
Enhancing Security Education with Hands-on

Laboratory Exercises

Wenliang Du

Syracuse University

wedu@ecs.syr.edu

Karthick Jayaraman

Syracuse University

kjayaram@syr.edu

Noreen B. Gaubatz

Syracuse University

nbgaubat@syr.edu

Abstract—We present an instructional suite of labs that can
help in teaching security courses. Our labs are publicly available
for use. We have used these labs in teaching security courses
and also helped several other instructors adopt these labs to suit
their style of teaching. Based on this experience, we present some
guidelines for using these labs in security courses. Furthermore,
we also describe the results of using these labs among students.

I. INTRODUCTION

It is widely known that learning-by-doing can significantly

enhance student’s learning in many disciplines [1], [5], in-

cluding computer security education [3]. Eight years ago,

when we started looking for well-design hands-on projects for

our security courses, we could not find many. Although we

did find a small number of good individual laboratories [2],

[4], [6], there were two problems in using them. First, the

coverage of security principles was quiet narrow. Second,

the lab environments were varied and as we intend to use

these labs in a single course, students would have to a spend

significant amount of time to learn to use the underlying

environment.

Motived by the need for better, coherently-designed, and

well-supported lab exercises for security education, we started

our journeys in 2002. Our objective was to develop a suite

of labs that cover a wide spectrum of principles, ideas, and

technologies that are essential for teaching computer security.

We call these labs the SEED labs (SEED stands for SEcurity

EDucation). Our design particularly focused on two aspects:

the lab environment and the lab contents.

Low-cost and consistent environment: First, we wanted to

have a unified lab environment that is consistent for different

lab exercises, so students do not need to learn a new lab

environment for each lab, because learning a new environment

is not easy. Second, the environment used for these labs must

be affordable to enable wider adoption. With these constraints

in mind, created a lab environment comprising the open-source

Linux Operating system and a number of open-source soft-

ware tools. The lab environment can be created on student’s

personal computers or department’s general computers with

the use of a virtual machine (VM) software. There are free

VM software, such as VirtualBox, and even the commercial

product VMware is free for educational use through VMware’s

academic program.

Lab contents with wide coverage: Unlike some traditional

courses, such as operating systems and compilers, there is no

common consensus on how security should be taught, and

what contents should be covered. Therefore, we decided not

to base our labs on a particular course. Instead, we decided

to develop labs that can cover a wide spectrum of security

principles. Although the style and focus of security courses

could vary with instructors, the fundamental security principles

that all instructors would like to teach do not significantly

vary. Because the labs cover a range of security principles,

instructors could choose the labs from our list to fit their course

based on the security principles they want to cover. Adoption

of our lab exercises do not require any changes in the course

structure.

After 8 years’ working on the project (funded by two

NSF grants), we have developed over 25 labs, most of which

have been used and tested by courses at our own university;

several of them were also used by instructors from other

universities. The labs are available from our project web site

http://www.cis.syr.edu/∼wedu/seed/. Since 2007, the labs have

been downloaded for over 40, 000 times from the computers

outside of our university network. The labs are broadly cate-

gorized into three classes:

1) Vulnerability and attack exercises: The objective of

these exercises is to illustrate and help the student learn

a vulnerability in detail. Each of these exercises typically

has four parts. First, students will understand the vulner-

ability based on simple examples and identify them in

either a real program or a synthetic example. Second,

students will construct real attacks to take advantage of

the vulnerability. Third, students will fix the vulnerabili-

ties and also comment on prevailing mitigation methods

and their effectiveness.

2) Design and implementation exercises: The objective

of these exercises is to help the student understand

the concepts of secure system development. Students

are expected to design a system that provides a spe-

cific security functionality. The exercise outlines clear

objectives and students would explore various choices

for fulfilling the objectives, analyze the impact of the

choices on security and performance, make appropriate

design decisions, and finally implement and demonstrate

their system.

3) Exploration exercises: The objective of these exercises

is to coerce the students to explore or play with an

existing security functionality. Exploration labs are like

a “guided tour” of a system, in which, students can



“touch” and “interact with” the key components of a

security system to either learn or question the underlying

security principles that the system is based on.

Experiments and Evaluation: Over the last 7 years, we

used the SEED labs in two graduate and one undergraduate

security courses. We have been revising those labs based on

student feedbacks. Now, most of the labs are quite stabilized,

and are ready for use by other instructors. So far, fifteen other

universities have informed us that they have used some of our

SEED labs in their courses. To evaluate the effectiveness of

our labs, we collected survey data from students for each of

the labs they used. The results are quite encouraging. We will

present our evaluation results in this paper.

II. DESCRIPTION OF LABS

In this section, we provide a brief description of our SEED

labs. Since the actual lab description for each lab ranges

between 2 pages to 10 pages, we cannot include them in

this paper. We will only describe a selected few. Readers

can find the detailed lab descriptions from our web page

http://www.cis.syr.edu/∼wedu/seed/. Table I contains the list

of labs.

A. Vulnerability and Attacks Labs

All the vulnerability and attack labs are structured to let the

student learn the vulnerability in detail by creating an exploit

for a program with known vulnerabilities. Furthermore, the

students are asked to comment on the prevailing mitigating

methods and their effectiveness. Table I contains all 12 vul-

nerability and attack labs. Broadly, we have three categories

of vulnerabilities, general software vulnerabilities, network

protocol vulnerabilities, and web application vulnerabilities.

We describe the nature of the labs in each of the categories.

The detailed lab description can be obtained from our web

site. From our experience, the vulnerability labs are heavily

used by several instructors.

• General software vulnerabilities: We have lab exercises

focusing on general software vulnerabilities such as

buffer overflows, format-string vulnerabilities, race con-

ditions, etc. Latest versions of Linux-based systems

have several features for countering these vulnerabilities.

Therefore, where necessary, the lab exercises provide

information on how to disable the vulnerabilities in order

to perform the lab exercises.

• Network protocol vulnerabilities: In this category, we

have two labs, namely TCP/IP attacks and DNS pharm-

ing. In the TCP/IP attack lab, students discover and

exploit vulnerabilities of the TCP/IP implementations. In

the DNS pharming lab, students understand how DNS

pharming attacks could be used to manipulate the name

resolution process of trusted web sites to compromise the

user privacy.

• Web application vulnerabilities: We have labs focusing

on web-based vulnerabilities such as cross-site scripting,

cross-site-request forgery, clickjacking, etc. The lab exer-

cises for these labs involve exploiting a web application

with known vulnerabilities. We have setup some web

applications inside our pre-configured virtual machine

that students will use for these labs. Therefore, instructors

need not maintain any web servers or install or configure

applications for using these labs.

B. Exploration Labs

In the exploration labs, students both learn and critique the

design and implementation of an existing security component.

We have four labs in this category:

• Packet sniffing and spoofing lab: In this lab, students learn

how packet sniffing and spoofing tools are implemented.

Students will start with some simple tools, understand

them by reading their source code and using them, and

modify them to implement some interesting variants.

• Linux capability lab: The objective of this lab is to

train students to use the capability system implemented

in Linux and also gain insights on how the capability

system is implemented in the operating system.

• Web browser access control lab: The objective of this lab

is to help the student understand and critique the same-

origin policy commonly implemented in all web browsers

for access control.

• Pluggable authentication module: The objective of this

lab is to illustrate the use of the flexible authentication

technique called pluggable authentication module (PAM)

implemented in Linux. PAM provides a way for devel-

oping programs that are independent of the authentication

scheme.

C. Design Labs

Each of the design labs provides clear functional require-

ments for implementing a system. Furthermore, students are

also provided supporting material and documents for helping

them. To help the students get started, some design choices

are outlined. The students are first asked to provide a detailed

design of the system describing why they choose particular

design choices and how they impact the security and per-

formance of the system. The faculty or TA could provide

feedback on their design, before the student implement the

system. Currently, we have nine design labs. We provide a

brief description of these labs as follows:

• Linux Firewall Lab and Minix Firewall Lab: In this

lab exercise, students are expected to implement a sim-

ple packet filtering firewall. The firewall should provide

an interface to the user to enable configuration. Each

firewall rule describes the types of packets, in terms of

their properties such as source IP address, protocol, etc.,

that will be allowed or blocked. The design labs are

available in both Linux and Minix operating systems.

For Minix, students have to modify the Minix kernel

to implement the firewall. For Linux operating system,

students will use the kernel loadable module mechanism

and the netfilter hooks to implement the firewall.

• IPSec Lab: In this lab, students will implement a sim-

plified version of the IPSec protocol for the Minix



Types Labs Security

principles

ST NW PG SWE

Buffer-overflow Vulnerability Lab SC UG UG UG

Return-to-libc Attack Lab SC UG UG UG

Race-Condition Vulnerability Lab SC UG UG UG

Format-String Vulnerability Lab SC UG UG UG

Vulnerability Chroot Sandbox Vulnerability Lab AC, SD UG UG

and TCP/IP Attack Lab SC, SD UG UG UG

attack labs DNS Pharming Attack Lab SD UG UG

Cross-Site Scripting (XSS) Attack Lab SD UG UG UG

Cross-Site Request Forgery (CSRF) Attack Lab AC, SD UG UG UG

ClickJacking Attack Lab AC, SD UG UG UG

SQL Injection Attack Lab AC, SC, SD UG UG UG

Set-UID Program Vulnerability Lab AC UG UG

Pluggable Authentication Modules Lab AU UG UG

Packet Sniffing and Spoofing Lab AU UG UG

Exploration Linux Capability Lab AC UG UG

labs SYN-Cookie Lab CG UG

Secret Key Encryption Lab CG UG

One-way Hash Function Lab CG UG

Public-Key Cryptography Lab CG UG

Web Access Control Lab AC, SD UG UG

Design labs

Set-RandomUID Sandbox Lab AC G G

Minix Capability Lab AC, SD G G

Minix Role-Based Access Control Lab AC, SD G G

Encrypted File System Lab CG, SD G G

Address Space Layout Randomization Lab SD G

IPSec Lab CG, SD G G G

VPN Lab CG, SD G G G

Linux Firewall Lab AC, SD G G G

Minix Firewall Lab AC, SD G G G

Legend

ST - Systems, NW - Networking, PG - Programming, SWE - Software engineering.

G - For Graduate students only, UG - For both Undergraduate and Graduates.

AU - Authentication, AC - Access control, CG - Cryptography SC - Secure coding, SD - Secure design.

TABLE I
THE COVERAGE OF SEED LABS

operating system. The lab tasks have been simplified

to facilitate the students to complete the lab exercise

within four to six weeks. Students need to use their IPSec

implementation to construct a Virtual Private Network

(VPN).

• VPN Lab: VPN is a widely used security technology.

VPN can be built upon IPSec or Secure Socket Layer

(SSL). These are two fundamentally different approaches

for building VPNs. In this lab, we focus on the SSL-

based VPNs. This type of VPN is often referred to as

SSL VPNs. The learning objective of this lab is for

students to master the network and security technologies

underlying SSL VPNs. The design and implementation of

SSL VPNs exemplify a number of security principles and

technologies, including cryptography, integrity, authenti-

cation, key management, key exchange, and Public-Key

Infrastructure (PKI). To achieve this goal, students will

implement a simple SSL VPN for Ubuntu.

• Role-Based Access Control (RBAC) Lab: In this lab,

student will implement an integrated access-control sys-

tem that uses both capability and RBAC access control

mechanisms. The lab tasks require students to modify the

Minix kernel to implement the proposed system.

• Capability lab: In this lab, students will design and

implement a capability-based access control system in

Minix. Similar to the RBAC lab, the lab tasks will

involve modifying the Minix kernel. The capability-

based access control system would co-exist with the file-

based permission used in Minix.

• Encrypted file system lab: In this lab, students will design

and implement an encrypted file system for Minix. A

key requirement of the design is to ensure that EFS is

transparent to the applications. From the users perspec-

tive, there should be no more work other than mounting

the new filesystem to be able to use the new file system.

• Set-random UID lab: In this lab, students will implement

a simple sandbox for executing untrusted programs. In

the simple sandbox, programs are assigned randomly

generated uid that do not exist in the system. Because

the random uid do not own files, the access permissions



of the executed program are limited.

• Address space randomization lab: In this lab, students

will implement methods for randomizing the heap and

stack of the Minix operating system.

III. COVERAGE OF SEED LABS

A. Principle Coverage

Regardless of how instructors teach computer security and

in what contexts (e.g. networking, operating system, etc.), one

thing is for sure: they should cover the principles of computer

security. In civil engineering, when building bridges, there are

well-established principles that need to be followed. Security

engineering is no different: in order to build a software

system that is intended to be secure, we also need to follow

principles. Regardless of how computer security is taught, the

fundamental principles that most instructors cover are quite the

same, even though the principles might be covered in different

contexts.

The definition of “security principles” is interpreted dif-

ferently by different people: some interpret it as software

engineering principles, such as the principle of least privileges;

some interpret it as access control, authentication, etc. To avoid

confusion, we use the following definition:

A computer security principle is an accepted or

professed rule of action or conduct in building a

software or hardware system that is intended to be

secure.

We broadly categorized the fundamental computer security

principles into the following classes: Authentication (AU),

Access Control (AC), Cryptography (CG), Secure Coding

(SC), and Secure Design (SD). Table I also shows the security

principles covered by each of the SEED labs.

B. Courses Coverage

After studying a number of security courses taught at

different universities and colleges, we identified several repre-

sentative types of courses, and provide suggestions regarding

what SEED labs are appropriate for these courses (Table I).

System-focused Courses: This type of course focuses

on security principles and techniques in building a software

system. Network, also considered as a system, might be part

of the course, but not the main focus. The focus is mainly

on software systems in general. Operating systems, programs,

and web applications are usually used as examples in these

courses.

If an instructor wants to ask students to design and im-

plement a real system related to system security, there are

several choices. (a) If the instructor wants to let students learn

how to use cryptography in a real system, the Encrypted File

System Lab is a good choice. (2) If the instructor wants to

let students gain more insights on access control mechanisms,

the Role-Based Access Control Lab and Capability Lab are

good candidates. (3) If the instructor wants students to learn

some of the interesting ideas in improving system security,

the Address Space Layout Randomization Lab and the Set-

RandomUID Sandbox Lab are good candidates. Because all

these labs require modifying the underlying operating system

kernel, these are labs are meant to be carried out in the Minix

operating system. These labs can be used as the final projects.

Networking-focused Courses:: This type of a course

focuses mainly on the security principles and techniques in

networking.

Programming-focused Courses:: The goal of this type of

course is to teach students the secure programming principles

when implementing a software system. Most instructors will

cover a variety of software vulnerabilities in the course.

Software-Engineering-focused Courses:: This type of a

course focuses on the software engineering principles for

building secure software systems. For this type of courses,

all the vulnerabilities labs can be used to demonstrate how

flaws in the design and implementation can lead to security

breaches. Moreover, to give students an opportunity to apply

the software engineering principles that they have learned from

the class, it is better to ask students to build a reasonably so-

phisticated system, from designing, implementation, to testing.

Our design/implementation labs can be used for this purpose.

C. Textbook Coverage

Most of instructors do choose a particular textbook in their

courses. There are several popular textbooks that are popular

among the computer security instructors. We show how SEED

labs can be used along with those textbooks; in particular, for

each of the textbooks, we have identified the chapters that can

use our SEED labs as their lab exercises to enhance student’s

learning of the subjects in those specific chapters. Our results

are summarized in Table II. We have picked the following four

textbooks in our studies:

• Introduction to Computer Security, by Matt Bishop (pub-

lished by Addison-Wesley Professional in October 2004).

We refer to this book as Bishop I.

• Computer Security: Art and Science, by Matt Bishop

(published by Addison-Wesley Professional in December

2002). We refer to this book as Bishop II.

• Security in Computing (3rd Edition), by Charles P.

Pfleeger and Shari Lawrence Pfleeger (published by Pren-

tice Hall PTR in 2003). We refer this book as Pfleeger.

• Network Security: Private Communication in a Public

World (2nd Edition), by Charlie Kaufman, Radia Perl-

man, and Mike Speciner (published by Prentice Hall PTR

in 2002). We refer this book as KPS.

IV. EVALUATION

With the goal of this project being enhancement of student

learning in security education via laboratory exercises, the

focus of the current assessment effort is on the efficiency

and effectiveness of the SEED labs. The efficiency of the

lab exercises is quantified by the following metrics: level of

difficulty, time spent on lab is worthwhile, and clarity of

instructions. The effectiveness of the lab exercises assesses

student learning and is quantified by the following metrics:

student level of interest, attainment of learning objective, and

value of the lab as part of the curriculum. Students were asked



Labs Bishop I Bishop II Pfleeger KPS

Buffer-Overflow Lab 20, 26 23, 29 3 -

Return-to-libc Lab 20, 26 23, 29 3 -

Race-Condition Lab 20, 26 23, 29 3 -

Format-String Lab 20, 26 23, 29 3 -

Chroot Sandbox Lab 20, 26 23, 29 3 -

TCP/IP Attack Lab 20, 23, 26 23, 26, 29 3 -

DNS Pharming Attack Lab 20, 23, 26 23, 26, 29 3 -

Cross-Site Scripting Attack Lab 20, 23, 26 23, 26, 29 3 25

Cross-Site Request Forgery Attack Lab 20, 23, 26 23, 26, 29 3 25

ClickJacking Attack Lab 20, 23, 26 23, 26, 29 3 25

SQL Injection Attack Lab 20, 23, 26 23, 26, 29 3, 6 -

Set-UID Program Vulnerability Lab 14 15 4 -

Pluggable Authentication Modules Lab 11 12 4.5 9, 10

Linux Capability Exploration Lab 12, 14, 17 13,15,19 4 -

Secret-key Encryption Lab 8-10 9,10,11 2,12 2-6

One-Way Hash Function Lab 8-10 9,10,11 2,12 2-6

Public-key Crytography Lab 8-10 9,10,11 2,12 2-6

SYN-Cookie Lab 23 26 2, 7 5

Packet Sniffing and Spoofing Lab 23 26 2, 7 5

Web Access Control Lab 4, 14 4, 15 4, 7 25

Set-RandomUID Sandbox Lab 19.6 22.7 - -

Minix Capability Lab 12, 14, 17 13,15, 19 4 -

Minix Role-Based Access Control Lab 12, 14, 17 13, 15, 19 4 -

Encrypted File System Lab 8-10, 17 9-11, 13, 19 2, 4 2-5

Address-space Layout Randomization Lab 22, 24, 26 25, 27, 29 4, 5 -

IP Sec Lab 8-10, 17, 23 9-11, 19, 26 2, 7 2-5, 17

VPN Lab 8-10, 17, 23 9-11, 19, 26 2, 7 2-5, 17

Linux Firewall Lab 17, 23 19, 26 7.4 23

Minix Firewall Lab 17, 23 19, 26 7.4 23

TABLE II
TEXTBOOK MAPPINGS (THE NUMBERS IN THE TABLE ARE CHAPTER NUMBERS)

to submit a short questionnaire after completing each lab based

on these metrics. Student responses were confidential and

completion of the surveys was on a voluntary basis. Among

all the SEED labs we have developed (about 25), 11 of them

have statistically sufficient number of survey responses (we

have total 735 survey responses). Therefore, The survey results

only from 11 individual laboratory exercises were analyzed.

Eight of the 11 exercises are categorized as Vulnerability

and Attack Labs, with their overall learning objective focused

on students learning the principles of secure design, program-

ming, and testing. Three of the 11 exercises are identified

as Design/Implementation Labs, with their overall learning

objective focused on students applying security principles in

designing and implementing systems. Survey data from 5 of

the 11 labs were gathered over 3 years of implementation

(2007-2009), with Total N for these labs ranging from 39-

77 student respondents. Four of the 11 labs were included in

the curriculum for 2 of the 3 years, with 3 of these labs not

included in 2009. Total N for these labs ranged from 37-60

student respondents. During 2009, 2 new labs were introduced,

with Total N ranging from 11-15 student respondents. Student

survey data analysis across all 11 laboratory exercises is

summarized below.

• Lab instructions were clear: Approximately, three-

quarters or more of respondents (range from 93% to 73%)

agreed or strongly agreed for 10 of the 11 labs. 60% of

respondents indicated similarly for 1 lab.

• The time I spent on the lab was worthwhile: Approxi-

mately, three-quarters or more of respondents (range from

94% to 74%) agreed or strongly agreed for all 11 labs.

• The lab was a valuable part of this course: Over 90% of

respondents (range from 99% to 91%) agreed or strongly

agreed for 10 of the 11 labs. 82% of respondents indicated

similarly for 1 lab.

• I have attained the learning objective of the lab: Over

three-quarters of respondents (range from 95% to 78%)

agreed or strongly agreed for all 11 labs.

• Student level of interest in the lab: Approximately, three-

quarters or more of respondents (range from 92% to 74%)

reported a high or very high interest level for 10 of the

11 labs. 66% of respondents indicated similarly for 1 lab.

• Level of difficulty of the lab: Over one-half of respon-

dents (range from 100% to 54%) reported a somewhat

difficult or very difficult level for 8 of the 11 labs. 46%

- 32% of respondents indicated similarly for 3 labs.

To further explore these results, survey responses for these

items were analyzed by student gender, year of lab admin-

istration, level of student preparation, student familiarity with



Unix, and level of lab difficulty. Due to page limitation, we are

unable to put all the evaluation results in this paper. Detailed

evaluation and diagrams can be found from our project web

site.

V. CONCLUSION

To help enhance student’s learning in computer security

education, we have developed a suite of hands-on lab exer-

cises. These labs can be conducted in an environment that

is very easy to build using the computing facilities that are

already available to students in most universities. Based on this

environment, instructors can select among 25 well-developed

laboratory exercises for their courses. These labs cover a wide

spectrum of security principles and can accommodate a variety

of security courses. We have experimented with these labs in

our own courses for the last seven years. The results are quite

promising. More than 15 other universities have also used our

labs, and their feedbacks are also quite positive.

We would like to disseminate the SEED labs to a larger

audience of instructors. All our labs are publicly available for

use under the open-source license. Instructors are welcome

to modify our lab description, if they want to tailor the lab

descriptions to fit their courses. The entire lab environment

is built into a pre-built virtual machine image, and can be

downloaded from our web page. We have dedicated set of as-

sistants, funded from the grant provided by NSF, for providing

help to instructors if they run into problems in using our lab

environment.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their comments

and kind suggestions. This work was partially supported by

Award No. 0618680 from the United States National Science

Foundation.

REFERENCES

[1] P. J. Denning. Great principles of computing. Communications of hte

ACM, 46(11):15–20, November 2003.
[2] J. M. D. Hill, C. A. C. Jr., J. W. Humphries, and U. W. Pooch. Using

an isolated network laboratory to teach advanced networks and security.
In Proceedings of the 32nd SIGCSE Technical Symposium on Computer

Science Education, pages 36–40, Charlotte, NC, USA, February 2001.
[3] C. E. Irvine. Amplifying security education in the laboratory. In

Proceeding IFIP TC11 WC11. First World Conference on INFOSEC

Education, pages 139–146, Kista, Sweden, June 1999.
[4] C. E. Irvine, T. E. Levin, T. D. Nguyen, and G. W. Dinolt. The trusted

computing exemplar project. In Proceedings of the 2004 IEEE Systems

Man and Cybernetics Information Assurance Workshop, pages 109–115,
West Point, NY, June 2004.

[5] D. Kolb. Experiential learning: Experience as the source of learning and

development. Prentice Hall, Englewood Cliffs, NJ, 1984.
[6] W. G. Mitchener and A. Vahdat. A chat room assignment for teaching

network security. In Proceedings of the 32nd SIGCSE technical sym-

posium on Computer Science Education, pages 31–35, Charlotte, North
Carolina, United States, 2001. ACM Press.

VI. AUTHOR BIOGRAPHIES

Wenliang Du is an associate professor of computer science

in the department of EECS, Syracuse University. He obtained

his PhD in computer science from Purdue University. Dr. Du’s

research interests include security education, web security,

privacy-preserving data mining, and security in wireless sensor

networks.

Karthick Jayaraman is a PhD candidate at the department

of EECS, Syracuse University. His advisors are Dr. Wenliang

Du and Dr. Steve J. Chapin. His research interests are security

education, system, and web security.

Noreen Gaubatz is the Assistant Director of the Office of

Institutional Research and Assessment at Syracuse University.

She obtained her Ph.D. in Higher Education Administration

from Syracuse University. Dr. Gaubatzs work supports a vari-

ety of university-wide assessment initiatives, with her research

interest in student ratings of teaching effectiveness.


