system, such as Minix and Linux. The guest computers
and the host computer can form virtual networks. These virtual machines
and virtual networks form our SEED instructional environment. Figure 1(a)
illustrates the virtual environment of SEED. Figure 1(b, c, d) depict a few
examples of the virtual network configuration in the seed environment.

The SEED environment can be created using virtual machine software, such
as VMware and Virtual PC. The cost of these software is minimal: VMware
established an academic program that makes the license of all VMware soft-
ware free for educational uses, while Virtual PC software can be downloaded
free of charge from Microsoft’s website. In our SEED environment, we choose
VMware as our virtual machine software.

Benefiting from virtual machine technologies, the SEED lab environment
does not require a dedicated laboratory: students can create the entire SEED
environment on their personal computers. We did a survey in our classes:
85% of our students actually prefer to use their own computers for their lab
assignments, while the rest 15% prefer to use public computers for the labs,
but feel okay to use their own computers. An alternative is to install VMware
on the machines in public laboratories. However, since students need their
own individual virtual machines, and each virtual machine needs 300 MB to
1 GB disk space, this approach creates a high demand on disk space on public
machines, which is impractical in many institutions. This can be solved with
the help of less expensive portable storage media: students can store their
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Fig. 2. Three types of labs (“EXT” in the Minix box represents the extensions of the Minix oper-
ating system developed in the Design/Implementation labs).

virtual machines on portable hard-disks (cost is less than $100), and work on
their lab assignments on any public machines that have VMware installed.

4. THREE TYPES OF LABORATORIES

Based on student attainment of the five essential skills described in our design
philosophies, we have developed three types of labs: design/implementation
labs, exploration labs, and vulnerability labs. (1) The objective of the design/
implementation labs is to provide students with opportunities to apply secu-
rity principles in designing and implementing systems. Since coding is nec-
essary for these labs, we use Minix as the platform. (2) The objective of the
exploration labs is two-fold: the first is to enhance students’ learning via ob-
servation, playing and exploration, so they can see what security principles
“feel” like in a real system. The second objective is to provide students with op-
portunities to apply security principles in analyzing and evaluating systems.
The target systems for this type of labs include the systems that come with the
underlying operating systems (both Minix and Linux) and the systems that we
build in the design/implementation labs. (3) The objective of the vulnerability
labs is to provide students with first-hand experience on various vulnerabili-
ties, attacks, and countermeasures. Students can discover why some design
or implementation errors can lead to vulnerabilities, how vulnerabilities cause
security breaches, how they are exploited, and how to apply the security test-
ing principles to detect vulnerabilities. More importantly, students can learn
from other people’s mistakes. The relationship of these 3 lab types and their
underlying platforms are depicted in Figure 2.

4.1 The Design/Implementation Labs

Design/Implementation labs achieve learning by system development. For
most of the security principles, we can find some existing systems that exem-
plify the necessary principles. For example, Mandatory Access Control (MAC)
has been implemented in the Security-Enhanced Linux [Loscocco and Smal-
ley 2001], which is now incorporated into Fedora Linux [Fedora Project 2005];
Role-Base Access Control (RBAC) [Ferraiolo and Kuhn 1992] has been imple-
mented in both Fedora Linux and Solaris [SUN Microsystems, Inc. 2001]. To
learn these principles, it is desirable for students to have opportunities to ac-
tually build these systems (for Minix). However, systems like MAC and RBAC
are the results of several years’ efforts by a large group; to make the lab tasks
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achievable within 4-6 weeks by a small group of students, these systems must
be simplified. We have identified a list of systems that cover a broad scope
of security principles. We defined a simplified version for each of these sys-
tems, and developed the design/implementation labs based on the simplified
systems. These labs are desirable for final projects, which usually require four
to six weeks to finish.

4.2 The Exploration Labs

The objective of the exploration labs is two-fold: the first is to enhance stu-
dents’ learning via observation, playing and exploration, so they can see what
security principles “feel” like in a real system; the second objective is to provide
students with opportunities to apply security principles in analyzing and eval-
uating systems. The exploration labs provide a feasible means by which the
students have “a direct encounter with the phenomena being studied rather
than merely thinking about the encounter, or only considering the possibility
of doing something about it” [Borzak 1981]. To use an analogy, exploration
labs are like “guided tours”; they guide students through a security system,
and on their way, students will be able to “touch” and “interact with” the key
components of the system.

The target systems for students to explore include the systems that come
with the underlying operating systems (both Minix and Linux). Moreover, all
the systems that we built in the design/implementation labs can also be used
for exploration labs.

The exploration labs are more desirable for undergraduate students in com-
puter science, non-CS students, and students with weak programming back-
ground. In addition, even for students with strong programming backgrounds,
instructors may choose this type of labs over the design/implementation labs if
they expect to limit the time devoted to a particular targeted security principle.
Most exploration labs need one to two weeks.

4.3 The Vulnerability Labs

People learn from mistakes. In security education, we study mistakes that lead
to software vulnerabilities. Studying mistakes from the past not only help stu-
dents understand why systems are vulnerable, why a “seemly-benign” mistake
can turn into a disaster, and why many security mechanisms are needed. More
importantly, it also helps students learn the common patterns of vulnerabili-
ties, so they can avoid making similar mistakes in the future. Moreover, using
vulnerabilities as case studies, students can learn the principles of secure de-
sign, secure programming, and security testing.

We have developed vulnerability labs to provide a wide range of vulnerabili-
ties to cover most of the common vulnerability patterns. Using these labs, stu-
dents can gain first-hand experience on vulnerabilities, as well as on attacks
against these vulnerabilities. Each lab targets a specific type of vulnerability.
Students are given a system with hidden vulnerabilities. Based upon the hints
provided, students need to discover these vulnerabilities; then they need to
explore ways to exploit the identified vulnerabilities. Finally, students need to
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demonstrate ways to avoid these vulnerabilities in design and programming
and to protect systems against these attacks.

We develop all the vulnerability labs within the SEED environment, based
on the Minix and Linux operating systems. There are a number of vulnerabil-
ities that still exist in the modern OSes. For example, the TCP RESET attack
and the TCP session hijacking attack both target a design weakness of the
TCP protocol that cannot be fixed without changing the protocol. Therefore,
both attacks are still effective against modern operating systems. For these
vulnerabilities, Linux is an ideal platform for our labs. However, many rep-
resentative vulnerabilities that we would like to use in the vulnerability labs
have already been fixed in Linux. We turn to Minix because it is much less
frequently updated than the production OSes, and thus it still preserves many
vulnerabilities that have been fixed in the production OSes.

Unfortunately, using the existing Minix and Linux alone is still not enough
to provide a wide coverage of various vulnerabilities. One solution is to use
an old version of Linux that have most of the vulnerabilities. However, most
virtual machine software do not support very old OS versions. To be able to
conduct vulnerability labs in the SEED environment, we use a fault injection

approach; namely, based on a selected vulnerability that has occurred in a
real-world system, we “port” it to our SEED environment, and thus inject the
same vulnerability to Minix or Linux. For example, at is a Unix command that
allows users to execute commands at a later time. A number of vulnerabilities
have occurred in this program, including “race condition” and “environment
variables”. The at program has been patched to fix those vulnerabilities; how-
ever, by removing the patches, we can recreate those vulnerabilities, and use
the program for our labs.

We have developed 5 vulnerability labs, all of which are carried out in the
SEED environment. Some labs use either Minix or Linux, and some use both.
For most of the labs, if conducted in a supervised lab environment, they can be
finished within a few hours; otherwise, if conducted outside of labs, they can
be finished within one week.

5. THE SEED LABORATORIES

During the last five years, we have developed 12 laboratories, most of which
have already been used (tested) in our classroom environments, and some have
been used for multiple times. We will not describe each of them in full details
in this paper; instead, we choose some of our representative labs, and describe
them in details. For the other labs, we only provide a brief description. Readers
can get the full lab descriptions, activities, guidelines, and supporting materi-
als from our Web site.2

5.1 Capability Design/Implementation Lab

The learning objective of this design/implementation lab is for students to ap-
ply the capability concept to achieve access control in system.

2http://www.cis.syr.edu/∼wedu/seed/
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In Unix, there are a number of privileged programs (e.g., Set-uid programs);
when they are run by any user, they run with the root’s privileges. Namely
the running programs possess all the privileges that the root has, despite of
the fact that not all of these privileges are actually needed for the intended
tasks. This design clearly violates an essential security engineering princi-
ple, the principle of least privilege. As a consequence of the violation, if there
are vulnerabilities in these programs, attackers might be able to exploit the
vulnerabilities and abuse the root’s privileges.

Capability can be used to replace the Set-uid mechanism. In Trusted Solaris
8, root’s privileges are divided into 80 smaller capabilities. Each privileged
program is only assigned the capabilities that are necessary, rather than given
the root privilege. A similar capability system is also developed in Linux. In
a capability system, when a program is executed, its corresponding process
is initialized with a list of capabilities (tokens). When the process tries to
access an object, the operating system should check the process’ capabilities,
and decides whether to grant the access or not.

5.1.1 Expectations. In this lab, students need to implement a simplified ca-
pability system for Minix. To make this lab accomplishable within four weeks,
we have only defined 5 capabilities. Obviously they do not cover all of the root’s
privileges; however, it is sufficient for students to learn the principle with these
five capabilities: (1) CAP READ: Allow read permission on all files and direc-
tories. (2) CAP CHOWN: Allow to change file ownership and group ownership.
(3) CAP SETUID: Allow to change the effective user ID. (4) CAP KILL: Allow
killing of any process. (5) CAP SHUTDOWN: Allow to shutdown the system.

A process should be able to manage its own capabilities. For example, when
a capability is not needed in a process, the process should be able to perma-
nently or temporarily remove this capability. Therefore, even if the process
is compromised, attackers are still unable to gain the privilege. In this lab,
students need to support a list of standard functionalities, including disabling,
enabling, deleting, delegating, and revoking capabilities.

5.1.2 Experience. Before we used this lab in our class, we predicted that
students might have trouble figuring out how the system calls work in Minix,
and how different components of Minix exchange data (Minix is a micro-kernel
operating system, it uses messages for components to exchange data). We have
developed corresponding documents to help students. Students have found
these documents extremely useful. However, we failed to predict another dif-
ficulty: students spent a lot of time on figuring out how to store information
in i-nodes. We decided that this task was not essential to computer security.
Therefore, we have developed another document to describe detailed instruc-
tions on how to manipulate the i-node data structure.

5.2 Role-Based Access Control Design/Implementation Lab

The learning objective of this lab is for students to integrate the capability
and the Role-Based Access Control (RBAC) mechanisms to enhance system
security.
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Role-Base Access Control (RBAC), introduced in 1992 by Ferraiolo and
Kuhn, can reduce the complexity and cost of security administration in large
applications. RBAC has been implemented in Fedora Linux and Trusted
Solaris. With RBAC, permissions are not assigned directly to users; instead,
they are assigned to roles, and roles are assigned to users. Roles greatly sim-
plify the management on permissions.

5.2.1 Expectations. In this lab, students need to implement RBAC for
Minix. The specific RBAC model is based on the NIST RBAC standard
[Ferraiolo et al. 2001]. We define permissions as capabilities. Students first
need to implement the five capabilities as defined in the capability lab, not
including the management part. In addition, students need to implement 80
dummy capabilities, which have no impact on access control (we “pretend” that
they can affect access control). We want to have a significant number of capa-
bilities in this lab to make the management more interesting. With this many
capabilities and users, it is difficult to manage the relationship between ca-
pabilities and users. The management problem is aggravated in a dynamic
system, where users’ required privileges can change quite frequently. RBAC
provides an effective way to solve this problem. By implementing RBAC in
Minix, students will not only learn the RBAC principles, but also encounter
various interesting issues when developing an access control system.

The NIST RBAC model is quite complicated, so we only ask students to
implement a subset of the model, including the Core RBAC, support for the
separation of duty, and role management (e.g., disabling roles, enabling roles,
dropping roles, delegating roles, revoking roles, etc.). The lab is intended for
four to six weeks.

5.2.2 Experience. This is so far the most difficult lab among all our SEED
labs. The most challenging part is the design, because a bad design can have
potential loopholes. To make things right, students have to deal with a num-
ber of issues, including how processes are initialized with roles, where to store
roles, how to co-exist with Minix’s existing access control mechanism (i.e.,
Access Control List), how to support the Set-uid mechanism using roles, and
so on.

To provide students with more guidance, we asked TA to give four lab ses-
sions, two on design and two on implementation. Students discussed their
design and implementation issues in the lab sessions. As results, 80% of the
students successfully finished the labs, and another 10% received significant
partial credits.

5.3 IPSec Design/Implementation Lab

The learning objective of this lab is for students to integrate a variety of secu-
rity principles to enhance network security. IPSec is a good candidate for this
purpose. IPSec is a set of protocols developed by the IETF to support secure
exchange of packets at the IP layer. It has been deployed widely to implement
Virtual Private Networks (VPNs). The design and implementation of IPSec
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require one to integrate the knowledge of networking, encryption, key man-
agement, authentication, and security in OS kernels.

5.3.1 Expectations. In this lab, students need to implement IPSec in
Minix, as well as to demonstrate how to use it to set up VPNs. IPSec consists
of a set of complex protocols; a full implementation is infeasible for a course
project. Since the focus of this lab is not on mastering all the details of IPSec,
but rather on the integration and application of various security principles,
a number of simplifications can be made without compromising the learning
objectives.

First, IPSec has two types of headers (ESP and AH) with two different
modes (tunneling and transport). Students in this lab only need to imple-
ment the ESP header in tunneling mode. Second, IPSec supports a number
of encryption algorithms; in this lab, we only support the AES encryption al-
gorithm. Third, there are many details in IPSec to ensure interoperability
among various operating systems. Since interoperability is not a focus of this
lab, we make students aware of this issue, but allow them to make reasonable
assumption to simplify the interoperability. Fourth, in IPSec, there are two
ways for computers to agree upon a shared secret key: one is to use the IKE
(Internet Key Exchange) protocol, and the other is through manual configura-
tion. In this lab, students only need to implement the second method, i.e., we
assume that shared secret keys are manually set by system administrators at
both ends.

5.3.2 Experience. With such simplifications, most students finished the lab
within 5 weeks. What interested us the most was that students were highly
motivated. Students attributed their motivation to the fact that this lab was
built upon the IP stack: being able to learn the internals of the IP stack has
already fascinated many students, much less being able to modify it to en-
hance security. Most students were proud to put this experience in their re-
sumes, and they told us that recruiters were quite impressed by what they did
in this lab. This has reinforced our belief that students get motivated when
a security lab is based on a meaningful and useful system, such as TCP/IP,
operating systems, etc. Several of our other labs have also reinforced the
same belief.

Another experience worth mentioning is the virtual machine software. To
test their IPSec implementations, students need at least 2 machines; to test
their VPN implementations, they need 3-4 machines. Virtual machine soft-
ware clearly demonstrates its advantage in this situation: students can test
all of these using several virtual machines created within a single computer.

5.4 Encrypted File System Design/Implementation Lab

The learning objective of this lab is for students to integrate encryption with
systems to protect data.

Encrypted File System (EFS) is a mechanism to protect confidential files
from being compromised when file storages (e.g., hard disks and flash memo-
ries) are lost or stolen. In an EFS, files on disks are all encrypted; nobody can
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decrypt the files without knowing the required secret. Therefore, even if an
EFS disk is stolen, its contents are kept confidential. When legitimate users
use the files in EFS, the users do not need to conduct encryption/decryption ex-
plicitly. When they read a file (encrypted) using normal editor software, EFS
will automatically decrypt the file contents before giving them to the software;
similarly, EFS will automatically encrypt the file contents when users write to
a file. All these happen on the fly, and must be transparent to users.

5.4.1 Expectations. In this lab, students need to implement EFS for Minix.
From the lab, students can gain experience on the use of encryption algo-
rithms; they will deal with several issues, such as padding, encryption mode,
IV (initial vector), etc. More importantly, students need to think about various
key management problems. In particular, they need to decide where to store
the keys, how to store the keys, whether to use a different key for each user,
whether to use a different key for each file, and how to update keys. Further-
more, students need to decide how users should be authenticated before they
can encrypt/decrypt files in EFS. As a bonus, students are encouraged to think
about how to support file sharing in EFS; namely, if a file is group readable,
how can we allow all the members in the group to decrypt the file. This is quite
a challenging problem in EFS design.

5.5 Sandbox Design/Implementation Lab

The learning objective of this lab is for students to substantiate an essential
security engineering principle: the compartmentalization principle.

The compartmentalization principle is illustrated by the Sandbox mecha-
nism in computer systems. It is intended to provide a safe place to run un-
trusted programs. When we need to run an untrusted program, we would like
not to run the program in our own accounts, because the program might be
malicious and can compromise the security of our accounts. Instead, it is more
desirable if the operating system can create a new user ID for us, and allows
us to run the program using this new user ID. Since the new user ID is only
temporary (it will disappear after the process ends), the damage caused by
the untrusted program is quite limited (e.g., the program cannot read/modify
any file unless a file is world-readable/writable). This new user ID is like the
special nobody user in most of the Unix operating systems.

5.5.1 Expectations. In this lab, students need to implement a simple sand-
box for Minix, and they need to design and implement a Set-RandomUID
mechanism to achieve the previous mentioned goal. When a Set-RandomUID
program is executed, the operating system randomly generates a non-existing
user ID, and runs the program with this new user ID as the effective user ID.
We can consider Set-RandomUID as an opposite to the Set-uid mechanism:
Set-uid allows users to escalate their privileges, while Set-RandomUID allows
users to downgrade their privileges. The implementation of Set-RandomUID
can be similar to that of Set-uid. However, students need to watch out for
potential loopholes. The lab is intended for one to two weeks.
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5.6 Set-uid Exploration Lab

The learning objective of this lab is for students to investigate how the Set-uid
security mechanism works in Minix, discover how program flaws in Set-uid
programs can lead to system compromise, and identify how modern operating
systems protect against attacks on vulnerable Set-uid programs.

Set-uid is an important security mechanism in Unix operating systems.
When a Set-uid program runs, it assumes the owner’s privileges. For example,
if the program’s owner is root, then when anyone runs this program, the
program gains the root’s privileges during its execution. Set-uid allows us
to do many interesting things, but unfortunately, it is also the culprit of many
security breaches.

5.6.1 Expectations. This is an exploration lab that takes one to two weeks.
Students’ main task is to “play” with the Set-uid mechanism in Minix and
Linux, report and explain their discoveries, analyze why some Set-uid be-
haviors in Linux are different from that in Minix. First, students need to
figure out why some commands, such as chsh, passwd, and su need to be
Set-uid programs. Second, using the Minix source code, students need to
find out how Set-uid is implemented in the Operating System and how it
affects the access control. Third, to demonstrate why Set-uid programs must
be very carefully written, students are given a vulnerable program that mis-
takenly calls system("ls") to invoke the /bin/ls command (instead of calling
system("/bin/ls")). Students need to exploit this vulnerability in both Linux
and Minix. Fourth, we use another program to demonstrate that it is safer to
use execve() rather than system() when invoking a program within a process.
Students will see the different results of these two different calls. Finally, stu-
dents are required to run a program that permanently relinquishes its root
privileges (using the setuid() system call). However, due to the inappropri-
ate cleanup, the process still has privileges. Students need to explain their
observations.

5.7 Intel 80386 Protection Mode Exploration Lab

The learning objective of this lab is for students to investigate how 80386 pro-
tection mode works, why it is designed in the way it is, and how hardware
protection is essential for building a TCB (Trusted Computing Base). 80386
protection mode is quite complicated, and without really “touching” it, its es-
sential concepts, such as rings, memory protection, descriptor tables, etc., can
be very abstract.

5.7.1 Expectations. In this lab, students will interact with the key ele-
ments of the Intel 80386 protection mode. The design of this lab is not easy.
Since there is no actual need for users to interact with the protection mode,
operating systems do not provide an interface for this purpose. To really see
how protection mode works, interaction is essential. To achieve this, we poke
a hole in Minix, which is basically an interface that allows students to “enter”
the protection mode, see how it works, and observe how things can become dif-
ferent when they make some changes. For example, we implement a special
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system call, which allows users to change the ring level of their processes. We
ask students to report what they can achieve with such a system call. We also
provide a mechanism for students to change the contents of GDT (Global De-
scriptor Table) and LDT (Local Descriptor Table), which are two critical tables
in protection mode to achieve memory protection. Students need to find out
what they can achieve with such a mechanism.

Other than for computer security courses, this lab has a potential interest to
the Computer Architecture instructors, who want to integrate security in their
courses.

5.8 Buffer-Overflow Vulnerability Lab

The learning objective of this lab is for students to gain the first-hand experi-
ence on buffer-overflow vulnerabilities, attacks, and countermeasures.

5.8.1 Expectations. In this lab, students are given a Set-uid program that
has a buffer-overflow vulnerability; they are also given a partially-completed
exploit code. They need to complete the exploit code, and use it to successfully
launch a root shell by attacking the vulnerable program. To do that, students
need to construct an array correctly using the return address that they have
to guess and the shell code that is provided. Then they need to use this array
to overflow the buffer in the Set-uid program.

Students are also asked to enable the countermeasures that are already
in Fedora Linux, including the non-executable stack and the address space
randomization. Students will then repeat their attacks, and explain why
the attacks now become much more difficult. To show that non-executable
stack alone is not a strong countermeasure, we ask students to implement a
return-to-libc attack on the buffer overflow vulnerability. This attack does
not inject shell code onto the stack; instead, it “tricks” the vulnerable program
to jump to an libc function, which is already loaded in the memory.

5.9 Format-String Vulnerability Lab

The learning objective of this lab is for students to gain the first-hand experi-
ence on format-string vulnerability, attacks, and countermeasures.

The format-string vulnerability is caused by code like printf(user input),
where the contents of variable user input is provided by users. When this pro-
gram is running with privileges (e.g., Set-uid program), this printf statement
can lead to one of the following: (1) crash the program, (2) read from an arbi-
trary memory place, and (3) modify the values of in an arbitrary memory place.
The exercises in this are designed to help students gain actual experience on
such a vulnerability.

5.9.1 Expectations. Students are given a vulnerable program (Set-uid)
with the format-string vulnerability. In this program, there is an array lo-
cated on the heap, which holds a number of secrets. The address of this array
is stored in a variable located on the stack. The confidentiality and integrity
of these secrets are important to the privileged program. By exploiting the
format-string vulnerability, students need to cause the program to print out
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one secret and then modify another. The main challenge in this lab is to con-
struct an appropriate format string to achieve the above goals. Moreover, sim-
ilar to the buffer-overflow vulnerability, students will see how address space
randomization makes such attack more difficult.

5.10 Race-Condition Vulnerability Lab

The learning objective of this lab is for students to gain the first-hand expe-
rience on race-condition vulnerability, attacks, and countermeasures. Race
condition is an anomaly in the system whereby the output depends on the
sequence or timing of inputs.

5.10.1 Expectations. Students are given a Set-uid program with a race-
condition vulnerability, and they need to write a script to exploit this vulner-
ability and accomplish the following tasks: (1) overwrite any file that belongs
to root, and then (2) become the root. Unlike many other attacks, to succeed,
students need to run their script many times. At the beginning, students are
expected to add an idle loop in the vulnerable program between the time of
check and the time of use. By increasing the length of the loop time, the
chance of success becomes higher. Once students have succeeded, the loop
is removed, and students are required to report how long it takes to succeed in
their attacks.

5.11 chroot Sandbox Vulnerability Lab

The learning objective of this lab is for students to understand the implemen-
tation and potential security problems of a sandbox mechanism.

Almost all the Unix systems have a simple built-in sandbox mechanism,
called chroot jail. By redefining the meaning of "/", chroot creates an envi-
ronment in which the actions of an untrusted process are restricted, and such
restriction protects the system from untrusted programs. There are a number
of problems with this sandbox implementation, the worst of which allows the
prisoned programs to break out of the prison.

5.11.1 Expectations. Equipped with the exploit knowledge we covered in
our lectures, students need to write a malicious code to implement the exploit
in both Minix and Linux. The code will be run in the chroot prison with the
root privileges; a successful exploit should be able to break out of that prison.

5.12 TCP/IP Vulnerability Lab

The learning objective of this lab is for students to gain first-hand experience
on the vulnerabilities in TCP/IP protocols, as well as on attacks against these
vulnerabilities.

5.12.1 Expectations. Students are provided with a tool called Netwox,
which can be used to construct any arbitrary packets. They need to use this
tool to conduct the following attacks on the TCP/IP protocols of both Minix and
Linux: (1) SYN flooding attack, (2) TCP RESET attack, (3) TCP session hijack-
ing attack, (4) IP fragmentation attacks, (5) Smurf attacks, and (6) ARP Cache
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poisoning attacks. All these attacks are conducted in the SEED environment
using virtual machines.

5.13 Labs to Be Developed

To cover a wider spectrum of security principles, as well as to reflect the emerg-
ing trends in computer security, we will develop many more labs in our fu-
ture work. These labs will include more recent vulnerabilities and attacks,
such as SQL injection attacks, cross-site scripting attacks, integer overflow
attacks, etc. We will also develop more exploration labs to provide more labs
for undergraduate security education. For example, we plan to convert all our
design/implementation labs to the exploration type, so students (especially un-
dergraduate) do not need to fully implement those systems, but they are still
able to learn the concepts and principles by playing with the existing systems.

6. EVALUATION

We started developing SEED laboratories in 2002, mainly for the courses that
we taught at Syracuse University. At the beginning, the laboratories were
not stabilized, because we had to keep revising them based on the feedbacks
from students and the lessons we learned from the actual classroom deploy-
ment. Therefore, we only used informal evaluation to collect feedbacks from
students; not much attention was put on rigorously evaluating how well each
lab achieved its intended objectives. Starting in 2006, as some of our labs be-
came stabilized, we began to conduct formal evaluation of those labs.

6.1 Evaluation Metrics and Methodology

We have identified two factors that are critical for successfully achieving our
goal, i.e., to enhance student’s learning in security education using the SEED
laboratories. These factors include the efficiency of the labs and the effective-

ness of the labs in computer security education.
The efficiency factor focuses on the appropriateness and design of the SEED

labs. We quantify the lab efficiency using the following metrics: (1) the level of
difficulty of a lab; (2) the usefulness of the supporting materials; (3) the time
students spent on a lab; (4) whether the time spent is worthwhile; (5) whether
too much time is spent on the tasks that are non-essential to the targeted
security principles.

The effectiveness factor assesses student’s learning as a result of the project.
We quantify the effectiveness using the following metrics: (1) students’ level
of interest in the lab exercise; (2) students’ level of engagement in the lab
exercise; (3) level of challenge presented by the lab exercise; (4) amount of
effort students exerted in completing the lab exercise; (5) students’ level of
understanding of the targeted security principles; (6) students’ application of
the required skills and confidence in their abilities; (7) students’ development
of related skills: problem solving, critical thinking, creative thinking, ability to
think independently; (8) students’ perceptions of their learning; (9) students’
assessment of the lab as a valuable part of the course.
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To evaluate the efficiency and effectiveness of our laboratories, we conducted
anonymous surveys after students finished their labs. The survey question-
naires consist of two types of questions: multiple-choice questions and open
questions. For multiple-choice questions, we give students a statement, such
as “the lab was a valuable part of this course.” Students need to choose how
much they agree or disagree with the statements.

For open questions, we ask students the followings: (1) Which part of the
lab was most time consuming? (2) Which aspects of the lab were most valuable
to your learning? (3) What problems did you encounter in completing the lab?
(4) What changes could be made to the lab to enhance your learning? (5) What
was the most important thing you learned from the lab experience? (6) If you
have been interviewed for jobs in the past months, were recruiters particularly
interested in this lab?

In addition to the surveys, we also rely on the feedbacks from our
teaching assistants (TA). Because the TAs can frequently interact with the
students, they have the opportunities to identify the common trends and prob-
lems among the students. We ask TAs to constantly report their findings to us.
This type of evaluation turned out to be very useful, because we could immedi-
ately take an action when we saw an emerging problem. Therefore, with TAs’
feedbacks, we can correct problems on the fly.

6.2 Efficiency of the Labs

This part of evaluation helps us identify the problems in our lab descriptions,
activity designs, guidelines, and supporting materials. Through our evalua-
tions, we were able to identify the bottleneck of the labs, if there is any. We
define bottlenecks as the parts of the labs that are time-consuming, necessary,
but are not the main objective of the labs, i.e., students cannot get to the main
part of the labs without getting over the bottleneck parts first.

We have identified two types of common bottlenecks. The first type is the
understanding of the lab requirements. When a lab was first used, a common
problem is that the activities were not crystal clear. As a result, students spent
a lot of time just figuring out what exactly needed to be done. This problem was
mainly caused by the lack of details in our lab descriptions, and we could fix
the problem by adding more concrete details in the descriptions.

The other type of bottlenecks is the understanding of the system. This
type of bottleneck usually occurs in the design/implementation laboratories.
In most of the design and implementation laboratories, students have to build
a new security mechanism in Minix. These new security mechanisms are built
upon the existing Minix system. Therefore, to accomplish the tasks, students
need to figure out how the existing system works. For example, in the IPSec
lab, students need to understand how the IP stack works in Minix; in the
Encrypted File System lab, students need to understand how the file system
works in Minix; in the Capability lab, students need to understand how access
control, kernel, and file system works. From our evaluation, we realized that
students have spent much more time on these bottlenecks than we expected.
In other words, we underestimated the difficult of these bottlenecks.
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Fig. 3. Students’ response to the following statement: “My level of interest in this lab is high.”

We have developed two strategies to solve our bottleneck problems. If the
bottleneck is not essential to security, and removing/simplifying it does not
harm the intended objective of the lab, we revise our lab descriptions to ei-
ther remove the bottleneck or reduce the complexity of the bottleneck. If the
bottleneck is really essential to security, we still keep the bottleneck, but we
will develop corresponding documents and guidelines, helping students to get
over the bottlenecks faster. Namely, to make it possible for students to finish
a lab within the intended time frame, we help them to get to the main part
of a lab as soon as possible. This way, they can focus on the main principles
targeted by the labs. As a result of this strategy, we have developed a number
of useful documents during the last five years.

Being able to learn the bottlenecks have helped us tremendously. In 2002,
when we started to use SEED labs in our Computer Security class, we could
only assign one lab for the entire semester, because students spent too much
time on the bottlenecks. As of Spring 2007, students were able to finish five
labs in the same course during one semester. Among these five labs, three
vulnerability labs were each finished within one week, one exploration in two
weeks, and a design/implementation lab in six weeks. Overall, students are
doing quite well on these five labs. Comparing to five years ago, this is quite
an improvement. The detailed evaluations on the efficiency of each lab are also
post in our web pages.

6.3 Effectiveness of the Labs

This part of evaluation help us understand how effective our SEED labs are in
enhancing students’ learning of computer security. We rely mainly on surveys
for this part of evaluation. For each survey question, we give students a state-
ment, and they choose how much they agree with the statement by selecting
one of the following: (a) Strongly disagree, (b) Disagree, (c) Neutral, (d) Agree,
(e) Strongly agree. The statements we used in our survey include the follow-
ing: (1) My level of interest in this lab is high. (2) The lab was a valuable part
of this course. (3) The lab sparks my interest in computer security.

Our survey results for a few selected labs are plotted in Figures 3 to 5. The
number of students participating in each survey is listed in the parentheses
of the captions in Figure 3. These figures plot the students’ perspective in
our labs, including how interested they are, whether they think the labs are
worthwhile, and whether these labs spark their interest in computer security.
From the results, we can see that students’ responses are quite positive.
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Fig. 4. Students’ response to the following statement: “The lab was a valuable part of this
course.”

Fig. 5. Students’ response to the following statement: “The lab sparks my interest in computer
security.”

7. CONCLUSION AND FUTURE WORK

We have developed a general laboratory environment for computer security
education. Our SEED environment is built upon an instructional OS (Minix)
and a production OS (Linux). The environment can be setup on students’ per-
sonal computers or public computers with zero software cost. Based on the
SEED environment, we have developed 12 labs. We tested these labs in our
computer security courses in the last five years; the evaluation results are
quite encouraging. Two other universities have started to use the SEED en-
vironment and labs in their courses. Several more universities have shown
interest in adopting our labs in their courses. In our future work, we plan
to further improve the existing labs, as well as develop more labs to cover a
broader scope of computer security principles.
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