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ABSTRACT
Collaborative filtering (CF) techniques are becoming increas-
ingly popular with the evolution of the Internet. Such tech-
niques recommend products to customers using similar users’
preference data. The performance of CF systems degrades
with increasing number of customers and products. To re-
duce the dimensionality of filtering databases and to improve
the performance, Singular Value Decomposition (SVD) is
applied for CF. Although filtering systems are widely used
by E-commerce sites, they fail to protect users’ privacy.
Since many users might decide to give false information be-
cause of privacy concerns, collecting high quality data from
customers is not an easy task. CF systems using these
data might produce inaccurate recommendations. In this
paper, we discuss SVD-based CF with privacy. To protect
users’ privacy while still providing recommendations with
decent accuracy, we propose a randomized perturbation-
based scheme.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce—
Security ; H.2.8 [Database Management]: Database Ap-
plications—Data Mining

General Terms
Security, Performance, Experimentation
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Information overload is becoming a major problem for
users with the evolution of the Internet. Different approaches
are used to separate the interesting and the valuable infor-
mation from the rest in order to cope with this problem.
Collaborative filtering (CF) is a recent technique that helps
users to cope with information overload by using the prefer-
ences of other users. With the growth of E-commerce, there
is increasing commercial interest in CF technology. Some
commercial web sites like Amazon.com, CDNow.com, and
MovieFinder.com have made successful use of CF.

CF systems work by collecting ratings for items and match-
ing together users who share the same interest or tastes.
Such systems help new users to better decide which items
to buy. The goal of CF is to predict how well a user, referred
to as the active user, will like an item that he did not buy be-
fore based on the preferences of a community of users [10].
While it was shown that the memory-based (correlation-
based) CF schemes perform well [10], they suffer from some
limitations [4, 13]. Therefore, in addition to correlation-
based CF algorithms, SVD is applied for CF to address such
limitations [4, 13].

Although it has been shown that CF systems have many
successful applications in several domains, such systems have
a number of disadvantages [6, 7]. The most important is
that they are a serious threat to individual privacy. Most
online vendors collect preferences of their customers, and
make efforts to preserve their customers’ privacy. However,
several schemes are extremely vulnerable and can be mined
for preferences of users [6]. In addition, customer data is a
valuable asset and it has been sold when some E-companies
suffered bankruptcy. The courts have supported the rights
of liquidators to sell off data about their customers’ personal
information as an asset. Since data from users are needed
for CF purposes and many users have concerns about their
privacy, providing privacy measures is a key to the success of
both data collection and producing recommendations with
decent accuracy.

Some people might be willing to selectively divulge in-
formation if they can get benefit in return [14]. However,
according to a survey conducted in 1999 [8], a significant
number of people are not willing to divulge their informa-
tion because of privacy concerns. The challenge is how can
users contribute their private information for CF purposes
without greatly compromising their privacy?

Anonymous techniques [1, 12] are widely used to achieve
privacy. Such techniques allow users to divulge their data
without disclosing their identities. However, it is difficult for



the database owner to guarantee the quality of the database
because a malicious user could send random data and render
the database useless, or a competing company could send a
great deal of made-up information to make their products
the most favorable ones. It is important for the database
owner to verify the identities of the data contributors to
guarantee the quality.

We propose a scheme to allow SVD-based CF with pri-
vacy. Our goal is to ensure users’ privacy and to provide
accurate predictions. However, privacy and accuracy are
conflicting goals; improving one of them decreases the other.
We propose a technique to achieve a balance between them.
We want to prevent the server from learning which items
that the users rated before and how much they like or dis-
like those rated items. In our scheme (Fig. 1), each user
first disguises his private data, and sends it to the data col-
lector (the server), such that the server cannot derive the
truthful information about the user’s private information.
However, the data disguising scheme should still be able to
allow the server to conduct CF from the disguised data. We
use randomized perturbation (RP) techniques [3] to disguise
private data. These techniques are useful if we are interested
in aggregate data rather than individual data items because
when the number of users and items are significantly large,
the aggregate information of these users can be estimated
with decent accuracy. Since SVD-based CF is based on ag-
gregate values of a dataset, we hypothesize that by combin-
ing the RP techniques with SVD-based CF algorithms, we
can achieve a decent degree of accuracy for SVD-based CF
with privacy.
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Figure 1: Privacy preserving CF with SVD

To verify this hypothesis, we implemented the RP tech-
nique for the SVD-based CF algorithm [13]. We then con-
ducted a series of experiments to show how accurate our
results are. We measured the overall performance of our
scheme based on disguised data. Our results show that the
predictions we have found on randomized data are very close
to the original ratings.

2. RELATED WORK
Canny proposes alternative models for privacy-preserving

collaborative filtering (PPCF) in which users control all of
their data [6, 7]. A community of users can compute a pub-
lic “aggregate” of their data that does not expose individual
users’ data. He iteratively calculates the aggregate requiring
only addition of vectors of user data. He then uses homo-
morphic encryption to allow sums of encrypted vectors to be
computed and decrypted without exposing individual data.

Our work here differs from Canny’s work. While his work
focuses on the P2P framework, in which users actively par-
ticipate in the CF process, our work focuses on another

framework, in which users send their data to a server and
they do not participate in the CF process; only the server
needs to conduct the CF. Polat and Du [11] used random-
ized perturbation for privacy-preserving correlation-based
CF. While their work focuses on correlation-based CF with
privacy, our work here focuses on SVD-based CF with pri-
vacy. In our scheme, the server creates a database (user-item
matrix, A), and uses SVD to factor A into three matrices
that are used for predictions.

3. SVD-BASED CF
SVD is a well-known matrix factorization technique that

factors an n × m matrix A into three matrices [13] as A =
USV T where U and V are two orthogonal matrices of size
n × y and m × y, respectively; y is the rank of the matrix
A. S is a diagonal matrix of size y × y having all singular
values of matrix A as its diagonal entries. It is possible to
reduce the y × y matrix S to have only k largest diagonal
values to obtain a matrix Sk, k < y.

Sarwar et al. [13] propose an SVD-based CF algorithm.
The sparse user-item ratings matrix (A) is filled using the
average ratings for users to capture a meaningful latent re-
lationship. The filled matrix is normalized by converting
ratings to z-scores. The normalized matrix (Anorm) is fac-
tored into U , S, and V using SVD. Then the matrix Sk is
obtained by retaining only k largest singular values. Accord-
ingly, the dimensions of matrices U and V are also reduced.
Then, Uk

√
Sk and

√
SkV T

k are computed. These resultant
matrices can be used to compute the prediction for any user
u on item q. To compute the prediction, the scalar product
of the uth row of Uk

√
Sk (denoted as Uk

√
Sk(u)) and the

qth column of
√

SkV T
k (denoted as

√
SkV T

k (q)) is calculated
and the result is denormalized as follows:

puq = vu + σu

h
Uk

√
Sk(u) ·

√
SkV T

k (q)
i

(1)

where vu and σu are mean rating and standard deviation
for user u, respectively. Since the user u who is looking
for prediction will do the denormalization, we can define
puq = vu + σup where

p = Uk

√
Sk(u) ·

√
SkV T

k (q) (2)

4. PRIVACY-PRESERVING SVD-BASED CF
Randomized perturbation techniques were first used by [3]

to achieve privacy. In order to disguise a number a, a simple
way is to add a random value r to it. a+r, rather than a, will
appear in the database, where r is a random value drawn
from some distribution. Although we cannot do anything
to a since it is disguised, we can conduct certain computa-
tions if we are interested in the aggregate data rather than
individual data items. The basic idea of randomization is
to perturb the data in such a way that the server can only
know the range of the data, and such range is broad enough
to preserve users’ privacy.

With the privacy concerns, the server should not know the
true ratings of each user and which items that are rated. We
created random numbers using uniform and Gaussian dis-
tributions. In uniform distribution, all users create uniform
random values from a range [−α, α] where α is a constant
number. For Gaussian distribution, each user generates ran-
dom values using normal distribution with mean (µ) being 0
and standard deviation (σ). Users disguise their data before



they send it to the server. The steps of data disguising are
as follows:

1. The server decides on the distributions of perturbing
data (uniform or Gaussian) and parameters (α, σ, and
µ), and let each user know.

2. Each user u fills empty cells of his ratings vector using
his mean vote and calculates the z-scores.

3. Each user u creates m random values ruj drawn from
some distribution, where m is the total number of
items. Then each user u adds those random values to
his z-score values and generates the disguised z-scores
z′

uj = zuj +ruj for j = 1 . . . m. Finally, each user sends
z′

uj values to the server who creates the disguised user-
item matrix (A′).

To provide CF services, the server first computes the SVD
of matrix A′. As explained before, once the server computes
A′T A′, it can find S′ and V ′ matrices based on A′T A′ where
S′ and V ′ are estimated matrices of S and V , respectively.
Each entry of A′T A′ is estimated by calculating the scalar
product of rows of matrix A′T and the columns of the matrix
A′. The entries other than the diagonal ones are estimated
as follows:

(A′T A′)fg =

nX
u=1

(zuf + ruf )(zug + rug) =

nX
u=1

zufzug

+

nX
u=1

zufrug +

nX
u=1

zugruf +

nX
u=1

rufrug ≈
nX

u=1

zufzug (3)

where n is the total number of users, f and g show the row
and column numbers, respectively, and f 6= g. Since random
values ruf ’s and rug’s are independent and drawn from some
distribution with µ = 0, the expected value of

Pn

u=1 rufrug

is 0. Similarly, the expected values of
Pn

u=1 zufrug andPn

u=1 zugruf are 0. However, since the scalar product is
computed between the same vectors for the diagonal en-
tries (f = g), we can estimate them as follows:

(A′T A′)ff =
nX

u=1

(zuf + ruf )(zuf + ruf ) =

nX
u=1

z2
uf + 2

nX
u=1

zufruf +
nX

u=1

r2
uf ≈

nX
u=1

z2
uf +

nX
u=1

r2
uf (4)

Again, the expected value of
Pn

u=1 zufruf is 0. However,
since we only need

Pn

u=1 z2
uf values for diagonal entries, we

need to get rid of
Pn

u=1 r2
uf in Eq. 4 as follows:

(A′T A′)ff ≈
nX

u=1

z2
uf +

nX
u=1

r2
uf − nσr

2 ≈
nX

u=1

z2
uf (5)

where σr is the standard deviation of random numbers. Af-
ter estimating the matrix A′T A′, the server can now com-
pute the eigenvalues from A′T A′, which are used to find
eigenvectors that form the matrix V ′. It then finds the ma-
trix S′ using the eigenvalues estimated from A′T A′.

Finally, the server needs to calculate the first y column-
vectors of U using bi = s−1

i Avi for i = 1 . . . y where vi’s
are column-vectors of V . Similarly, bi vectors can be esti-
mated using A′, s′i, and v′

i vectors where v′
i’s and s′i’s are

estimated from the matrix A′T A′. The entries of b′i vectors
are estimated as follows:

b′i(j) = s′i
−1

mX
l=1

(zjl + rjl)v
′
il =

s′i
−1

mX
l=1

zjlv
′
il + s′i

−1
mX

l=1

rjlv
′
il ≈ s′i

−1
mX

l=1

zjlv
′
il (6)

where j = 1 . . . n and the expected value of
Pm

l=1 rjlv
′
il is 0.

After estimating U ′, S′, and V ′T from disguised data,

the server forms S′
k and computes U ′

k

p
S′

k and
p

S′
kV

′T
k

matrices. To get a prediction for item q, the user u sends
a query (for which item he is looking for prediction) to the
server who computes p′ by calculating the scalar product of

the uth row of U ′
k

p
S′

k and the qth column of
p

S′
kV

′T
k and

sends the result to the user u who can now calculate the p′
uq

using Eq. 1.

5. EXPERIMENTS
We used two datasets in our experiments. Jester is a web-

based joke recommendation system, developed at University
of California, Berkeley [9]. The database has 100 jokes and
records of 17,988 users. The ratings range from -10 to +10,
and the scale is continuous. MovieLens (ML) data were col-
lected by the GroupLens Research Project at the University
of Minnesota (www.cs.umn.edu/research/Grouplens). Our
ML data consists of 100,000 ratings for 1,682 movies by 943
users. Ratings are made on a 5-star scale. We used the
Mean Absolute Error (MAE) and the standard deviation (σ)
as criteria for accuracy analysis.

For privacy analysis, we used the method suggested in [2],
which takes into account the distribution of original data.
The privacy measure should indicate how closely the original
value of an item can be estimated from the perturbed data.
Agrawal and Aggarwal [2] propose a privacy measure based
on the differential entropy (h) of a random variable (X).

They propose 2h(X) as a measure of privacy inherent in the
random variable X and denote it by Π(X). The average con-

ditional privacy of X given Z is defined as Π(X|Z) = 2h(X|Z)

where h(X|Z) is the conditional differential entropy of X

given Z. This motivates the metric P (X|Z) = 1− 2−I(X;Z),
which is the fraction of privacy of X lost by revealing Z
where I(X; Z) = h(Z) − h(Z|X). If the original value is X,
which is disguised by R, after revealing Z (Z = X + R), X
has privacy Π(X|Z) = Π(X)

�
1 − P (X|Z)

�
.

5.1 Methodology
We filled the null entries in the user-item matrix (A) by

replacing each null entry with the user mean votes for the
corresponding rows. We normalized matrix A by replacing
each entry with zuj (zuj = (vuj − vu)/σu), where vu is the
user average vote and σu is the standard deviation of user
u. Then, we created m random values ruj using uniform or
Gaussian distributions for each user and added them to the
z-score values.

Although we used all users in ML dataset, we randomly
selected 1,000 users for training from Jester dataset. 10%
of the users that we used in our experiments were randomly
selected as test users.

We conducted two classes of experiments in terms of avail-
able number of ratings. In the first class, we withheld a sin-
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(a) MovieLens dataset (rating range: 1–5)
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Figure 2: Number of users and quality of predictions

gle randomly selected rated item for each user in the test
set, and tried to predict its value given all other votes the
user rated (All but 1 protocol) [5]. In the second class, we
randomly selected 5 rated items from each test user as test
items, and attempted to predict for those items (All but 5
protocol). We replaced the entries for test items as null.
Then we used our SVD-based scheme to predict ratings on
selected items for that user. We compared the predictions
that we found based on disguised data with the withheld
ratings. We ran this procedure 50 times for each test user
and found the MAEs and the standard deviations. Then we
averaged them over all test users.

5.2 Experimental Results
To evaluate the overall performance of our scheme, we

conducted several experiments. We hypothesize that privacy
and accuracy depend on several factors including the total
number of users (n) and items (m), the distribution and the
range of perturbing data, and the total number of retained
singular values (k). We found 10 to be the optimum value
of k for both datasets.

5.2.1 Total Number of Users (n) and Items (m)
To show that our scheme works better with increasing

n, we conducted three different sets of experiments using
both datasets where we fixed the number of items to 1,682
and 100 for ML and Jester, respectively and set k = 10
while varying n. We used All but 5 protocol and showed our
results in Fig. 2. We created perturbing data using uniform
and Gaussian distributions with σ = 1. Fig. 2 shows MAEs
for undisguised data, uniform and Gaussian perturbed data
for both datasets. As we expected, accuracy improves with
increasing n. In Eq. 3 and Eq. 4, the scalar products are
computed over n. In the long run, the sample mean and
variance of perturbing data will converge to their expected
values. Therefore, the accuracy of our scheme is getting
better with increasing n.

We conducted experiments to show the effects of different
total numbers of items and showed our results based on ML
data in Table 1. We used All but 5 protocol where we fixed n
while varying m. First, we used all available items, and then

Table 1: Number of items - prediction quality
Data Disguise 943x1,682 943x500 779x100

MAE Uniform 0.7229 0.7815 0.8354
Gaussian 0.7104 0.7706 0.8015

Undisguised 0.6952 0.7359 0.7422
σ Uniform 0.6069 0.5919 0.6907

Gaussian 0.6172 0.6032 0.6683
Undisguised 0.5947 0.5683 0.5722

we randomly selected 500 and 100 items. When we selected
100 or 500 items, we used the users who rated at least two
items among those items. Because of that, there are 779
users in our third group experiments where m = 100. As
can be seen from the table, accuracy becomes better with
increasing m because the scalar product between A′ and v′

i

is computed over m in Eq. 6. As explained before, with
increasing m, the sample mean and variance of perturbing
data will converge to their expected values. Therefore, ac-
curacy improves with increasing m.

5.2.2 Level of Perturbation
We conducted experiments using ML data while varying

the parameters of perturbing data to show how the levels of
perturbation affect accuracy. We created random numbers
using uniform and Gaussian distributions while varying the
standard deviations. We used 943x1,682 user-item matrix.
We compared the predictions based on disguised data us-
ing our scheme with the predictions on original data. Fig. 3
shows how mean absolute errors change with increasing level
of perturbation. As seen from Fig. 3, the level of perturba-
tion is critical for accuracy. The results become better with
decreasing levels of perturbation. As we know, when the
standard deviation is small, the randomness also becomes
smaller; thus accuracy can be improved.

5.2.3 Privacy and Accuracy
To protect the private data, the level of perturbation is

critical. If the level is too low, the perturbed data still dis-
closes significant amounts of information; if it is too high,
accuracy will be very low. The greater the level of perturba-
tion, the greater the amount of privacy we have. For exam-
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Figure 3: Level of perturbation and MAEs

ple, while Π(X|Z) is 1.5491 when σ = 0.5, it is 2.4561 when
σ = 1 for uniform distributed perturbing data. With in-
creasing levels of perturbation, privacy loss becomes smaller.
However, accuracy decreases with increasing levels of per-
turbation. We showed the tradeoff between privacy loss
and accuracy in Fig. 4 for ML data. Although privacy lev-
els increase with increasing levels of perturbation, accuracy
becomes worse because accuracy and privacy conflict each
other.
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Figure 4: Privacy loss vs. accuracy

5.2.4 Summary
As can be seen from Fig. 2(a), in which we showed results

for ML dataset, the MAE is 0.7964 when we use uniform
perturbing data for data disguising with σ = 1 and n = 100.
However, it is 0.0818 when we compared the predictions
from disguised data with the predictions on original data
where the MAE is 0.7146. Since the rating range for ML
dataset is from 1 to 5, MAE = 0.0818 indicates our results
are very close to the results generated from the original data.
In Fig. 2(b), in which we showed results for Jester dataset,
the MAE is 0.5145 for uniform perturbing data with σ =
1 and n = 100 when we compared the predictions from
disguised data with the predictions on original data. Since
the rating range is from -10 to 10 in Jester dataset, an error
of 0.5145 is equivalent to 0.1029 in a 1– 5 scale.

6. CONCLUSIONS AND FUTURE WORK
We have presented a solution to SVD-based CF with pri-

vacy. Our solution makes it possible for servers to collect
private data without greatly compromising users’ privacy.
Our experiments have shown that our solution can achieve
accurate predictions while preserving privacy. We believe
that accuracy of our scheme can be further improved if more
aggregate information is disclosed along with the disguised
data, especially those whose disclosure does not compromise
much of users’ privacy. We will study how these kinds of ag-
gregate data disclosures affect accuracy and privacy.
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