
Diversify Sensor Nodes to Improve Resilience Against
Node Compromise ∗

Abdulrahman Alarifi and Wenliang Du
Department of Electrical Engineering and

Computer Science
Syracuse University

Syracuse, NY 13244-1240 USA

{aalarifi,wedu}@ecs.syr.edu

ABSTRACT
A great challenge in securing sensor networks is that sen-
sor nodes can be physically compromised. Once a node is
compromised, attackers can retrieve secret information (e.g.
keys) from the node. In most of the key pre-distribution
schemes, the compromise of secret information on one node
can have substantial impact on other nodes because secrets
are shared by more than one node in those schemes. Al-
though tamper-resistant hardware can help protect those
secrets, it is still impractical for sensor networks.

Having observed that most sensor network applications
and key pre-distribution schemes can tolerate the compro-
mise of a small number of sensors, we propose to use di-
versity to protect the secret keys in sensor networks. Our
scheme consists of two steps. First, we obfuscate the data
and the code for each sensor, such that, when attackers have
compromised a sensor node, they need to spend a substan-
tial amount of time to find the secrets from the obfuscated
code (e.g., by reverse engineering or code analysis). This
first line of defense raises the bar of difficulty for a success-
ful attack on one single node. Second, for different nodes,
we make sure that the data and code obfuscation methods
are different. This way, even if the attacks have success-
fully derived the location of the secrets, they cannot use the
same location for another node, because for different nodes,
their secrets are stored in different ways and in different
places. Such diversity makes it a daunting job to derive
the secret information from a large number of compromised
nodes. We have implemented our scheme for Mica2 motes,
and we present the results in this paper.

Categories and Subject Descriptors:
C.2.0 [Computer-Communication Networks]: Network Pro-
tocols, Wireless Communications

∗This work was supported by Grant CNS-0430252 from
the US National Science Foundation and also by Grant
W911NF-05-1-0247 from the US Army Research Office.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SASN’06,October 30, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-554-1/06/0010 ...$5.00.

General Terms:
Algorithms, Design, Security, Performance.

Keywords:
Diversity, wireless sensor networks, obfuscation, reverse en-
gineering.

1. INTRODUCTION
Recent technological advances have made it possible to

develop distributed sensor networks consisting of a large
number of low-cost, low-power, and multi-functional sen-
sor nodes that communicate over short distances through
wireless links. Such sensor networks are ideal candidates for
a wide range of applications such as monitoring of critical
infrastructures, data acquisition in hazardous environments,
and military operations [2]. When sensor networks are de-
ployed in a hostile environment, security becomes extremely
important, as they are prone to different types of malicious
attacks. For example, an adversary can easily listen to the
traffic, impersonate one of the network nodes, or intention-
ally inject misleading information into the networks. There-
fore, because of their importance, it is necessary to guaran-
tee the trustworthiness and resilience of sensor networks.

A great challenge in securing sensor networks is that sen-
sor nodes can be physically compromised. Once a node is
compromised, attackers can retrieve any secret information
(e.g. keys) from the node. If they also understand the be-
havior of the software running on the node, they can to-
tally control the behavior of the compromised node without
violating the communication protocols used by the sensor
networks. Since it is very likely for sensor-network applica-
tions to use commercial-off-the-shelf software, some of which
might be open-source software (i.e., the source code is widely
available), understanding the software behavior is not diffi-
cult.

This problem is aggravated in the key predistribution sce-
nario. Key predistribution enables sensors to set up secret
keys with their neighbors. Due to the energy constraint on
sensor nodes, public key cryptography (which can provide
an easy solution) is too expensive to use; therefore, studies
of this security bootstrapping problem have been primarily
focusing on symmetric key cryptography. Among the pro-
posed schemes, key predistribution is a promising approach
and has been studied extensively [13, 5, 11, 10, 21]. It is
achieved by letting each sensor pre-load a set of keys (or
key materials in some schemes) from a common key pool
prior to deployment. After they are deployed to the sensing

field, they use these key materials to establish secure com-
munication with their neighbors. Because these pre-loaded
keys can be used by multiple sensors, the damage of the
compromise of one sensor can be magnified, and can thus
compromise the security of the communication among non-
compromised sensors. The research in key predistribution
has been trying to reducing such undesirable impact. How-
ever, with limited resources in computation power, memory,
and battery, the problem is difficult to be solved completely.

All the above problems boils down to one fundamental
problem: how can we protect secret information within sen-
sor nodes while assuming that nodes can be physically cap-
tured by attackers? One common solution is to use tamper-
resistant hardware, such as Smartcards. Namely, keys are
stored in this special hardware, and any computation that
needs to use these keys is conducted within the hardware.
While this can be a viable solution, it increases the cost and
energy consumption of sensor nodes. Another solution is
to use code obfuscation. Namely, obfuscation is a transfor-
mation of program code (source code or binary code) into
another program with the same observable behaviors in or-
der to prevent reverse engineering.

It is widely believed that code obfuscation can only raise
the bar for attackers; it cannot totally hide secrets. Sooner
or later, by reverse engineering the obfuscated code, ded-
icated attackers can eventually retrieve the secrets from a
compromised node. However, it is also widely believed that
compromising one or a few node does not always achieve an
effective attack. Designs of sensor-network applications for
hostile environments often assume that sensor nodes can be
captured. Therefore, resilience against node capture is built
into designs. For example, in key predistribution, various
schemes have been proposed to increase resilience against
node capture [10, 11, 4, 28]; in data aggregation, order sta-
tistics has been used to tolerate some number of incorrect
readings from malicious nodes [30, 26, 25]. Therefore, to
achieve an effective attack, attackers need to capture a non-
trivial number of sensors, and successfully retrieve secrets
from these sensors. This is the main observation that moti-
vates this research.

Based on the above observation, if we can raise the bar
of difficulty for a successful attack on one single node to
a certain degree, the bar for a successful attack on a non-
trivial number of nodes can be prohibitively high. It should
be noted that this accumulation of difficulty is based on a
very important condition: attackers’ effort on compromising
one node cannot save their efforts on compromising another
node. In other words, if an attacker has spent 10 hours get-
ting the secrets from one node, he/she might have to spend
another 10 hours to do the same thing for another node.
Therefore, achieving non-repeatability is a unique objective
for code obfuscation in sensor networks because of the large
number of sensor nodes in typical sensor-network applica-
tions.

1.1 Outline of Our Scheme
In this paper, we combine code obfuscation and random-

ization to protect the secret keys of sensor nodes. Our
scheme diversifies data and code segments by creating differ-
ent and obfuscated data and code segments for each node.
Our scheme consists of three major steps: First, the data
structure for storing secret keys is obfuscated. In our scheme,
the k secret keys (each of length L) carried by each sensor

are not stored in memory in a well-recognized data struc-
ture. Instead, they are scrambled using L hash functions;
one has to know all these L hash functions in order to know
all the L bits of a secret key. It is important to note that we
choose different sets of hash functions for each node during
obfuscation.

Second, code is obfuscated. Since these hash functions
can be found in the code segment by using reverse engineer-
ing attacks, we need to obfuscate code to make the attacks
difficult. However, code obfuscation only makes breaking
one single node difficult; breaking the subsequently compro-
mised nodes are quite simple because all the code share the
same control flow. Therefore, the next step is necessary. In
the third step, we randomize control flow of code, such that
the control flow of one node is different from the control flow
of the other nodes. In other words, after the third step, we
have created a different version of the same code for different
node.

Since each node has different hash functions and differ-
ent obfuscated code, compromising a node will not reveal
much useful information that can help simplify the process
of compromising another node.

The contributions of our paper are summarized in the
following:

• We propose a random data and code obfuscation scheme
which is able to generate different version of sensor
software for each sensor node. Although the versions
are not completely different, data and code analysis
of one version cannot help much to simplify the same
process on another version.

• Our proposed scheme can be applied to many applica-
tions, where critical information needs to be protected.
For the sake of substantiation, we present our scheme
in the context of key pre-distribution schemes. Our
scheme can make compromising a large number of se-
cret keys much more difficult, a desirable goal for key
pre-distribution.

• We have implemented our scheme for Mica2 motes,
and have evaluated the performance of our scheme.

1.2 Organization
Our paper is organized as the following: In the next sec-

tion, we present the related work. In Section 3, we present
our main schemes, which include data disguising, code ob-
fuscation, and random code generation. The performance
results are presented in Section 4. Finally, we conclude the
paper in Section 5.

2. RELATED WORK

Diversity. Diversity has been applied at the system level.
It is mostly used to increase resistance to intrusion by in-
creasing software complexity while preserving functionalities
and performance. Diversification makes it hard to analyze
and exploit vulnerabilities in software [19]. A variety of ran-
domization techniques have been proposed, such as stack
randomization [14], instruction set randomization [3, 18], li-
brary randomization [6], system call randomization [6], etc.

Diversification has also been applied at the network level
to improve the diversity of networks. This is achieved by
using different applications, operating systems, and com-
munication protocols [16, 34] within a networked system.

Roux et al. developed cost adaptive mechanism (CAM)
to provide network diversity for MANET reactive routing
protocols [29]. Mont et al. introduced a new approach to
ensure diversity for common, widespread software applica-
tions in which diversity is enforced at the installation time
by a random selection and deployment of critical software
components [24]. Hiltunen et al. have proposed the use
of fine-grain customization and dynamic adaptation as key
enabling technologies [17].

Wang et al. [32] have presented an intrusion tolerant
architecture for distributed services, especially for COTS
servers, which utilizes the techniques of both redundancy
and diversity as building blocks. Ellison et al. [12] have de-
scribed the survivability approach to help assure that a sys-
tem that must operate in an unbounded network is robust
in the presence of attack and will survive attacks that result
in successful intrusions. Dasgupta et al. [8] have focused on
investigating immunological principles in designing a multi-
agent system for intrusion/anomaly detection and response
in the network. Deswarte et al. [9] have focused on diversity,
as a desirable approach for addressing the classes of faults
that underlay all these topics, i.e., design faults and intru-
sion faults. O’Donnell and Sethu [27] have suggested using
different software packages among neighbor nodes in sensor
networks to improve resilience.

Obfuscation. The first classification of obfuscation was
shown in [7], in which obfuscation is categorized as layout
obfuscation, data obfuscation, control obfuscation, and pre-
ventive obfuscation. Layout obfuscation is the changing of
structure for source code or binary code, such as scramble
identifiers, change formatting, and remove comments. Data
obfuscation is the changing of data structure, which is clas-
sified into storage and encoding, aggregation, and ordering.
Control obfuscation is the changing of main skeleton of the
program, which is classified into aggregation, ordering, and
computations. Preventive obfuscation is intended to protect
from decompilers and debuggers.

Wang [31] has proposed a new algorithm for obfuscation
which is mainly consist of three parts: dismantling of con-
trol flow graph, flattening of control flow graph, and addi-
tion of structures with data aliasing. Wroblewski [33] has
developed an obfuscation method that work on the low level
of programming. Linn and Debray [20] have developed ob-
fuscator of executable code to improve resistance to static
disassembly.

Key Pre-distribution. Eschenauer and Gligor proposed
the random key pre-distribution scheme [13], which is based
on the idea that each node chooses m keys from a pool of
keys of size S. Then two nodes have a link between them if
and only if they have a common key. Based on the birthday
paradox, a small number of keys chosen by each node are
enough to achieve a high probability that two nodes share
a common key. Based on Eschenauer and Gligor’s work, a
number of improvements have been proposed [5, 11, 10, 21].
A common property of these schemes is that each node car-
ries a number of keys (or key materials for some scheme) in
their memories. If a node is compromised, all the keys can
be revealed to attackers. Since these keys are also used by
other nodes, if attackers can compromise a set of nodes, the
revealing of the keys stored in their memories can compro-
mise the security of other nodes that are not compromised,
which lowers the network resilience.

Figure 1: Array of the keys, which is indexing by
node ID

Figure 2: Using hashing function to obfuscate and
scramble the keys in data segment

3. DIVERSIFY DATA AND CODE
Secure communication among sensor nodes are based on

encrypted communication channels using a collection of keys.
For example, in order to establish a secure connection be-
tween two nodes in random pairwise keys scheme, we should
have a designated key shared between these nodes. All keys
are stored in the memory of sensor nodes. Our goal is to
protect these keys using obfuscation. The basic comput-
ing power of a Mote is provided by an Atmel ATmega 128
processor with 4KB dynamic data RAM, 128KB program
ROM. We will use data segment here to refer to the mem-
ory dedicated for those keys, which are stored in the 128KB
program ROM.

3.1 Data Disguising
Without loss of generality, we assume that keys are stored

in an array with indices from 0 to m−1 (see Figure 1). Since
this data structure is not a secret, once a node is compro-
mised, attackers can easily identify the keys stored on this
compromised node. To make attackers’ task difficult, we can

hide the key storage, making it more difficult for attackers
to find the keys. However, hiding things in a program is
quite difficult; sooner or later, attackers can find the stor-
age. Since all the nodes save their keys in the same places,
once knowing where keys are stored, finding the keys of the
next compromised nodes will be a trivial task. Therefore,
our goal is two-fold: first, we will make identifying and re-
vealing the keys of the first compromised node a challenge
task; second, we will make the data structures for different
nodes different, so compromising a subsequent new node is
as hard as compromising the first one.

To make identifying the keys of a compromised node a
challenging task, we use hash functions to scramble the keys
in data segment. Note that this is just the traditional hash
functions used in the hash table data structure, rather than
the cryptographic one-way hash functions. We use a differ-
ent hash function for each bit of a key. Assume that the
length of each key is kb, we define kb different hash func-
tions, h1, . . ., hkb, where hj is used for the j-th bit of a key.
We apply these hash functions on the index of each key, and
the results are the indices of the hash table, where the actual
bits of the key are stored. For example, if the index of a key
is i, we apply a hash function h1 on i; we use the first bit of
Keys[h1(i)] to store the first bit of the key i. Similarly, the
j-bit of Keys[hj(i)] stores the j-th bit of the key i. Figure 2
illustrates the scrambling scheme. Given such a scrambled
data structure, each key is thus derived using the following
equation:

Ki = || bit(Keys[hj(i)], j)

j = 1..kb

where

i = 0..m− 1 is Node ID.

m is the number of keys.

kb represent size of the key.

Keys array data structure to store the keys.

hj hashing function for the j-th bit.

bit(x, y) function that return value of y-th bit in x.

|| is the concatenation operator.

We define the following hashing function:

hj(i) = (aj i + bj) mod m, (1)

where aj , bj , and m are hash parameters, and aj and bj are
different for different hash functions.

There are two issues that we need to consider when se-
lecting hash functions. First, each hash function has to be
collision free; otherwise, we might have a undesirable situa-
tion where bits of two different keys are stored in the same
location. Namely, we need to guarantee that hi(k) 6= hi(k

′)
if k 6= k′. However, collision free is not necessary for differ-
ent hash functions; namely it is not a problem if hi(k1) and
hj(k2) collides and have the same value w. Although these
two hash values point to the same entry Keys[w] of the hash
table, the first one only chooses the i-th bit of Keys[w] for
key k1 and the second one chooses the j-th bit of Keys[w]
for key k2; as long as i 6= j, they choose two different bits
(see Figure 3).

H
a

sh
ed

 k
ey

s ta
b

le

select the i−th bit

 ipick h (k) entry in hashed keys table

ih (k)

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

Figure 3: Avoiding collision between hashing func-
tions

Second, hash functions introduce a large amount of un-
used memory space; we need to keep the unused space to
the minimum. To address these two issues, we come up
with the following selection criteria:

• aj and bj are positive integers that affect the number
of collisions and space efficiency.

• The larger the value of m is, the lesser the number of
collisions, but the more the un-used spaces.

• For faster computation of mod operation, m should be
a power of 2; this way, the modulus operation can be
implemented using shift, rather than using expensive
divisions.

• bj and m are relatively prime, so that they do not have
common factors other than 1.

• Every prime factor of m is also a factor of aj − 1.

• If m is a multiple of 4, aj − 1 should be multiple of 4.

Theorem 3.1. Let cj and dj be positive integers. When
m = 2cj , aj = 4dj +1, and bj is positive odd, hj is collisions
free. Moreover, there is no un-used space.

Proof. In the appendix.

In our scheme, the values of aj and bj do not need to be
large numbers. This is because each of these value pairs
only corresponds to one single bit of a key. Therefore, using
brute-force attacks to derive these aj and bj values is even
harder than using brute-force attacks to directly guess each
bit of the key. In other words, if attackers try to derive these
hash parameters to get those keys, they have to derive all
these hash parameters correctly. Based on this observation,
we only use 8 bits for aj and bj .

Using different hashing functions for each node will add
one layer of difficulty and will achieve our second goal, which
is making the process of identifying and revealing the keys
for subsequently compromised nodes as hard as that of the
first one. That can be done, by randomly selecting values
for aj and bj that satisfy the constraints above. In order
for attackers to identify and reveal the keys for any node,
the attackers should find out the values of aj , bj and m for
j = 1..kb. If these values are stored in the data segment
too, attackers’ tasks become quite easy; they just need to
find whether the values are stored. Therefore, it is important
to hide these hash parameters.

Figure 4: Keys protection outline

3.2 Code Obfuscation
We propose to hide aj ,bj , and m values inside the code

segment; then we apply code obfuscation to make code analy-
sis a difficult task, so that attackers will find it difficult to
extract these values. Our code obfuscator breaks down all
important constants in the code and replaces them with
pieces of code that construct the values. Moreover, our code
obfuscator randomly generates different code for each node;
therefore, even if the attackers, after code analysis, have
successfully found the locations for these hash parameters
in one compromised node, the analysis results will not help
them to easily get the locations of the hash parameters in a
new node. They have to repeat their code analysis on the
new node.

Our code obfuscator consists of several components, in-
cluding code preprocessing, intermediate code construction,
code flattening, random code generation, and finalizing. Each
component is responsible for part of the obfuscation, but
some of them may run more than once.

3.2.1 Code preprocessing
Code preprocessing is responsible for preparing the code

for the other stages of obfuscation. It removes comments,
standardizes loop and control instructions, splits variable
declarations, and formats instructions. The main goal of
this component is to make the job of the other stages easier.
Dividing the obfuscator into separate stages simplifies the
design, implementation, and testing.

3.2.2 Intermediate code construction
We need to transform a program to another semantically-

equivalent program; our transformation is performed at the
source code level. However, directly transforming the origi-
nal source code written in NesC or C languages is a difficult
task. We take a widely-adopted approach: first, we convert

Figure 5: Code obfuscation outline

the source code of the original program into an intermedi-
ate code representation; and then we construct the target
program from the intermediate code, which is usually much
easier to deal with and can be processed faster [31, 33].

Converting source code into an intermediate code and
working on this intermediate code has many advantages: in-
termediate code is simpler than the original code; it is more
flexible to read and process intermediate code; the structures
of intermediate code are clearer; tools are available for stan-
dard intermediate code. Moreover, using intermediate code
simplifies the design, implementation, and maintenance of
code obfuscator.

In the obfuscation related research, SUIF-2 [1] is a widely-
adopted tool for creating intermediate representation. SUIF-
2 is a compiler infrastructure project, which is co-funded by
DARPA and NSF. It is a new version of the SUIF com-
piler system, a free infrastructure designed to support col-
laborative research in optimizing and parallelizing compil-
ers. However, Since SUIF-2 was not developed for NesC
language (the language used by TinyOS), a number of con-
straints and structures are not supported by SUIF-2. NesC
has several characteristics that differ from other languages
[15], such as the separation of construction and composi-
tion, the specification of component behavior in terms of
set of interfaces, and the bidirectional interfaces. Moreover,
in nesC, components are statically linked to each other via
their interfaces, and nesC is designed under the expectation
that code will be generated by whole-program compilers.
Furthermore, nesC has it own statements that do not ex-
ist in the closest language C, such as connecting interfaces
instructions, and events; it has a restricted variables decla-
ration order where all variables should declared before any
other statement. A few statements syntax also differs be-
tween nesC and C languages. All these differences require

Figure 6: Example of code flattening

us to write a new front tool for SUIF to compile and read
nesC code. Therefore, we decided to develop our own tool
instead of using SUIF.

We use the Extensible Markup Language (XML) as our
intermediate representation because of a number of reasons:
(1) XML documents are easily readable and self-describing:
it is easy for a person to read and understand a well-design
xml document. (2) XML is interoperable: XML is open for
everyone. (3) XML documents can be hierarchical: it is easy
for XML to represent any complex hierarchical structure
such as parsing tree. (4) We do not have to write the parser:
there are many xml parsers available either as stand-alone
programs or as object-based components, such as the XML
parser in Microsoft .Net. We use the XML parser provided
in C#.

3.2.3 Code Flattening
An effective way to make code analysis difficult is to make

the control flow of a program difficult to understand. Con-
trol flow graph (CFG) is graph representation of all paths
that might be traversed through a program during its exe-
cution. Each node in a control flow graph represents a basic
block with no jump statement or jump target (label), while
each edge represents a jump statement from the end of a
source block to the beginning of a destination block. Con-
trol flow graph is essential not only to static analysis tools
but also to many compiler optimizations.

Code flattening is a method for scrambling the control flow
of a program by code transformation. It transforms the code
into another code, in which all jump statements depend on
dynamic values and may jump to any basic block. In other
words, control flow graph will be transformed into a partial
complete graph that is useless for static analysis. We need
to use code flattening to eliminate and destroy the control
flow graph (skeleton) of program code so that static analysis
can not be used efficiently anymore.

Code flattening, first proposed by Wang [31], is performed

The constant value
dynamically generate

Constant Value

Piece of code that

(a) Hidden constant
values

version 2 version nversion iversion 1

Similar versions of software for sensor nodes

Full obfuscation
using

random code generation

version 2 version nversion iversion 1

Different versions of software for sensor nodes

Different
complex dynamic structures

for each version

(b) generate different versions

Figure 7: Objectives of random code generation

in two steps. In the first step, all high-level control instruc-
tions are transformed into their equivalent if-then-goto in-
structions. In the second step, goto instructions are modified
such that their target addresses are determined dynamically.

One way to do code flattening is to transform the con-
trol flow graph of each function into one big switch state-
ment. In which, every case statement represents an edge in
the flow graph before the next control statement (see Fig-
ure 6). In this manner, each function consists of one big
switch statement, which hides the control flow skeleton of
that function, while the branches are replaced with data-
dependent instructions. However, the process of flattening
can be reversed easily, because the data causing jumps be-
tween cases are constants. In our obfuscator, we replace
each constant with a piece of code that deals with pointers.
Injecting these pieces of code into the original code make
static analysis of the code difficult, because the shape of the
control flow graph is now dependent on the data that cannot
be found out using static analysis. More details about in-
jecting these codes are given in the next subsection (random
code generation).

Code flattening can be easily achieved if the source code
has already been transformed to an intermediate code, which
represents the syntactic structure tree of the source code.
Given the control flow that can be extracted easily from the
tree, each edge in the graph can be transformed as one case
in the flattening switch statement. The complexity of this
process is as hard as processing and querying intermediate
code, so that the more flexible and simpler intermediate code
is, the easier the flattening process is.

3.2.4 Random code generation
To diversify sensor node, we use random code generation

to create different version of the same code for each node,
as well as to hide constant data. In order to make the out-
put code hard to analyze, random code generation uses a
randomly generated dynamic data structure. The inserted

No

certain properties

dynamic structures
Random complex

that satisfy
S1, S2, ..., and Sk

C1, C2, ..., and Ci

while keep holding all properties

Create random peice of code
that manipulate subset of

S1, S2, ..., and Sk

C1, C2, ..., and Ci

Insert this code to
obfuscate program code

Program code

More?
Yes

Figure 8: Random code generation cycle

code handles and processes this structure in such a way that
certain properties about the structure are preserved, where
these properties are randomly created. The structure in-
volves a lot of pointers and dynamic data structures, be-
cause it is well-known that analyzing code that deals with
pointers and dynamic data structures is a difficult task and
cannot be done easily using static analysis. These pieces
of code that we generate can be used to construct constant
data, so we do not need to store these constant data in plain-
text in the code. Moreover, they can also be used to insert
control flow instruction that does not affect the output of
the obfuscated code. As a result of that, attacker should
identify and understand the inserted code in order to ana-
lyze the obfuscated code. Since the dynamic data structure
and its reserved properties are randomly generated, attacker
should start from zero every time he/she analyzes the code
of a newly captured sensor node; the correlation of code
among nodes is very low.

The objectives of random code generation can be summa-
rized as the following (see Figure 7):

1. Generating a different version of code for each sen-
sor node. Without random code generation, the codes
running on each sensor node are not diversified.

2. Hiding constant values in the code, by replacing them
with dynamically generated values based on a sequence
of expressions.

The process of random code generation is described in the
following:

• Each version is based on different and randomly gen-
erated complex dynamic structure S1, . . ., Sk, such
that no two versions share the same dynamic struc-
tures (see Figure 8). Si could be any dynamic data
structure that is complex to analyze or understand,
such as dynamic graph data structures.

• Each piece of code inserted to the program code is
a randomly generated code that manipulate S1, . . .,

Sk while preserving the properties C1, . . ., Ci about
the structures, such that no two pieces of code are
similar. Ci represents a certain property about S1,
. . ., Sk. Values storing in certain locations have certain
property (e.g. fix value, even, odd, or follow a certain
relation), or some pointers are always point to different
isolated graphs.

• C1, . . ., Ci are different from one version to another.

• Using code flattening to disguise the control flow and
to make the task of finding similarity among versions
difficult. In this case, static analysis will not be much
useful.

In order to make it more difficult for attackers, code flat-
tening and random code generation can be applied more
than once until we get a best result within the resource con-
straints. Since sensor nodes have limited resources, it may
limit any obfuscator from producing a un-breakable code.
However, as we have stated before, the objective of our pro-
posed scheme is to make the cost of breaking a non-trivial
number of sensor nodes prohibitively high.

3.2.5 Finalizing
This is the final stage, in which we conduct some fur-

ther obfuscation, such as removing comments, changing the
formatting, changing identifiers (e.g. method and variable
names) into meaningless names, and removing debug infor-
mation. We also pre-process the intermediate code to be
transformed back to nesC code.

3.3 Optimization
Sensor nodes (e.g. Mica2) have limited memory, lim-

ited CPU power, and limited batteries. Our scheme output
should run within these constraints and limitations, while
achieving our diversity goals. When the program source
code is really large, resources slack will be small which will
have direct effects on the diversity quality and performance.
There are a number of methods to optimize the performance
of our scheme within a short resource slack. All these meth-
ods are based on the facts that not all codes have the same
importance from the security prospective. In this subsec-
tion, we consider several optimization techniques.

The first technique reduces the number of constant values
that need to hidden using temporary variables. For example,
if we have two variables that need to be set to the same value,
we can set one of the variables to that value and get the value
of the other variable from the first one. In this manner, the
number of constant values appearing in the source code is
reduced.

The second technique leaves some functions un-obfuscated.
These functions can be selected before obfuscation starts by
using special tags as indicator. Functions that are not con-
sidered for obfuscation are less important, from the security
prospective, than the other functions. Namely, being able
to understand the source code for these functions does not
reveal much information about the keys.

The third technique randomly ignores some constant value
from our random code generation. In the same manner as
we have in the second technique, values that need not to
be considered for obfuscation should be selected before ob-
fuscation starts by using special tag. Values are not equally
important. For example, values related to hashing functions

Figure 9: Obfuscation transformation measures, ac-
cording to [33]

such as aj , bj , and m are extremely important than values
related to other different tasks. Instead of using tags to
mark values that need to be obfuscated, we can prioritize
these values so that the obfuscator can compare the im-
portance of each value with other. In this way, obfuscator
can start with the highest priority values first; if resource
permits, the obfuscator can continue obfuscating the values
with lower priority, and so on until we reach the desirable
results.

4. PERFORMANCE EVALUATION
We have implemented out scheme on Mica2 sensor nodes,

we present the performance results in this section. We di-
vide this section into 3 parts. First, we explain the evalu-
ation metrics; second, we show the configuration of our ex-
periments; finally, we present our results and explain their
meaning.

4.1 Performance Metrics
To evaluate the effectiveness and efficiency of our obfus-

cation scheme, a number of things need to be measured.
Collberg et al. classify the criteria for evaluating a code
obfuscation scheme into three categories [7] (also see figure
12):

• Potency: measure of code complexity for human to
understand.

• Resilience: measure how hard and protected the code
is against automatic deobfuscator.

• Cost: measure how much resource is needed by the
obfuscated code.

Based on the above classification, and considered the spe-
cial properties of sensor nodes, we have developed the fol-
lowing metrics, and will use them to evaluate our scheme.

1. Running Time: The running time is a very impor-
tant factor and constraint for wireless sensor network,
because of its limited power and the fact that data
might be time sensitive. Obfuscated code always need
more time than the original code; however this increase
should be reasonable and should not exceed the re-
source capabilities and application constraints. Any
obfuscated code that takes much longer time to run
than its original code will be inapplicable.

2. Memory: sensor nodes have limited amount memory;
for example Mica2 motes have 128K bytes of program
flash memory (ROM) and 4k bytes of physical RAM.

Our scheme should be able to work within these lim-
its, and should not generate programs that exceed the
memory constraints.

3. Lines of code: the oldest and most commonly used
measure of source code program length is the number
of lines of code (LOC). It was a naive way to measure
the complexity of a program. Two reasons why LOC
is popular are that it is easy to calculate, and most
developers have an intuition as to what a line of code
is. LOC metric has never been formalized and defined
clearly by any standards organization. There are two
major types of LOC measures: physical LOC and logi-
cal LOC. Physical LOC is mainly the number of physi-
cal lines in the text of the program’s source code while
logical LOC measures the number of statements which
is specifically defined by their corresponding program-
ming languages. In our paper, we use the most com-
monly used physical LOC–the count of non-blank and
non-comment lines in the text of a program’s source
code.

4. Cyclomatic complexity: Cyclomatic complexity, devel-
oped by Thomas McCabe, is one of the most widely
and effective software metrics [22, 23]. It is used to
measure the complexity of a program by measuring
the number of linearly-independent paths in the pro-
gram. The cyclomatic complexity of a software module
is calculated from a control flow graph of the module
using the following formula:

CC = E −N + P

where CC is cyclomatic complexity, E is the number
of edges of the graph, N is the number of nodes of the
graph, and P is the number of connected components.

4.2 Experiments Configuration
In this subsection, we present our experiment configura-

tion, which includes obfuscator input, the obfuscator itself,
and output.

Input: The RC5 application program was our input for
obfuscator. It is a program that uses the RC5 encryp-
tion/decryption algorithm to encrypt/decrypt a sequence of
data block. RC5 is a fast block cipher designed by Rivest in
1994.

RC5 has many features that make it a desirable choice for
sensor networks, such as:

1. It is a parameterized algorithm with a variable key size,
variable number of rounds, and a variable block size.
The key can range from 0 bits to 2040 bits in size, while
the number of rounds can range from 0 to 255. The
block size can be chosen as 32 bits for experiments and
evaluation, 64 bits for DES replacement, or 128 bits
for high security application. This provides a great
flexibility to RC5 in term of performance, speed, and
security.

2. The encryption routine consists of three primitive op-
erations; integer addition, bitwise XOR, and variable
rotation. This simplicity of RC5 makes it easy to im-
plement and analyze.

3. Heavy use of data-dependent rotations and the mix-
ture of different operations provide the security of RC5.

4. RC5 is a fast block cipher, which make it a good choice
for wireless sensor networks.

There are different encryption/decryption algorithms that
can be used instead. However we have selected RC5 for the
features it provides beside that it has been implemented in
TinySec, which is commonly used in the TinyOS community.
We have selected the following values as the configuration
of our experiments.

• Number of rounds is 12.

• Block size is 8 bytes (64 bits).

• Key size is 8 bytes (64 bits).

• TinySec implementation.

Although we believe that obfuscating the entire whole
TinyOS code will give better results, we have obfuscated
only the application code rather than the entire TinyOS
code. We have done that because when the TinyOS exe-
cutable file – which is loaded to sensor node – is generated,
it mainly consists of two separate parts: one for the appli-
cation and the other for the TinyOS libraries. Mixing them
together is difficult, but will be the pursue of our future
work. Furthermore, the parts of code that we do not obfus-
cate include the library codes and machine-dependent code
that are not much important from the security prospective.
They are not dealing with hashing keys, parameters, or even
the main logic of our code, so that revealing these parts and
being able to read them and understand them does not help
attackers much to achieve their goals.

It is really important to notice that, we do not just obfus-
cate the RC5 algorithm; we apply our scheme to the entire
RC5 application code and the libraries it uses. However, we
do not obfuscate the TinyOS libraries.

Obfuscator: As we mentioned above, we have different
phases; hashing, flattening, and constant hiding and code
generation. We have done the following experiments based
on the configuration of these phases:

• Original program: in which we simply run the original
un-obfuscated code.

• Data obfuscation: in which we apply the data obfusca-
tion only; the goal is to scramble the keys using hash-
ing functions.

• Data and one pass code obfuscation (Flattening only):
beside our data obfuscation, we apply one pass of code
flattening only.

• Full one pass obfuscation: in which a full one pass data
obfuscation and code obfuscation is applied. Since
full obfuscation will increase time and memory usage,
we have also implemented four different optimization
(they are described in the descending order in terms
of their obfuscation strength): (1) full one pass ob-
fuscation 1, where we do not have any optimization;
(2) full one pass obfuscation 2, where the number of
constant values that need to hidden is reduced using
temporary variables; (3) full one pass obfuscation 3,
where the functions that do not need to be obfuscated
are identified using special tags; (4) full one pass ob-
fuscation 4, where some constant values are ignored in
our random code generation.

Figure 10: Lines of code (LOC)

Output: We have compiled and built the output codes to
run under Mica2 platform. We used the default compila-
tion and building flags and options that are defined in the
Makerules file. The optimization flag is defined as -Os which
is the default value too. We used the same rules for all ex-
periments.

4.3 Experiments Results
We have plotted the results as bar charts. In each figure,

we set the performance of the original code as the basic
unit 1, so the y-axe shows the relative performance data
of the obfuscated code to the original code. The absolute
performance values are written on the top of each bar.

4.3.1 Code Complexity
To demonstrate how hard it is for attackers to analyze

our obfuscated code, we use two well-known metrics: one
is to use the number of lines, and the other is to use the
cyclomatic complexity.

Our scheme and obfuscator are expected to increase the
number of logical instruction and lines of source code. In-
creasing lines of codes (LOC) represents the increase in the
complexity of the code, because new lines are used to add
complex structure and code to our original input code. Fig-
ure 10 shows the increase in LOC. We have found that ap-
plying data obfuscation and code flattening only does not
increase LOC much. This is because data obfuscation does
not add much code, while code flattening focuses on hid-
ing the skeleton of control flow rather than increasing lines
of code. However, the full code obfuscation increases the
lines of code very significantly. The increase of LOC will be
reduced when optimization is applied.

Cyclomatic complexity is one of the most widely-used and
effective software metrics. Cyclomatic complexity metric is
collected by a static analyzer from source code. We plot our
results in Figure 11. The results show that our code obfus-
cation increases the cyclomatic complexity quite drastically.
For example, the full obfuscation (without optimization) can
increase the cyclomatic complexity by 95 times; even with
optimization (e.g. level 3), the cyclomatic complexity can
still be increased by 27 times. It is believed that the cyclo-

Figure 11: Cyclomatic complexity

matic complexity gives a good indicator on how difficult a
code can be understood by human.

4.3.2 Running Time
For real-time applications, time is an important factor.

In this experiment, we measure the running time of the pro-
gram under mica2 platform. We compare the running time
of the obfuscated code with that of the original code. Fig-
ure 12 depicts the results. From the figure, we can see that
the increase caused by data obfuscation is trivial (only 2%).
When we apply the data obfuscation and code flattening
together, the running time is increased by 25%. When we
apply full obfuscations, the running time is increased quite
substantially. Our results have also shown that when opti-
mization level is increased, the running time can drop. Of
course, as we have shown before, aggressive optimization
can negate some of the obfuscations and can thus make code
analysis easier for attackers. However, It is worth to note
that when we use the “full one pass obfuscation 3”, the run-
ning overhead is reduced to just 43%. As we can see from
Figure 10 and Figure 11, at this level of optimization, the
complexity of the obfuscated code is still reasonably high.
Therefore, this level of optimization seems a good tradeoff
between code performance and complexity.

It should also be noted that the running-time overhead
is just for encryption/decryption, which only accounts for
a small portion of the running time in most applications.
Therefore, the impact of the code obfuscation on applica-
tions is quite small.

4.3.3 Memory
Memory is also a limited resource in sensor nodes, espe-

cially the RAM, because Mica2 nodes have 4kbytes of RAM
and 128 Kbytes of ROM. We have measured the memory
usage for both original RC5 code and the obfuscated RC5
code. Our results are depicted in Figure 13 for RAM and in
Figure 14 for ROM.

Our results have shown that code obfuscation does not
have any impact on the RAM usage. However, it does have a
substantial impact on ROM usage. From the results, we can
see that without any optimization, the full code obfuscation

Figure 12: Running time in seconds

Figure 13: RAM in bytes

can make the code about 12 times as large. With certain
degree of optimization, the size can be reduced to 6 times as
large for “full one pass obfuscation 3”. These increases are
justifiable because more code should be inserted to achieve
and scrambling and data obfuscation. Although the increase
of ROM usage is substantial, we believe that since RC5 is
the only program that we need to obfuscate, the impact on
the overall ROM usage (including applications) will still be
reasonable. Moreover, since the unused ROM will be mostly
wasted once a sensor is deployed, it is desirable to use those
unused ROM space for code obfuscation purpose.

5. CONCLUSION
Our paper shows that diversity approaches can be applied

to sensor nodes and TinyOS. We have implemented a scheme
to diversify sensor nodes to improve resilience against cap-
ture. Our scheme is a diversified key protection scheme for
sensor network, which diversifies data and code segments by
creating different and obfuscated data and code segment for

Figure 14: ROM in bytes

each node in the network. We have implemented our scheme
for Mica2 motes.

Although sensor nodes have limited resources, the way
nodes are deployed does not require a perfect obfuscation
scheme. Our scheme achieves the following goal: attackers’
effort on compromising one node cannot save their efforts
on compromising another node. Therefore, achieving non-
repeatability is a unique objective for code obfuscation in
sensor networks because of the large number of sensor nodes
in typical sensor-network applications.

There are many open research areas for applying diver-
sity to enhance security in wireless sensor networks, such as
applying diversity for key predistribution scheme, localiza-
tion in wireless sensor networks, energy management, and
network management. Our results have shown that using
diversity to enhance security in sensor networks is a viable
solution.

6. REFERENCES
[1] The suif 2 complier system, 2005.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. A survey on sensor networks. IEEE
Communications Magazine, 40(8):102–114, August
2002.

[3] E. Barrantes, D. Ackley, S. Forrest, T. Palmer,
D. Stefanovic, and D. Zovi. Randomized instruction
set emulation to disrupt binary code injection attacks.
In In Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS), pages
281– 289, October 2003.

[4] C. Blundo, A. De Santis, A. Herzberg, S. Kutten,
U. Vaccaro, and M. Yung. Perfectly-secure key
distribution for dynamic conferences. Lecture Notes in
Computer Science, 740:471–486, 1993.

[5] H. Chan, A. Perrig, and D. Song. Random key
predistribution schemes for sensor networks. In SP
’03: Proceedings of the 2003 IEEE Symposium on
Security and Privacy, page 197, Washington, DC,
USA, 2003. IEEE Computer Society.

[6] M. Chew and D. Song. Mitigating buffer overflows by
operating system randomization. Technical Report
CMU-CS-02-197, Department of Computer Science,
Carnegie Mellon University, dec 2002.

[7] C. Collberg, C. Thomborson, and D. Low. A
taxonomy of obfuscating transformations. Technical
report, July 1997.

[8] D. Dasgupta. Immunity-based intrusion detection
system: A general framework. In In Proceedings of
22nd National Information Systems Security
Conference (NISSC), pages 147–160, 1999.

[9] Y. Deswarte, K. Kanoun, and J-C. Laprie. Diversity
against accidental and deliberate faults. In CSDA ’98:
Proceedings of the Conference on Computer Security,
Dependability, and Assurance, page 171, Washington,
DC, USA, 1998. IEEE Computer Society.

[10] W. Du, J. Deng, Y. S. Han, S. Chen, and P. Varshney.
A key management scheme for wireless sensor
networks using deployment knowledge. In Proceedings
of the IEEE INFOCOM’04, pages 586–597, Hongkong,
China, March 7-11 2004.

[11] W. Du, J. Deng, Y. S. Han, and P. Varshney. A
pairwise key pre-distribution scheme for wireless
sensor networks. In Proceedings of the 10th ACM
Conference on Computer and Communications
Security (CCS), pages 42–51, Washington DC, USA,
October 27–31 2003.

[12] R. J. Ellison, D. A. Fisher, R. C. Linger, H. F. Lipson,
T. A. Longstaff, and N. R. Mead. Survivability:
Protecting your critical systems, 1999.

[13] L. Eschenauer and V. D. Gligor. A key management
scheme for distributed sensor networks. In CCS ’02:
Proceedings of the 9th ACM conference on Computer
and communications security, pages 41–47, New York,
NY, USA, 2002. ACM Press.

[14] S. Forrest, A. Somayaji, and D. H. Ackley. Building
diverse computer systems. In Workshop on Hot Topics
in Operating Systems, pages 67–72, 1997.

[15] D. Gay, P. Levis, D. Culler, and E. Brewer. nesc 1.1
language reference manual, May 2003.

[16] D. Geer, R. Bace, P. Gutmann, P. Metzger, C. P.
Pfleeger, J. S. Quarterman, and B. Schneier.
Cyberinsecurity: The cost of monopoly. Technical
report, 2003.

[17] M. A. Hiltunen, R. D. Schlichting, C. A. Ugarte, and
G. T. Wong. Survivability through customization and
adaptability: The cactus approach. In In Proceedings
of DARPA Information Survivability Conference and
Exposition, pages 294–307, 2000.

[18] G. S. Kc, A. D. Keromytis, and V. Prevelakis.
Countering code-injection attacks with instruction-set
randomization. In CCS ’03: Proceedings of the 10th
ACM conference on Computer and communications
security, pages 272–280, New York, NY, USA, 2003.
ACM Press.

[19] R. C. Linger. Systematic generation of stochastic
diversity as an intrusion barrier in survivable systems
software. In HICSS ’99: Proceedings of the
Thirty-Second Annual Hawaii International
Conference on System Sciences-Volume 3, page 3062,
Washington, DC, USA, 1999. IEEE Computer Society.

[20] C. Linn and S. Debray. Obfuscation of executable

code to improve resistance to static disassembly. In
CCS ’03: Proceedings of the 10th ACM conference on
Computer and communications security, pages
290–299, New York, NY, USA, 2003. ACM Press.

[21] Donggang Liu and Peng Ning. Establishing pairwise
keys in distributed sensor networks. In CCS ’03:
Proceedings of the 10th ACM conference on Computer
and communications security, pages 52–61, New York,
NY, USA, 2003. ACM Press.

[22] Thomas J. McCabe. A complexity measure. IEEE
Transactions of Software Engineering,
SE-2(4):308–320, December 1976.

[23] Thomas J. McCabe and Charles W. Butler. Design
complexity measurement and testing.
Communications of the ACM, 32(12):1415–1425, 1989.

[24] M. C. Mont, A. Baldwin, Y. Beres, K. Harrison,
M. Sadler, and S. Shiu. Towards diversity of cots
software applications: Reducing risks of widespread
faults and attacks, Oct. 2000.

[25] R. Nowak and U. Mitra. Boundary estimation in
sensor networks: Theory and methods. 2nd
International Workshop on Information Processing in
Sensor Networks, April 2003.

[26] R. D. Nowak. Distributed em algorithms for density
estimation and clustering in sensor networks. In IEEE
Transactions on Signal Processing, Special Issue on
Signal Processing in Networking. IEEE Press, 2003.

[27] A. J. O’Donnell and H. Sethu. On achieving software
diversity for improved network security using
distributed coloring algorithms. In CCS ’04:
Proceedings of the 11th ACM conference on Computer
and communications security, pages 121–131, New
York, NY, USA, 2004. ACM Press.

[28] A. Perrig, R. Szewczyk, V. Wen, D. E. Culler, and
J. D. Tygar. SPINS: security protocols for sensor
netowrks. In Mobile Computing and Networking, pages
189–199, 2001.

[29] N. Roux, J-S. Pegon, and M. Subbarao. Cost adaptive
mechanism to provide network diversity for manet
reactive routing protocols. In In proceedings of
MILCOM 2000, pages 287–291, Oct. 2000.

[30] D. Wagner. Resilient aggregation in sensor networks.
In SASN ’04: Proceedings of the 2nd ACM workshop
on Security of ad hoc and sensor networks, pages
78–87, New York, NY, USA, 2004. ACM Press.

[31] C. Wang. A Security Architecture for Survivability
Mechanisms. PhD thesis, Department of Computer
Science, University of Virginia, October 2000.

[32] F. Wang and R. Uppalli. Sitar: A scalable
intrusion-tolerant architecture for distributed services,
2003.

[33] G. Wroblewski. General Method of Program Code
Obfuscation. PhD thesis, Wroclaw University of
Technology, Institute of Engineering Cybernetics,
2002.

[34] Y. Zhang, H. Vin, L. Alvisi, W. Lee, and S. K. Dao.
Heterogeneous networking: a new survivability
paradigm. In NSPW ’01: Proceedings of the 2001
workshop on New security paradigms, pages 33–39,
New York, NY, USA, 2001. ACM Press.

7. APPENDIX
Proof of Theorem 3.1. In order to prove that hj is col-
lision free and there is no un-used space, we have to prove
that the following conditions are satisfied

• aj and bj are positive integers.

• bj and m are relatively prime, so that they do not have
common factors other than 1.

• Every prime factor of m is also a factor of aj − 1.

• If m is a multiple of 4, aj − 1 should be multiple of 4.

These conditions as we explained in our paper, represents
the require selection criteria in order the hashing function
to be collision free and does not have un-used space. These
rules are based on linear-congruential generators and theory
of congruences.

Since

dj is a positive integer ⇒ 4dj + 1 is positive integer

⇒ aj is positive integer (2)

bj is positive odd ⇒ bj is positive integer (3)

From 2 and 3, the first condition is satisfied.

Since bj is odd, then 2 is not a prime factor for bj .
However, m = 2cj which means that 2 is the only prime
factor for m.
Therefore m and bj do not share any prime factor.
Therefore m and bj are relatively prime and the second con-
dition is satisfied.

Since

4dj |2 ⇒ aj − 1|2 (4)

m = 2cj ⇒ 2 is the only prime factor of m (5)

From 4 and 5, every prime factor of m is also a prime factor
of aj − 1, and condition 3 is satisfied.

Since

4dj |4 ⇒ aj − 1|4 aj − 1 is multiple of 4 (6)

From 6, condition is satisfied.

Therefore all conditions satisfied and the theorem is proven.

