
SCUTA: A Server-Side Access Control System for
Web Applications

Xi Tan, Wenliang Du, Tongbo Luo, and Karthick D. Soundararaj
Dept. of Electrical Engineering & Computer Science, Syracuse University

Syracuse, New York, USA
xtan@syr.edu, wedu@syr.edu, toluo@syr.edu, d.s.karthick@gmail.com

ABSTRACT
The Web is playing a very important role in our lives, and is
becoming an essential element of the computing infrastruc-
ture. Unfortunately, its importance makes it the preferred
target of attacks. Web-based vulnerabilities now outnum-
ber traditional computer security concerns. A recent study
shows that over 80 percent of web sites have had at least
one serious vulnerability. We believe that the Web’s prob-
lems, to a large degree, are caused by the inadequacy of its
underlying access control systems. To reduce the number
of vulnerabilities, it is essential to provide web applications
with better access control models that can adequately ad-
dress the protection needs of the current Web.

As a part of the efforts to develop a better access con-
trol system for the Web, we focus on the server-side ac-
cess control in this paper. We introduce a new concept
called subsession, based on which, we have developed a ring-
based access control system (called Scuta) for web servers.
Scuta provides a fine-grained and backward-compatible ac-
cess control mechanism for web applications. We have imple-
mented Scuta in PHP, and have conducted comprehensive
case studies to evaluate its benefits.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls

Keywords
Web security, Server-Side Access Control

1. INTRODUCTION
The Web has been growing at a rapid rate over the last 15

years. The first Google index (1998) already had 26 million
pages, and by 2000 the Google index reached the one bil-
lion mark. On July 25, 2008, the one trillion milestone was
reached [1]. As of May 2009, these web pages were hosted
by over 109.5 million websites [2]. The Web is gradually
becoming part of our lives. We do many things online, such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’12, June 20–22, 2012, Newark, New Jersey, USA.
Copyright 2012 ACM 978-1-4503-1295-0/12/06 ...$10.00.

as shopping, making friends, banking, reading news, sharing
personal pictures, etc. As the most important application
of the Internet infrastructure, the Web itself is becoming an
essential part of the infrastructure. With such an important
role the Web is playing, making sure that the Web is secure
is becoming a priority for trustworthy computing.

Because of its ubiquity, the Web has become attackers’
preferred target. Web-based vulnerabilities now outnumber
traditional computer security concerns [3]. Cross-site script-
ing, cross-site request forgery, and SQL injection are among
the most common attacks on web applications. A recent re-
port shows that over 80 percent of websites have had at least
one serious vulnerability, and the average number of serious
vulnerabilities per website is 16.7 [4].

It is tempting to blame developers for these security prob-
lems, because it is indeed their mistakes that have caused
the problems. However, when we look deeper, asking why
the percentage of vulnerabilities is so abnormally high, we
soon realize that something more fundamental in the Web
is wrong. One of the fundamental problems is the Web’s
access control system, which, being sufficient for the earlier
day’s Web, becomes inadequate to address the protection
needs of today’s Web.

The Situations. The Web, initially designed for pri-
marily serving static contents, has now evolved into a quite
dynamic system, consisting of contents and requests from
multiple sources, some more trustworthy than others. Let
us look at some representative scenarios. The first is un-
trusted contents. Many web applications now include user-
provided contents, such as blogs, comments, and feedbacks.
These are third-party data, and are less trustworthy than
the first-party contents generated by the web applications
themselves. If not carefully handled, malicious code can be
injected into these contents.

Second, many web applications include client-side exten-
sions, i.e., they include links to third-party code or directly
include third-party code in their web pages. Examples of
client-side extensions include advertisements, Facebook ap-
plications, iGoogle’s gadgets, etc. In Figure 1, both the iPad
advertisement and the weather gadget are client-side exten-
sions. Their contents, containing JavaScript code, can be
very dangerous if they are vulnerable or malicious,

Third, some web applications include server-side exten-
sions, which are developed by third parties. For example,
Elgg is an open-source social network application. It was
designed as an open framework, allowing others to extend
its functionality. Elgg already has hundreds of third-party
extensions. To use these extensions, the administrators of

71

the Elgg server need to install them, essentially mixing them
with Elgg’s first-party code. These contents can also be dan-
gerous, if they are vulnerable or malicious.

What further complicates the above scenarios is the cross-
origin requests. A cross-origin request is sent from a page
of one origin to a server at a different origin. Cross-origin
requests are becoming quite popular nowadays. For exam-
ple, many web pages now contain small icons (e.g. Facebook
icon) like those in Figure 1. Requests triggered by clicking
these icons are generated by the page of www.example.com,
but are sent to a different server. These cross-origin re-
quests make it more convenient for users to share informa-
tion among their accounts, especially their social-network
accounts. Originally, cross-origin requests were only allowed
for normal HTTP requests, not AJAX requests, due to obvi-
ous security concerns. Recently, however, as web technolo-
gies evolve, this restriction has been lifted to support better
interactions among web applications via a protocol called
Cross-Origin Resource Sharing [5]. All major browsers—
Chrome, Firefox, IE and Safari—support cross-origin AJAX
requests in their latest versions.

Threat Model. Our primary goal is to narrow the attack
surface of web servers by enhancing server-side access con-
trol. In our threat model, attacks are launched by untrusted
web contents against innocent users. We assume that an at-
tacker does not attack browsers directly, but can make ma-
licious same-origin requests by providing third party data
(e.g. blogs) or malicious client extensions (e.g advertise-
ments) on client side. An attacker can also issue cross-origin
request forgery attack, or compromise a less secured website
for attacking a more secured website by exploiting cross-
origin AJAX requests between two websites. Moreover, it
is still possible for attackers to trigger web servers to in-
stall malicious server-side extensions which may destroy its
database and the whole server system.

Security Needs and Problems. To secure such a com-
plex system and deal with sophisticated attacks in the threat
Model, good access control at the system level is essential.
Without it, application developers have to include compli-
cated protection logic in their programs to deal with the
risks caused by the scenarios and the threat Model described
above. Mistakes in the implementations of the logic, or a
lack of the implementation, can cause vulnerabilities.

The Web consists of two major components, the browser
and the server; access control needs to be implemented at
both places. At the browser side, the access control in the
current Web is based on the Same-Origin Policy (SOP),
which gives the same privileges to all contents from the same
origin. Such a coarse granularity, which may have been suf-
ficient for the nascent Web in its earlier days, cannot handle
untrusted contents or client-side extensions well: although
these contents come from the same origin, they are not
equally trusted. The inadequacy of SOP has been pointed
out by various studies, and several solutions have been pro-
posed to provide finer granularity beyond SOP [6–12], in-
cluding our earlier work Escudo [11], which separates the
contents with different levels of trustworthiness, and medi-
ates their actions based on trust levels.

On the server side, access control is primarily based on ses-
sions. When a user logs into a web application, the server
creates a dedicated session for this user, separating him/her
from the other users. Sessions are implemented using ses-

DatabaseServer SideClient Side

Server-side
Native Code

Server-side Extensions

facebook.com

linkedin.com

twitter.com

youtube.com

example.com
www.example.com

Home Profile Privacy Logout

Same Origin

Different Origins

Figure 1: A web application example

sion cookies; as long as a request carries a session cookie, it
will be given all the privileges associated with that session.
Namely, within each session, all requests are given the same
privileges, regardless of whether they are initiated by first-
party or third-party contents, from client-side or server-side
extensions, or from another origin. Therefore, the server
is exposed to the threat model without appropriate access
protection. We would like to use an example in Figure 2 to
illustrate the problem of the session-based access control.

The web page in Figure 2 allows its users to initiate three
requests—ViewFriends, AddFriends, and DeleteFriends—
from three different regions. The protection needs on the
three server-side scripts are quite different: DeleteFriends

can only be invoked by the contents that are absolutely
trustworthy (e.g., the code generated by the web applica-
tion itself); AddFriends can be invoked by the contents from
semi-trusted sources, such as the code from third parties
with good reputations; ViewFriends, due to its read-only
nature, can be exposed to less trustworthy contents.

Unfortunately, the current session-based access control at
the web server cannot satisfy the above protection needs,
neither can the existing browser-side access control solu-
tions. Based on the current access control systems, it is
very difficult to allow the three regions to access the same
session, while preventing some of them from invoking cer-
tain server-side services. To achieve these two conflicting
goals, applications have to implement their own ad hoc pro-
tection logic, such as asking users to confirm their actions,
embedding tokens in hidden fields, etc.

The fundamental cause of the above problem is the gran-
ularity of a session: it is too coarse. The Web has become
more and more complicated, and its client-side contents are
no longer uniformly trusted, so requests initiated by these
contents are not uniformly trusted either. Therefore, giving
all the requests within the same session the same privileges
cannot satisfy the protection needs of today’s Web anymore.
In order not to ask application developers to bear the com-
plete responsibility of implementing those protection needs,
we need a better server-side access control system.

Our Work and Contributions. The objective of our
work is to develop a fine-grained server-side access control
system, which can assign different privileges to the requests
in the same session, based on their trustworthiness. We have

72

AddFriends.php

DeleteFriends.php

ViewFriends.php

Advertisements

Trusted Region

Semi-Trusted Region

Untrusted Region

First-party Content

Untrusted
Region

Button1

Button2

Button3
Third-party Content

HTML Page from www.example.com

Third-party
Content

Figure 2: Diversified protection needs

developed a system called Scuta 1, which is a novel and
backward-compatible access control system for web appli-
cation servers. Built upon the well-established ring model,
Scuta labels server-side data (tables in database) and pro-
grams (functions, classes, methods, or files) with rings, based
on their protection needs. Programs in a lower-privileged
ring cannot access data or code in a higher-privileged ring.

Scuta divides a session into multiple subsessions, each
mapped to a different ring. Requests from a more trust-
worthy region in a web page belong to a more privileged
subsession. Requests belonging to subsession k are only al-
lowed to access the server-side programs and data in ring
k and above (numerically). With the subsession and ring
mechanisms, server-side programs can differentiate the re-
quests in the same session, based on the trustworthiness of
their initiators, and thus provide access control at a finer
granularity.

We believe that Scuta is the first system approach that
intends to enhance the session-based access control system
of the web server. To demonstrate its effectiveness, we have
implemented Scuta in PHP, a widely adopted platform for
web applications. We have conducted comprehensive case
studies to demonstrate how Scuta can be used to satisfy
the diversified protection needs in web applications.

2. BACKGROUND: ESCUDO
The server-side access control scheme described in this

paper depends on the Escudo [11] access control on the
browser, because identifying request’s subsessions needs the
help from browsers, especially Escudo-enabled browsers.
We give a brief summary of how Escudo works in this sec-
tion. We also explain why Escudo alone is not sufficient to
deal with the security problems in web applications.

The primary objective of Escudo is to allow web servers
to convey the trustworthiness of their contents to browsers,
so browsers can use this information as the basis for the
client-side access control. This provides a finer granularity
than the Same-Origin Policy (SOP).

Escudo introduces a ring concept, borrowed from the Hi-
erarchical Protection Rings (HPR) access control model [13].
Rings in Escudo are labeled 0, . . ., N , where N is applica-
tion dependent. In the HPR model, higher numbered rings
have less privileges than lower numbered rings, i.e., ring 0 is
the highest-privileged ring.

Rings Assignment. Browser-side contents consist pri-

1“Scuta” is the plural of the Latin word “scutum”, meaning
a large shield used by soldiers in ancient Rome.

text

Web Contents ...

<div ring=0 id=sectionA nonce=n1>

</div nonce=n1>

text

<div ring=1 id=sectionB nonce=n2>

</div nonce=n2>

Web Contents ...
</div nonce=n3>

<div ring=3 id=sectionC nonce=n3>

Web Contents ...

HTML Page

Cookies in Ring 0 Cookies in Ring 1

Cookies in Ring 3Cookies in Ring 2

Figure 3: An Example of Escudo Configuration

marily of two types: cookies and Document Object Model
(DOM) elements. Escudo assigns a ring label to each cookie.
Cookies that contain sensitive data should be put in a higher-
privileged ring, and vice versa.

Escudo also assigns ring labels to DOM elements, using
the HTML <div> tag and the ring attribute introduced by
Escudo. This ring attribute assigns a ring label to all the
DOM elements within the scope of the tag, which is the
region enclosed by the <div> and </div> pairs (Figure 3
shows an example of ring assignment). Escudo ensures a
scoping rule: the privileges of a node cannot exceed its par-
ent’s privileges, regardless of what ring label this new node
has. Special attentions are taken to defend against the well-
known node-splitting attack [14, 15]. The nonce attribute in
Figure 3 is intended for that purpose.

Limitation of Escudo. In terms of accessing ses-
sions, Escudo only provides two choices: either allowing
the client-side requests to access a specific session or not al-
lowing the access, by putting the session ID cookies in those
rings where the session access is allowed.

However, the binary decision is inadequate for today’s web
servers. As we have shown in Figure 2, to address the protec-
tion needs in that example, at least four levels of granularity
are needed. Escudo can only support two levels: allowing
all and denying all.

Despite its limitations, Escudo is an indispensable com-
ponent in our proposed access control framework, because
it not only helps to preserve the trust status from the server
to the client, but also helps to ensure the integrity of the
trust status at the browser. Scuta relies on Escudo, and
working together, they provide a more complete solution to
the access control problems in web applications.

3. THE DESIGN OF SCUTA
In the current Web, the finest principal unit for server-

side programs is session. When an HTTP request is re-
ceived by a web server, the server identifies which session
the request belongs to, and then gives the invoked server-
side program all the privileges entitled to that session. As
a consequence, all the server-side programs invoked in the
same session share the same privileges. As explained ear-
lier, this level of granularity is inadequate nowadays, be-
cause contents in today’s web applications are not uniformly
trusted anymore due to the mixture of advertisements, user
inputs, third-party code and active contents, etc. Actions
invoked by these unequally-trusted contents should not be
given the same privileges, even if they belong to the same
session. This calls for a granularity level finer than session.

73

0

1

2

A.php

Browser Application Server Database

0

1

2

Escudo + SOP Scuta + Session Scuta

Submit

Ring = 0

Ring = 1

URL

JavaScript Code

URL
Submit

JavaScript Code

Ring = 2 JavaScript Code

URL
Submit

TableA

0

1

2
2

1

0

Figure 4: Server-Side Ring Mappings

We have designed a novel server-side access control sys-
tem called Scuta, which provides a finer granularity than
session. We describe the design of Scuta in this section.

3.1 Subsessions
To achieve a finer granularity in access control, we di-

vide a session into multiple subsessions, each identified by a
subsession ID called SubSid. In the original web infrastruc-
ture, when a server-side program gets invoked, the server
identifies which session the invocation belongs to, and then
sets the corresponding running environment and protection.
With the addition of SubSid, the server also identifies the
subsession ID of the invocation.

Similar to sessions, subsessions are also implemented using
cookies. In Scuta, when a server creates a session ID, it
also creates N + 1 subsession IDs: SubSID_0, . . ., SubSID_N,
where N +1 is the total number of rings defined by the web
application. These subsession IDs are sent to the browser as
cookies, each marked with a different ring label: SubSID_K is
marked with ring K. The following example shows a portion
of the HTTP header generated by the server when a session
is created (Escudo introduces a new header called Set-Ring

to set the rings for cookies):

Set-Cookie: SID=pjdfbpnd228b2n; path=/
Set-Cookie: SubSID_0=gg5u1pc3inutmb
Set-Cookie: SubSID_1=h1d3vg4ep351qv
Set-Cookie: SubSID_2=n91n6kgiv05fe2
Set-Ring: SID=2
Set-Ring: SubSID_0=0
Set-Ring: SubSID_1=1
Set-Ring: SubSID_2=2

With Escudo’s access control rules, contents in ring t can
access the subsession cookies in rings t and above (numeri-
cally). Therefore, when an HTTP request is made in ring t
from an Escudo-protected webpage, all the subsession cook-
ies from rings t and above will be attached to the request;
the server can use these cookies to decide that the request
belongs to subsession t. Figure 5 depicts the subsession-
identification process. In the figure, the server-side program
F.php is invoked under two different scenarios: one by the
contents (button, JavaScript code, or link) in ring 0, and
the other in ring 2. With the help of Escudo, Scuta can
successfully identify the subsession IDs of these invocations.

It should be noted that the session ID (SID) is placed in
the lowest-privileged ring (ring 2 in this example), allowing
it to be carried by all requests, so servers can identify what
session a request belongs to.

Web Page

F.php

Ring = 0

F.phpJavaScript Code
call F.php

URL
(F.php)

Cookies: SubSID_0,
SubSID_1, SubSID_2, SID

Subsession = 0

Ring = 2

F.php

p p (p p)

JavaScript Code
call F php

F.php

b i

Cookies: SubSID_2, SID
URL
(F php)call F.php

ki
es

S bSID 0

Ring: 0

S bSID 1
SID,

Ring: 1 Ring: 2

Subsession = 2(F.php)

Browser Side

Co
ok SubSID_0

Server Side

SubSID_1
,

SubSID_2

Figure 5: The Subsession mechanism

3.2 The Scuta Ring Model
Using subsessions, servers can clearly tell from which ring

a request is made, and thus know how trustworthy the re-
quest is. This is essential for access control, but we need
something more: we need to allow web applications to as-
sign privileges to each subsession. The ring model, used by
Escudo to configure web pages, can be naturally applied
to configure application servers. Figure 4 depicts an overall
picture of this model in Scuta.

To use Escudo for access control at the browser side, web
applications need to generate a set of rings, and configure
web pages using these rings. Scuta uses the same set of
rings, but instead of configuring web pages, it configures the
server-side programs. Namely, Scuta places server-side pro-
grams into different rings, based on their protection needs.
The trustworthiness given to a particular ring in servers is
the same as that in browsers. To avoid confusion, we use
“Escudo ring” and “Scuta ring” to refer to the ring config-
uration in web pages and at servers, respectively.

Once the server-side programs are labeled with Scuta
rings and the subsessions of HTTP requests are identified,
Scuta can conduct fine-grained access control on those re-
quests. We have the following basic access rule:

Definition 3.1. Basic Access Rule: An HTTP re-
quest originating from Escudo ring t on the client side will
be identified as belonging to subsession t; it is allowed to
invoke the server-side programs in Scuta ring w if w ≥ t.

The above rule does not only apply to the entry programs
at the server side (e.g. DeleteFriends.php in Figure 2), it
also applies to all the functions invoked during the execu-
tion of the programs. These functions include stand-alone
functions, methods in classes, as well as scripts “invoked”
via the include command in PHP. These functions are la-
beled with the ring information in a configuration file (see
the implementation details in Section 4).

Using the ring-based access control in Scuta, web appli-
cations can put their security-critical server-side programs in
higher-privileged Scuta rings, limiting their accesses only to
the web-page contents in the corresponding Escudo rings.
Since the less trustworthy web-page contents are put in less-
privileged Escudo rings, even if they, due to security breaches,
contain malicious code, forms, or URL links, they are pre-
vented from accessing the security-critical programs placed
in the higher-privileged Scuta rings. For example, the security-
critical DeleteFriends program in Figure 2 can be put in a
high privileged Scuta ring, such as ring 0.

74

Some functionalities of web applications are less security-
critical, and they can be put into lower-privileged rings to
allow broader access. For example, ViewFriends does not
involve modification, so it is less security sensitive; if the
web application wants to allow ViewFriends to be accessible
by third-party JavaScript code, or even by requests from
another origin (i.e. cross-origin request), they can simply
put this program in the less-privileged Scuta rings, allowing
less-trustworthy client-side contents to invoke it.

Database Protection using Rings. Scuta’s ring-based
access control also applies to databases. Namely, data in
databases are also mapped to rings, such that a request in
subsession t can only access the data in rings t and above. In
particular, we label tables of databases with rings depending
on the level of protection required by web applications. For
example, in a social-network application, the profile table is
usually security sensitive, so its access should be restricted
to ring 0. To achieve that, we put the profile table in ring 0.
For tables that are less security sensitive, we put them in the
lower-privileged rings, allowing a broader access. The right
side of Figure 4 depicts the ring configuration of databases.

Scuta’s ring configuration is not necessarily limited to
the table level; it supports a much finer granularity. For
example, Scuta can label a table in a way, such that it is
read-only in ring 3, but writable in ring 0; Scuta can also
label some columns of a table with one ring, while labeling
other columns with another ring. Such a fine granularity
provides a great flexibility to web applications. More so-
phisticated examples are given in Appendix B.

3.3 Cross-Ring Invocations
In real-world applications, cross-ring invocations are often

desirable. There are two types: from lower to higher privi-
leged rings and vice versa. We discuss how Scuta supports
these types of invocations.

From lower to higher privileged ring. As we have
learned from many other ring-based access control systems,
such as those in operating systems and 80x86 CPUs, dis-
allowing invocations from lower to higher privileged rings
tends to be over restrictive; in many cases, such an invo-
cation needs to be supported. For example, in operating
systems, user-level programs are basically running in a less
privileged ring, but to access files, they need to invoke the
code in the kernel (running in a higher privileged ring). That
is a cross-ring execution. Operating systems support that
with system calls, the essence of which is to support a con-
trolled invocation from lower to higher privileged rings.

To support the similar kind of invocation, borrowing from
operating systems, we introduce the gate concept in Scuta.
Its definition and rules are described in the following:

Definition 3.2. Gate Access Rule: A gate is a func-
tion labeled with the GATE keyword and a tuple (R, W), where
R is the ring that this function belongs to, and W is the
threshold, representing the highest ring number (i.e. the
least privileged ring) that is allowed to access this gate. Sub-
session t can invoke a gate function with the label (r, w) if
r ≤ t ≤ w, i.e., the subsession is less privileged than ring r,
but compared to the threshold w, t’s privilege is sufficient.

With gates, web developers can write “system calls” for
their applications, providing a “gate” for the less privileged

code to invoke more privileged code, in a controlled fash-
ion. For example, as in Figure 2, we may want to allow
some third-party extensions in Escudo ring 1 to invoke
the DeleteFriends function, as long as the user specifically
grants the permission (i.e., the function will provides ex-
tra application-specific control to safe-guard the friend list).
However, because of protection needs, the Friend table is
stored in Scuta ring 0, forcing the DeleteFriends func-
tion to be put in ring 0 as well, and denying invocation by
the third-party JavaScript code (in Escudo ring 1). This
dilemma can be solved using gates: we can keep the Delete-
Friends function in ring 0, but label it as a gate, and assign
(0, 1) to it. Such a configuration allow code in rings 0 and
1 to invoke DeleteFriends, which will be executed in the
context of Scuta ring 0.

From higher to lower privileged ring. Scuta al-
lows code in higher-privileged rings to invoke that in lower-
privileged rings. This is essential; for example, in Figure 2’s
example, the function AddFriends is in placed in Scuta ring
1, but we do want the contents in Escudo ring 0 to invoke
it. Obviously, allowing such an invocation brings risks, es-
pecially when the callees are not trustworthy. Putting a
function in less privileged rings does not necessarily mean
this function is less trustworthy (e.g. shared libraries are of-
ten put in the least privileged ring), but a less trustworthy
function must be put in less privileged rings.

Many web applications also allows servers to import third-
party code. For example, ELGG, a popular social-network
application, provides an open framework to developers, who
can develop interesting applications that can be added to
ELGG. These third-party ELGG extensions may be buggy,
or even malicious potentially. With Scuta, they can be put
in a less privileged ring. However, if the client-side contents
in subsession 0 or the server-side code in ring 0 invokes these
extensions, the execution will take the caller’s privilege (i.e.,
ring 0). This becomes dangerous. Therefore, we have the
following access rule:

Definition 3.3. Privilege Downgrading Rule. When
a caller running in ring t invokes a function in a less priv-
ileged ring w > t, the effective subsession ID during the
execution of this function is downgraded to w; the caller re-
gains its effective subsession ID t after the function returns.

3.4 Supporting Other Access Control Models
Discretionary Access Control. All access control mod-
els have their limitations, especially for simple models that
are intended to address the generic needs; there will be secu-
rity needs that cannot be covered. Therefore, a good access
control model should provide primitives to enable the imple-
mentation of discretionary access control by applications.

Scuta provides a primitive called session_esubsid(),
which returns the effective subsession ID of the current exe-
cution. With this API, programs can enforce their application-
specific security policies based on subsession IDs. For exam-
ple, if a program wants to perform different tasks for differ-
ent subsessions, it can do the following:

switch (session_esubsid()) {
case 0: Do task A; break;
case 1: Do task B; break;
case 2: Do task C; break; }

75

PHP CodeWeb
R

Extensions Zend Engine
Request

Session ScutaDatabase

Run time Security Context

Reply

Run‐time Security Context
Initialization

Figure 6: The Architecture of the Scuta System

Other Access Control Models. Scuta chooses to en-
force the multi-level ring model, because it intends to con-
duct access control based on trust, and trust, by natural, has
multiple levels. As the Web evolves, needs for other models,
such as multilateral models, may arise. We do believe that
the subsession concept introduced by Scuta can be adapted
to serve as the basis for those models; obviously, the access
control rules need to be redesigned if model changes. We
will study other models in our future work.

4. IMPLEMENTATION OF SCUTA

4.1 The Architecture of the Scuta System
Scuta is a general model that can be implemented in var-

ious platforms, including PHP, Java Servlet, and ASP.NET.
In this work, we choose the open-source PHP platform in our
implementation. In order to implement Scuta, we need to
change the behavior of PHP to enforce the ring-based access
control policy during the execution of PHP code. Normally,
this requires a modification of the target system. However,
the PHP architecture was designed for extensibility, allowing
developers to add new or modify the existing functionalities.

The PHP architecture has two major components: core
and extensions. The core focuses on setting up the running
environment, file streams, error handling, etc, which are es-
sential functionalities of PHP. Besides, the core provides an
interface for loading additional functionalities (called exten-
sions). It is these flexible extensions that make PHP one of
the most popular choices for web applications. Most PHP
functionalities familiar to developers are actually extensions.
For example, the session and database-access mechanisms
are all implemented as extensions.

At the center of the core lies a virtual machine, called the
Zend Engine, which parses PHP scripts into opcodes, and
then executes them. The Zend Engine was also designed
for extensibility. It not only allows the overriding of its ba-
sic functionality, including compilation, execution, and error
handling, but also allows developers to add new functional-
ities through a set of well-defined hooks [16]. Appendix A
provides more details about these hooks.

PHP’s extensible architecture makes it quite convenient to
implement Scuta in PHP. The implementation of Scuta in-
volves three PHP extensions: session, database, and Scuta.
The first two are existing extensions that need to be modi-
fied, and the third one, Scuta’s access control engine, is a
new extension created by us. These three extensions depend
on a common security context, which serves as the basis for
our access control. The main element of this security context
is the effective subsession ID, which indicates the effective
ring of the current execution. The session module initializes
this security context, the database module uses the context,

while the Scuta module uses and updates this context. A
high-level overview of the Scuta system is depicted in Fig-
ure 6, and we will discuss these modules in details.

4.2 The Scuta Access Control Module
The main access control engine of Scuta is implemented

as a PHP extension (called Scuta). Its primary goal is to
enforce Scuta’s ring-based access control during the exe-
cution. Scuta’s access control is conducted at the function
level, i.e., when a function is invoked, Scuta needs to decide
whether the invocation is allowed or not. To achieve this,
we need to intercept function calls during the runtime.

The Scuta extension intercepts function calls using the
hooks provided by the Zend Engine. As we mentioned be-
fore, the Zend Engine provides a number of hooks, allowing
extensions to insert additional code at particular places. In
our implementation, we mainly used two hooks: one on func-
tion entry, and the other on function exit. At the function
entry point, the Scuta extension checks whether a function
can be invoked; if not, it throws a fatal error, causing the
program to terminate. If the invocation is allowed, the Scuta
extension updates the security context, and then gives the
control to the invoked function. When the function returns,
the Scuta extension takes control again via the function-exit
hook, and updates the security context.

The Ring Configuration File. We use a configuration
file to map program directories, files, classes, class methods,
and functions to rings. This configuration is loaded into
a hash-table when the web server is started. During the
runtime, for each function (or method), Scuta can get all
its information, including function name, class name (for
methods only), file name, and directory name. Scuta then
searches for the ring information of this function from the
hash-table in the following order: (1) use the function name
or method name, (2) use the class name (only for methods),
(3) use the file name, (4) use the directory name, and (5) if
all fail, set the subsession to the least privileged ring (i.e.,
Scuta’s default setting).

Labeling server-side programs is done outside of the pro-
grams; therefore, setting the security policy in Scuta is sep-
arated from the program logic, and achieved using “config-
uration”, instead of “implementation”.

4.3 The Session Module
In the web applications that use PHP’s built-in session

mechanism, the function session_start() needs to be called
at the beginning of a program. If the session does not exist,
i.e., the HTTP request does not contain a Session ID (SID)
cookie, this function will generate an SID cookie, and set
the cookie in the header of the reply. When the client gets
the reply, it will store the SID cookie in the browser, and at-
tach the cookie to the subsequent HTTP requests bound to
the same server. When serving subsequent HTTP requests,
session_start() will still be invoked, but now seeing the
SID cookie, it will not create a new session; instead, it will
resume the existing session identified by the SID, as well as
loading the session data.

To implement the subsession mechanism, we modified the
session_start() function in the session extension. We added
two functionalities. First, when a new session is created,
subsessions will be generated, and the subsession cookies will
be sent to the browser, along with the session cookie. De-

76

tails of this process are already given in Section 3.1. Second,
when an HTTP request comes, carrying subsession IDs, ses-
sion_start() identifies the request’s subsession ID based
on the subsession cookies carried by the request. Then the
function initializes the runtime security context. Both func-
tionalities are quite easy to implement. The modification
only involves about 120 lines of code.

Backward compatibility issue. In our implementa-
tion, instead of using the standard Set-Cookie to set the
subsession cookies, we decided to define a new header called
Set-CookieSub for that purpose (only for setting the sub-
session cookies; the session cookie is still set using Set-

Cookie). This is mainly for backward compatibility. In an
Escudo-enabled browser, Set-CookieSub is equivalent to
Set-Cookie. However, in a non-Escudo browser, the Set-

CookieSub header will be ignored, so no subsession ID will be
set as cookies on the browser side; therefore, requests from
a non-Escudo browser will not attach any subsession ID.
In this way, servers can tell whether a browser is Escudo-
enabled or not. If not, the server will automatically assign
the lowest-privileged subsession ID to the requests, and thus
providing the minimal services to non-Escudo browsers.

4.4 The Database Modules
PHP-based web applications interact with databases using

the APIs provided by several PHP extensions, such as mysql
and mysqli for MySQL databases. In most web applications,
PHP connects to databases through a single user account.
We use dbuser to refer to this account in our discussions.

To enforce the ring-based access control in databases, we
leverage the databases’ built-in access control mechanism,
which can grant different database-access privileges to dif-
ferent users. Our basic idea is to create several new user
accounts, one for each ring, so we can use the database’s
user-based access control. In particular, in our MySQL im-
plementation, for the dbuser account, we create accounts
dbuser_0, dbuser_1, and dbuser_2 (assuming there are only
three rings), with dbuser_t corresponding to ring t. We then
use MySQL’s GRANT command to grant each dbuser_t the
database-access privileges entitled to ring t. This is achieved
by the database administrator from inside the database. For
example, if we want to put TableA in ring 0, TableB in ring 1,
and TableC in ring 2, we run the following GRANT commands:

GRANT ALL ON TableA TO dbuser_0;
GRANT ALL ON TableB TO dbuser_0;
GRANT ALL ON TableC TO dbuser_0;
GRANT ALL ON TableB TO dbuser_1;
GRANT ALL ON TableC TO dbuser_1;
GRANT ALL ON TableC TO dbuser_2;

mysql_connect() is an API in mysql extension used to
establish a connection with database. This API requires a
user name and a password. We modified mysql_connect(),
so when a program wants to connect to the database us-
ing the dbuser account, we replace this account name with
dbuser_t, where t is the effective subsession ID. Therefore,
subsequent queries using this connection are bounded by
the privileges assigned to dbuser_t, i.e., they can only ac-
cess the tables in rings t and above; Similar changes are
made in mysql_pconnect(). Moreover, many applications
use mysqli_connect() of the mysqli extension to connect
to the database. We thus made corresponding changes to
mysqli. The total changes are less than 30 lines of code.

MySQL’s GRANT command allows us to conduct access
control at even finer levels, including table columns, type
of database operations, etc. More details are given in Ap-
pendix B.

Configuration tool. To avoid mistakes caused by manu-
ally running the GRANT command, we created a configuration
tool, allowing developers to specify the ring configuration in
a file. The file will be loaded by MySQL when it starts,
and the configuration tool will then turn the ring configu-
ration into corresponding GRANT commands. The format of
the configuration file is given in Appendix B.

5. CASE STUDIES AND EVALUATION
To evaluate how Scuta helps secure web applications, we

have conducted five case studies using several open-source
web applications, including Collabtive (a web-based project
management system), Mediawiki (a wiki system), and PHP-

Calendar (a web calendar). We use Collabtive as the ba-
sis (Figure 7(a)), which has a holder for client-side exten-
sions. We have developed three different extensions for the
demonstration purpose: Alert (Figure 7(b)), FindMe (Fig-
ures 7(c)), and AddEvent (Figure 7(d)). The case studies are
divided into two major categories: protecting same-origin
requests and protecting cross-origin requests.

5.1 Protecting Same-Origin Requests

Case 1: Client-side extensions. To demonstrate the
benefit of Scuta, we created a client-side extension called
Alert for Collabtive (Figure 7(b)). This extension pri-
marily displays a user’s upcoming project deadlines; session
cookies need to be attached to its requests to get the user’s
project information. In the current Web, that means the
extension is granted all the user’s privileges and can do a
lot of damages to the user. Extensions like this have be-
come quite popular in the Web. Client-side extensions are
often developed by third parties, so they are less trustworthy
than the web application’s first-party contents. If they are
malicious or vulnerable, the entire web application becomes
endangered.

Because of the needs for client-side extensions to execute
JavaScript and access session cookies, most of the existing
methods, such as iframe, character escaping, NoScript add-
ons [17] and Escudo, cannot easily achieve the desirable
protection when including client-side extensions. In fact,
all these methods either disallow JavaScript or disallow the
access to session cookies; none supports the Alert extension.
Without an appropriate protection mechanism, most web
sites have to resolve to code verification and examination,
filtering out malicious and vulnerable extensions, a practice
that is complicated and error-prone.

Scuta provides an intuitive and systematic mechanism to
protect web applications against malicious/vulnerable client-
side extensions. Using Scuta, we can place client-side ex-
tensions, if not fully trusted, in a lower privileged Escudo
ring within web pages, and accordingly, place its required
server-side functions in the same Scuta ring. Meanwhile, we
place all the sensitive server-side functions, such as delete,
update and insert, in the higher privileged Scuta rings.
Therefore, the not-fully-trusted client-side extensions will
be limited to access the less sensitive server-side programs,

77

Client-side
Extension

Holder

Category: Course Projects

(a) A Page in Collabtive (b) Alert Extension (c) FindMe Extension (d) AddEvent Extension

Figure 7: Collabtive and Its Client-Side Extensions

such as displaying and viewing functions. The damage is
greatly limited if they are compromised.

In our demonstration in Figure 7(b), we put the Alert
client-side extension in Escudo ring 3. To allow it to get the
project deadline information, we place the read-only server-
side function display() in Scuta ring 3, while placing all
the modification-involving functions in Scuta ring 0. There-
fore, if this extension is malicious, it can steal information,
but cannot modify anything on the server side.

Case 2: Gate. Our Alert client-side extension in the
previous case also has a renew button, which allows the user
to postpone a project’s deadline by at most a week. The
extension needs to invoke some server-side function to mod-
ify project deadlines. The PHP function add() allows such
a modification, but in addition to deadlines, it can also be
used to modify many other aspects of projects (e.g., project
titles). To prevent it from being invoked by untrusted client-
side contents, this function is placed in Scuta ring 0, essen-
tially preventing the access by our Alert client-side exten-
sion. To solve this dilemma, we use Gate in Scuta.

Gate is like system calls in operating systems, allowing
lower-privileged code to invoke higher-privileged code, but
in a controlled fashion. We created a Gate function called
renew(), which calls add() to postpone project deadlines
only, but before making the call, it verifies that the requested
postpone duration is within a week. We place the Gate func-
tion renew() in Scuta ring 0, but allowing accesses from
subsession 3 (i.e. the threshold value in the gate specifica-
tion is set to 3). Therefore, the Alert client-side extension,
placed in Escudo ring 3, can invoke renew(), which runs
in Scuta ring 0 and can thus call add() to modify dead-
lines. Essentially, renew() provides a controlled access to
the security-sensitive function add().

Case 3: Server-side extensions. Server-side extensions
of web applications are server-side programs developed by
third parties. Examples of server-side extensions include
Elgg’s social-network applications, third-party libraries, etc.
These extensions are intended to extend the functionalities
of web applications, and they are installed at the server side
by web applications’ administrators.

The current Web’s security infrastructure is unable to deal
with the risk introduced by server-side extensions, because
these extensions, once installed, have the same privileges
as the native code of web applications: they can directly
manipulate databases, invoke the security-critical APIs, etc.
This situation is dangerous if the extensions are vulnerable,
or even worse, malicious.

In Figure 7(a), the functionality to display the category
information was actually added by us. It sends an AJAX re-
quest to the server-side program DisplayCat, which fetches
and returns the category information from the database.
DisplayCat was also implemented by us (i.e., third-party
developers), and was incorporated in Collabtive as a server-
side extension. Because of our oversight, there was a SQL
injection vulnerability in the code2. That is, a user, legiti-
mate one, can intercept the AJAX request (e.g. using Fire-
fox Add-ons), modify the value of its parameters using the
SQL injection technique, and can thus cause DisplayCat to
execute a malicious SQL statement. The situation will be
more devastating if DisplayCat is malicious, because once
triggered, it can run whatever PHP and SQL code it wants,
essentially attacking Collabtive from the inside.

With Scuta, we can reduce the risks caused by server-side
extensions. This is done by placing the untrusted server-side
extensions to less privileged rings (say ring K). When client-
side requests or other server-side programs invoke a function
in this extension, the function will be executed only with the
privilege of ring K. In the example in Figure 7(a), the Dis-

playCat function is placed in ring 3. Since no database-
update privileges or security-sensitive PHP functions are
placed in ring 3, even if DisplayCat is vulnerable or mali-
cious, and even if it is invoked from subsession 0, according
to Scuta’s privilege-downgrading rule, it will be executed in
the context of subsession 3; its damage is thus limited.

5.2 Protecting Cross-Origin Requests
A cross-origin (or cross-site) request is sent from a page

of one origin to a server at a different origin. Cross-origin
requests are becoming quite popular nowadays. We study
how Scuta can help secure these requests. There are two
types of cross-origin requests: non-AJAX and AJAX.

Case 4: Cross-origin non-AJAX request. The non-
AJAX type is typical cross-site HTTP requests. On one
hand, cross-origin requests are widely used by web applica-
tions, but on the other hand, this type of requests are the
culprit of the cross-site request forgery attack (CSRF).

To allow cross-origin requests while protecting against the
CSRF attack, developers have to implement specific protec-
tion logic in their applications. A common practice is to em-
bed secret tokens in web pages, which can only be attached
to the requests from these pages (i.e., same-origin requests),
not the cross-origin requests. At the sever side, web appli-
cations add extra program logic to check the existence of

2SQL injection vulnerability is one of the most common vul-
nerabilities in web applications [18].

78

the secret tokens. If developers miss a place, CSRF may be
possible. Collabtive uses the secret-token approach, but
unfortunately, it only places the checks in 6 out of the 16
server-side programs that need protection against the CSRF
attack. MediaWiki has a similar situation. Escudo is also
quite limited in protecting against CSRF, which directly de-
nies cross-origin requests for sensitive sessions information.

Scuta allows cross-origin requests to use sessions without
becoming a victim of the CSRF attack. The basic idea is
to only expose those CSRF-safe services to the cross-origin
requests. CSRF-safe means that even if a request is forged,
it can do no harm to the server. For example, the services
that don’t allow modifying anything on the server are CSRF-
safe. Using Scuta, developers can place those CSRF-safe
services in the least-privileged ring. This ring is accessible
to the cross-origin requests, because cross-origin requests are
treated from the least-privileged subsession by Escudo. For
those CSRF-unsafe services, developers must place them in
the more privileged rings. If controlled accesses to these
services are needed, we can use gates. Compared with the
existing CSRF countermeasures, the protection achieved by
Scuta is simple and systematic.

Case 5: Cross-origin Ajax request. Due to secu-
rity risks, making cross-origin requests using AJAX was ini-
tially disallowed by browsers based on the same-origin pol-
icy. Recently, however, to allow better interactions among
web applications, this restriction has been lifted by almost
all major browsers. A protocol called Cross-Origin Resource
Sharing (CORS) [5] was introduced to support such type
of requests. CORS uses HTTP’s newly introduced Origin

header to identify the origin of cross-origin requests; appli-
cation servers can decide whether to allow the access from
the specified origin.

We made an example in Figure 7(d), in which, users of
Collabtive can add project-related events to their calendars
at PHP-Calendar. The request, from Collabtive pages to
the PHP-Calendar server, is a cross-origin AJAX request. To
allow such a request, we need to add an origin-checking logic
in the PHP-Calendar’s AddEvent service, checking whether
a cross-origin request is from Collabtive or not; if not, re-
quests will be denied. Essentially, PHP-Calendar puts Col-

labtive on its trusted white-list for the AddEvent service.
Such a trust is too coarse-grained and risky: when putting

Collabtive on its white-list, PHP-Calendar automatically
delegates the trust to all the contents in the Collabtive’s
pages, regardless of whether they are Collabtive’s first or
third party contents. If those third-party contents are vul-
nerable or malicious, attackers can take advantage of the
trust, and launch attacks on PHP-Calendar from Collab-

tive. Current Web systems cannot distinct where those
cross-origin AJAX requests are initiated from.

Scuta’s subsession mechanism can achieve such a distinc-
tion, enabling web applications to conduct access control on
cross-origin AJAX requests at a finer granularity than the
current practice. In our case study, the EventAdd gadget
is placed in Escudo ring 1. When it makes a cross-origin
AJAX request to PHP-Calendar, it will be recognized by
PHP-Calendar as belonging to subsession 1. The AddEvent

function is placed in Scuta ring 1 at the PHP-Calendar

server, allowing the cross-origin access from the Collab-

tive’s EventAdd gadget. If some untrusted contents on the
same page try to access AddEvent, as long as Collabtive

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

Session Start DB Access Ring Check

(a) Individual Overhead

0.00%

2.00%

4.00%

6.00%

Collabtive PHP-Calendar MediaWiki

(b) Overall Overhead

Figure 8: Performance Evaluation

puts these contents anywhere above Escudo ring 1, the ac-
cess will be denied by Scuta.

If PHP-Calendar trusts Collabtive less, it can map Col-

labtive’s requests from Escudo ring K to subsession K+∆,
to downgrade cross-origin requests’ privileges by ∆ rings.

5.3 Performance Evaluation
To evaluate the performance of Scuta, we measured the

server-side execution overhead caused by Scuta. We used
an Apache benchmarking tool called ab in our experiment.
The tool allows us to measure the processing time of each
HTTP request. Network latency is already excluded in our
measurement, as it has nothing to do with Scuta.

We have designed two sets of experiments: The first set
focuses on evaluating the overhead of individual operations
that are affected by Scuta. These operations involve ses-
sion/subsession initialization, database access, and Scuta
ring check. Figure 8(a) indicates that the overhead on indi-
vidual operations is quite small, especially for database ac-
cess and Scuta ring check (only around 4%); session-start
needs to generate and verify subsession IDs, and the extra
encryption/decryption causes more overhead (around 8%).

In the second set of experiments, we measured the overall
execution overhead that Scuta brings to real web applica-
tions. We used Collabtive, MediaWiki and PHP-Calendar,
and plotted the results in Figure 8(b). The results show that
the overall overhead caused by Scuta is only about 4%.

6. RELATED WORK
The need for providing a fine-grained access control on

the server-side of the web infrastructure has been well rec-
ognized by many researchers. A number of language-based
approaches have been proposed in the past. Early language-
based work focuses on enforcing confidentiality and integrity
of web applications. They use static analysis methods to
help enforce fine-grained security policies [19], or use dy-
namic tainting methods to detect vulnerabilities [20].

Recent language-based work starts to focus on enforcing
fine-grained access control at the framework level. Chong et
al. proposed a novel framework, called SIF [21], to build web
applications. With SIF, explicit confidentiality and integrity
policies can be given as a compile-time program annotation
or as run-time user requirement. Compile-time and run-
time checking will enforce these policies. Another language-
based approach is called Capsules [22] by Krishnamurthy
et al. This framework benefits from an object-capability
language called Joe-E [23]. Capsules provides interfaces that
expose limited, explicitly-specified privileges to application
components. With Capsules, the web framework can enforce
privilege separation and isolation of web applications, and
thus restricts what each component of the application can
do and quarantines buggy or compromised code.

79

The goal of Scuta and the language-based approaches
is the same, i.e., to achieve a fine-grained access control in
web applications, but Scuta takes a very different approach.
Scuta provides a new subsession primitive for web applica-
tions. Actually, Scuta and the existing language-based ap-
proaches complement each other quite nicely. For instance,
web developers can use Scuta to map the programs to dif-
ferent subsessions, and then use the language approaches to
further restrict the programs within each particular ring; the
subsession concept can also be integrated into the security
policies that are enforced by the language approaches.

In addition to the session-based architecture currently used
by most web applications, researchers are also exploring
other alternatives [24,25]. Scuta may not be directly appli-
cable to those new architectures, but we believe that ideas
similar to Scuta may be used to provide a fine-grained ac-
cess control in their security infrastructures.

7. CONCLUSION
To improve the security in web applications, we have de-

signed Scuta, a fine-grained access control system for web
servers. Scuta is based on the subsession concept which al-
low servers to distinguish more trustworthy HTTP requests
from less trustworthy ones. Such a distinction can help
servers enforce fine-grained access control. Based on subses-
sions, we have developed a ring-based access control model
and implemented Scuta in PHP. Using case studies, we have
demonstrated that Scuta can be used by web applications
to satisfy a variety of protection needs, most of which are
hard to satisfy, using the Web’s current access control sys-
tems. In our future work, we plan to further develop config-
uration and automation tools to help users configure their
web applications, and detect problems in their configuration.

8. REFERENCES
[1] J. Alpert and N. Jesse, “We knew the web was big...”

The Official Google Blog. http://googleblog.blogspot.
com/2008/07/we-knew-web-was-big.html, 2008.

[2] N. Intelligence, “Domain counts & internet statistics,”
http://www.domaintools.com/internet-statistics/,
May 2009.

[3] S. Corp., “Symantec internet security threat report:
Trends for july-december 2007 (executive summary),”
Page 1–2, 2008.

[4] WhiteHat Security, “Whitehat website security
statistic report, 10th edition,” 2010.

[5] “Cross-origin resource sharing,” URL:
http://www.w3.org/TR/cors/, 2010.

[6] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell,
“Protecting browser state from web privacy attacks,”
in WWW 2006.

[7] B. Livshits and U. Erlingsson, “Using web application
construction frameworks to protect against code
injection attacks,” in PLAS 2007.

[8] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner,
“Dynamic pharming attacks and locked same-origin
policies for web browsers,” in CCS 2007.

[9] B. Parno, J. M. McCune, D. Wendlandt, D. G.
Andersen, and A. Perrig, “CLAMP: Practical
prevention of large-scale data leaks,” in Proc. IEEE
Symposium on Security and Privacy, Oakland, CA,
May 2009.

[10] M. Dalton, C. Kozyrakis, and N. Zeldovich, “Nemesis:
Preventing authentication & access control
vulnerabilities in web applications,” in Proceedings of
the Eighteenth Usenix Security Symposium (Usenix
Security), Montreal, Canada, 2009.

[11] K. Jayaraman, W. Du, B. Rajagopalan, and S. J.
Chapin, “Escudo: A fine-grained protection model for
web browsers,” in Proceedings of the 30th International
Conference on Distributed Computing Systems
(ICDCS), Genoa, Italy, June 21-25 2010.

[12] K. Patil, X. Dong, X. Li, Z. Liang, and X. Jiang,
“Towards fine-grained access control in javascript
contexts,” in Proceedings of the 31st International
Conference on Distributed Computing Systems
(ICDCS), Minneapolis, Minnesota, USA, June 20-24
2011.

[13] M. D. Schroeder and J. H. Saltzer, “A hardware
architecture for implementing protection rings,”
Commun. ACM, vol. 15, no. 3, pp. 157–170, 1972.

[14] T. Jim, N. Swamy, and M. Hicks, “Defeating script
injection attacks with browser-enforced embedded
policies,” in WWW 2007.

[15] M. V. Gundy and H. Chen, “Noncespaces: Using
randomization to enforce information flow tracking
and thwart cross-site scripting attacks,” in Proceedings
of the 16th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA,
February 2009.

[16] G. Schlossnagle, Advanced PHP Programming. Sams,
2004.

[17] “Noscript add-ons,” URL: https:
//addons.mozilla.org/en-US/firefox/addon/noscript/.

[18] OWASP, “The ten most critical web application
security risks,” http://www.owasp.org/index.php/File:
OWASP T10 - 2010 rc1.pdf, 2010.

[19] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A
static analysis tool for detecting web application
vulnerabilities,” in Proceedings of the IEEE
Symposium on Security and Privacy, 2006.

[20] W. Xu, V. N. Venkatakrishnan, R. Sekar, and I. V.
Ramakrishnan, “A framework for building
privacy-conscious composite web services,” in
Proceedings of the 15th USENIX Security Symposium,
2006.

[21] S. Chong, K. Vikram, and A. C. Myers, “Sif: enforcing
confidentiality and integrity in web applications,” in
Proceedings of 16th USENIX Security Symposium on
USENIX Security Symposium, 2007, pp. 1:1–1:16.

[22] A. Krishnamurthy, A. Mettler, and D. Wagner,
“Fine-grained privilege separation for web
applications,” in WWW, 2010, pp. 551–560.

[23] A. Mettler, D. Wagner, and T. Close, “Joe-e: A
security-oriented subset of java,” in 17th Network and
Distributed System Security Symposium, 2010.

[24] C. Queinnec, “Inverting back the inversion of control
or, continuations versus page-centric programming,” in
Newsletter of ACM SIGPLAN Notices, 2003.

[25] E. Cooper, S. Lindley, P. Wadler, and J. Yallop,
“Links: Web programming without tiers,” in
Proceedings of 5th International Symposium on
Formal Methods for Components and Objects
(FMCO), 2006, pp. 266–296.

80

APPENDIX
A. THE HOOKS OF ZEND ENGINE

The Zend Engine provides a number of hooks, allowing
developers to insert their own logic into the compilation and
execution process. We list some of its hooks in the following:

• zend_compile_file: compiler hook, used to add addi-
tional logic to the compilation process, or override the
existing compilation process.

• zend_execute: execution hook, used to add additional
logic to the execution process, or override the existing
execution process.

• statement_handler: invoked after executing each sin-
gle PHP statement, mainly used for debugging.

• fcall_begin_handler: invoked before the execution
enters each single function.

• fcall_end_handler: invoked before the execution re-
turns from a function.

• startup: invoked when the zend extension is loaded at
server setup.

• shutdown: invoked when the zend extension is unloaded
at server shutdown.

• activate: invoked at the beginning of each request.

• deactivate: invoked at the end of each request.

Let us take the zend_compile_file and zend_execute

hooks as examples. Assuming that we want to include some
extra logic before and after PHP compiles a function, we can
do the following:

old_compile_file = zend_compile_file;
zend_compile_file = my_compile_file;

zend_op_array *my_compile_file()
{

... Our logic before compilation ...

// run the original compilation process
zend_op_array *op_array op_array = old_compile_file();

... Our logic after compilation ...
}

We can do similar things to the execution process, i.e.,
adding extra logic before and after a program is executed.

old_execute = zend_execute;
zend_execute = my_execute;

my_execute()
{

... Our logic before execution ...

// run the original execution process
old_execute();

... Our logic after execution ...
}

B. DATABASE RING CONFIGURATION
The GRANT command in MySQL assigns specific privileges

to users. In our Scuta implementation, we use this com-
mand to assign rings to database objects. To avoid mis-
takes caused by manually running the GRANT command, we
let users write their ring configuration into a file using an
intuitive format; we have created a configuration tool to au-
tomatically convert the configuration into a series of GRANT

commands. The format of the configuration file is described
in the following:

[USER]
Ring:Operations:Table:Columns

With this configuration file, we can do access control on
operations (e.g. SELECT, UPDATE, etc.), tables (e.g. Ta-
ble A, Table B, etc.) and colums (e.g. Colum Name of Table
A, Column Course of Table B, etc.).

We describe three examples of ring configuration and their
corresponding GRANT commands.

Permission on tables. Assuming TableA, TableB and
TableC can be accessed by dbuser. We would like to to place
TableA in ring 0, TableB in ring 1, and TableC in ring 2. We
have the following configuration file:

[dbuser]
0:ALL:TableA:*
1:ALL:TableB:*
2:ALL:TableC:*

Because Scuta supports hierarchical structure, if we place
a table in ring k, the tables can also be accessed from rings
0 to k. Our tool converts the above configuration file into
the following commands:

GRANT ALL ON TableA TO dbuser_0;
GRANT ALL ON TableB TO dbuser_0;
GRANT ALL ON TableC TO dbuser_0;
GRANT ALL ON TableB TO dbuser_1;
GRANT ALL ON TableC TO dbuser_1;
GRANT ALL ON TableC TO dbuser_2;

Permission on columns. Assuming MyTable can be
accessed by dbuser. We would like to place its columns
into different rings: columns Deadline and Action in ring
0, column Profile in ring 1, and column Name in ring 2. We
have the following configuration file:

[dbuser]
0:ALL:MyTable:Deadline, Action
1:ALL:MyTable:Profile
2:ALL:MyTable:Name

Our tool converts the above configuration file into the fol-
lowing commands:

GRANT ALL (Deadline, Action) ON MyTable TO dbuser_0;
GRANT ALL (Profile, Name) ON MyTable TO dbuser_0;
GRANT ALL (Profile, Name) ON MyTable TO dbuser_1;
GRANT ALL (Name) ON MyTable TO dbuser_2;

Permission on operations. Assuming MyTable can be
accessed by dbuser, and it has a column called Profile. We
would like to assign different operation privileges to this col-
umn: ring 2 can conduct SELECT only (i.e. read-only), ring 1
can additionally conduct UPDATE, and ring 0 can additionally
conduct DELETE and INSERT. We have the following config-
uration file:

[dbuser]
0:DELETE, INSERT:MyTable:Profile
1:UPDATE:MyTable:Profile
2:SELECT:MyTable:Profile

81

Our tool converts the above configuration file into the fol-
lowing commands:

GRANT DELETE (Profile) ON MyTable TO dbuser_0;
GRANT INSERT (Profile) ON MyTable TO dbuser_0;
GRANT UPDATE (Profile) ON MyTable TO dbuser_0;
GRANT SELECT (Profile) ON MyTable TO dbuser_0;
GRANT UPDATE (Profile) ON MyTable TO dbuser_1;
GRANT SELECT (Profile) ON MyTable TO dbuser_1;
GRANT SELECT (Profile) ON MyTable TO dbuser_2;

82

