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Abstract. Android’s data cleanup mechanism has been called into ques-
tion with the recently discovered data residue vulnerability. However,
the existing study only focuses on one particular Android version and
demands heavy human involvement. In this project, we aim to fill the
gap by providing a comprehensive understanding of the data residue
situation across the entire Android ecosystem. To this end, we propose
ANRED1, an ANdroid REsidue Detector that performs static analysis
on Android framework bytecode and automatically quantifies the risk
for each identified data residue instance within collected system services.
The design of ANRED has overcome several challenges imposed by the
special characteristic of Android framework and data residue vulnerabil-
ity. We have implemented ANRED in WALA and further evaluated it
against 606 Android images. The analysis results have demonstrated the
effectiveness, efficiency and reliability of ANRED. In particular, we have
confirmed the effect of vendor customization and version upgrade on data
residue vulnerability. We have also identified five new data residue in-
stances that have been overlooked in the previous study, leading to data
leakage and privilege escalation attacks.

1 Introduction

The prosperity of Android ecosystem contrasts sharply with the short lifespan of
applications (apps, in short) on devices. Seemingly harmless, a recent study [40]
has uncovered the data residue vulnerability arising from the app uninstallation
process on the Android platform. In particular, when an app is uninstalled from
the device, its data may be still scattered stealthily around privileged system ser-
vices within Android framework. More surprisingly, the protection on these data
leftover is problematic, empowering unauthorized adversaries to access users’
sensitive information, such as credentials, emails and bank statements. As a pi-
oneer that sheds lights on the data residue vulnerability, the above-mentioned
study limits its scope to AOSP version 5.0.1 with the requirement of source code
and significant manual effort. However, the extensive customization on Android
devices from different vendors and the high fragmentation of Android operating
system demand an automatic, scalable and source code independent framework
for data residue detection.
1 ANRED is a former French public institution for the recovery and disposal of waste.



To this end, we propose ANRED, an ANdroid REsidue Detector that takes
an Android device image as input and automatically quantifies the risk for each
identified data residue instance within collected system services. The design of
ANRED has overcome several challenges. First, we have employed several novel
techniques to generically preprocess Android images from different vendors, ac-
curately pinpoint all system services within the given image, identify entry points
for each system service and connect the broken links on the call graph resulting
from the event-driven nature of Android system. Second, we have inferred data
residue instances from mismatches between the deleting data set and the sav-
ing data set. To retrieve those two data sets, we have divided the original call
graph into two subgraphs originating from the saving and deleting entry points.
While the saving entry points capture all interactions with the apps, deleting
entry points are functions that handle app uninstallation. Further complicating
the detection process is when the data removal operation is present in Android
framework, but the underlying logic is flawed. In these cases, we have taken the
complexity of the deleting logic into consideration and quantified the possibility
of each detected data residue instance.

We have evaluated ANRED against 606 Android images from several major
vendors, such as Google, Samsung, Xiaomi and CyanogenMod, covering all plat-
form versions from Gingerbread to the newest Marshmallow. ANRED detects
191 likely data residue instances on average for each image, of which 106 (55.5%)
are missing data deletion logic upon app uninstallation. We have confirmed that,
vendor customization is indeed a major factor in introducing new data residue
instances, while the effect of version upgrade varies from vendor to vendor. To
evaluate its effectiveness, we compare the analysis result from ANRED with that
from the previous study [40] for the same image. Totally, 253 likely data residue
instances are identified on this image by ANRED, with 205 (%81) of them la-
belled as highly risky. We have manually validated all 205 risky instances and
uncovered 15 data residue vulnerabilities. The other 190 instances are neither
app specific nor security relevant. Among those 15 identified vulnerabilities, 10 of
them have been captured in the previous study, while the other 5 vulnerabilities
are newly discovered, leading to data leakage and privilege escalation attacks.

Contributions The contribution of our work is three-fold:

– New Framework : we have designed and implemented ANRED as an au-
tomatic, scalable and source code independent framework for data residue
detection on Android.

– New Understanding : we have evaluated ANRED against 606 images and
presented an accurate and comprehensive understanding of the data residue
situation across the entire Android ecosystem.

– New Findings: we have identified a large amount of risky data residue in-
stances and further confirmed 5 new vulnerabilities with severe real-world
damage.

Roadmap The rest of this paper is organized as follows: Section 2 explains
the necessary background knowledge and presents a motivating example to drive
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1 f ina l Class SystemServer {
2 public SystemServer ( ){
3 . . .
4 // s t a r t i n g the AbcService

5 ServiceManager . addServ ice
6 ("Abc" , new AbcService ( ) ) ;
7 . . .
8 }
9 }

(a) Service Start-up

1 /∗ @hide ∗/

2 interface IAbc{
3 . . .
4 // one of the exposed APIs

5 void setComponent ( St r ing s ) ;
6 . . .
7 }

(b) Service Interface

1 Class AbcService extends SystemService
2 extends BroadcastRece iver {
3 @Override
4 onStart ( ){
5 pub l i shB inde rSe rv i c e (
6 new BinderServ i ce ( ) ) ;
7 }
8 Class BinderServ i ce extends IAbc . Stub{
9 Publ ic void setComponent ( St r ing s ){

10 new MyHandler ( ) . sendEmptyMessage ( ) ;
11 }
12 }
13 Class MyHandler extends Handler {
14 @Override
15 public void handleMessage ( Message m){
16 db . putStr ingForUser ("Abc" , s ) ;
17 }
18 }
19 @Override
20 onReceive ( ){
21 prepare ( ) ;
22 removeData ( ) ;
23 }
24 }

(c) Service Implementation

Fig. 1. A motivating example that shows the working flow of Android system services
and origin of data residue instances.

our framework design. Section 3 breaks down the design details of each building
block in ANRED. Section 4 further explains the technical details. Section 5
breaks down the evaluation results of ANRED on 606 images. Finally, Section 6
describes the related work and Section 7 makes conclusions.

2 Background

In this section, we present necessary background knowledge to facilitate the
design of ANRED.

Android System Services In Android, system services provide privileged
operations that can be requested by apps via permission declaration in their
AndroidManifest files. Android system services execute in the System_Server
process, and expose their functionalities through APIs defined in correspond-
ing interfaces. Figure 1 demonstrates this process with a manually crafted sys-
tem service AbcService based on real instances (DreamManagerService and
SpellCheckerService). During system booting up, the SystemServer class
adds the AbcService to the system service list (Figure 1(a)). By doing so, it
triggers the lifecycle event onStart() in the AbcService implementation (Fig-
ure 1(c)). Upon starting, AbcService exposes its functionalities via an IBinder
object that implements the APIs defined in the IAbc interface (Figure 1(b)). An
interface essentially defines the protocol between two communication endpoints
across the process boundary. In this case, an app can use the exposed IBinder
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Fig. 2. Flow of data residue generation and exploits on Android

object to invoke the setComponent() API in the System_Server process by
complying with the protocol defined in the AbcService interface. All functions
defined in the interface are entry points for outside apps to trigger the saving
operations within this privileged system service.

Android App Uninstallation When an app is uninstalled from the An-
droid system, the PackageManagerService will remove any resources stored in
the app’s private directories. Then, it sends out a broadcast event to awake
the uninstallation handling logic in other parts of the system. In Figure 1(c),
the AbcService will receive such a broadcast event in its onReceive() function,
and responds by removing related data after preparation. Apart from the generic
BroadcastReceiver approach in Figure 1(c), there exist three other ways to get
notified upon app uninstallation, including PackageMonitor, DeathRecipient
and RegisteredServicesCacheListener. All of them are entry points for trig-
gering data deleting logic within system services upon app uninstallation.

Android Data Residue Vulnerability Data residue exist on Android due
to the mismatch between saved data and deleted data within a system service
upon app uninstallation. This process usually involves four steps, as illustrated
in Figure 2. It starts with the installation of a normal app (step 1). Upon user
interaction, the data related to this app will be saved by certain system ser-
vices within Android framework (step 2). For instance, the implementation of
AbcService shown in Figure 1(c) asynchronizely handles the IPC invocation of
setComponent() by saving user configuration into a database with Abc as the
entry key. Files, databases and well-marked data structures (e.g. Hashmap) are
normally used to store app-specific data. Later on, when the app is uninstalled,
Android will try to delete related data from memory and persistent storage (step
3). In this step, the above-mentioned Abc entry will become residue if the app
uninstallation handling logic is not in place or flawed. Having data leftover does
not necessarily lead to security breaches, as long as the protection is sound.
Otherwise, sensitive information will be leaked out to adversaries (step 4).

3 Design

The high-level flow of ANRED is depicted in Figure 3. To mitigate the absence of
framework source code and limitation of hardware resources, ANRED depends
on static analysis to directly work on Java bytecode. In this process, ANRED
takes the entire Android image as input, extracts the framework’s and preloaded
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Fig. 3. Overview of ANRED Design

apps’ bytecode, and collects candidate system services. As the data residue vul-
nerability occurs at the level of system services, ANRED’s static analysis logic
also resides at the same level. For each system service, we are interested in two
types of operations inside: saving operation and deleting operation. Mixing both
operations on the same call graph will make them indistinguishable at the end.
Thus, ANRED generates two call graphs for each system service: a saving graph
and a deleting graph. The saving graph captures the data that will be saved inside
the system service, while the deleting graph indicates what data will be removed
when handling app uninstallation. Based on that, data residue instances are in-
ferred from mismatches between the deleting data set and the saving data set.
To cover instances that are caused by flawed deleting logic, ANRED also takes
into consideration the complexity of the deleting logic to quantify the underlying
risks. We explain the design challenges of each block in following sections.

3.1 Image Preprocessing

Given an Android image, ANRED extracts the Android framework code and its
preloaded apps. Since different vendors or different versions of Android pack the
code in different formats (i.e., apk, dex, odex to oat), ANRED employs several
utilities to handle each format gracefully. We employ dex2jar utility to convert
dex and apk files into jars, suitable for standard static analysis platforms. Ad-
ditionally, we use apktool to retrieve the AndroidManifest configuration file
from each app. We use baksmali and smali to convert odex code to dex files.
Images that contain oat files or target Android Lollipop require special handling
with dextra [7] and deodex-lollipop [13].

3.2 System Service Collection

To detect data residue instances, we need to identify all system services from a
compiled image. Such list is challenging to obtain, as the registration place of
each system service varies greatly among images. Our key observation is that
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system services registration APIs are more stable across Android customization
and version upgrade. The service example shown in Figure 1 demonstrates the
two most representative APIs, addService() and publishBinderService(),
for publishing a system service. Thus, to retrieve the system service list, ANRED
first collects functions that invoke addService() or publishBinderService()
and marks them as entry points. For each entry, ANRED constructs a call graph.
By traversing through the call graph, not only can we pinpoint the places where
system services are registered, but also resolve the service class and exposed
interface class. For system services that are within preloaded apps, the above
process is simplified by directly searching the AndroidManifest file for services
that are accessible from the outside world. In both cases, we further filter out
unnecessary jars and generate input specifications for the static analysis plat-
form.

3.3 Entry Point Identification

Static analysis on Android platform demands the construction of a precise call
graph. For that purpose, an accurate and complete list of entry point functions
needs to be provided. In normal Java programs, the entry point is the main func-
tion. However, the widely adopted callback mechanism in Android framework
complicates this task. In ANRED, we consider entry points as asynchronized
invocations where their callees are present in the analysis scope, but their callers
are not. As shown in Figure 1(b), the AbcService specifies a list of exposed APIs
in the interface file, namely AIDL, for apps to interact with. Naturally, all public
AIDL functions become entry points. However, a great amount of other asyn-
chronized invocation patterns are present within different system services. One
representative example is the onClick function inside the onClickListener in-
terface. In this case, the system service provides the implementation of onClick
function (callee), while the caller (user event) triggers the invocation. Clearly,
the caller does not exist in the analysis scope, and thus, ANRED considers the
callee function, onClick, as an entry point.

To collect all entry points, we take a similar approach as in EdgeMiner [22]
by searching all internal classes within each system service for interfaces and ab-
stract classes. The reason behind is that, both interfaces and abstract classes rely
on other parties to provide the actual implementation, indicating the absence
of a caller. Different from EdgeMiner, we exclude functions within Handler,
Thread, AsyncTask and ServiceConnection classes, since they are asynchro-
nized invocations where the caller and callee are both present in the analy-
sis scope, as illustrated in Figure 4(a). Such cases lead to broken links in the
constructed call graph, which we will handle differently in Section 3.4. After
identifying all entry points, we further divide them into saving entry points
and deleting entry points for the construction of the saving call graph and the
deleting call graph, respectively. We consider all the APIs that handle app
uninstallation as deleting entry points, and the rest as saving entry points.
Specifically, ANRED includes the following four classes as the source for delet-
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1 Class BinderServ i ce extends IAbc . Stub{
2 Publ ic void setComponent ( St r ing s ){
3 new MyHandler ( ) . sendEmptyMessage ( ) ;
4 MyHandler.handleMessage(new Object());
5 }
6 }
7 Class MyHandler extends Handler {
8 @Override
9 public void handleMessage ( Message m){

10 db . putStr ingForUser ("Abc" , s ) ;
11 }
12 }

(b) Broken Link - Bridge

Fig. 4. Connecting Broken Links in ANRED via Bytecode Rewriting

ing entry points: PackageMonitor, BroadcastReceiver, DeathRecipient and
RegisteredServicesCacheListener.

3.4 Call Graph Construction

We choose WALA [16] as the static analysis platform for call graph construc-
tion, due to its popularity and strength in data flow analysis, which is our main
concern in the data residue detection process. The analysis stays at the An-
droid framework level, but inherits all challenges (i.e., broken links) from the
app level. Take MyHandler class in Figure 1(c) as an example. Its execution is
conducted with the help of a Message queue. The caller side (setComponent())
puts a message on the queue, and waits until it is consumed by the callee side
(handleMessage()). Even though both the caller and callee are present in the
analysis scope, the connection is missing. Those broken links greatly affect the
code coverage in static analysis, and thus, hinder ANRED’s performance. Ex-
isting solutions [33,17,35] model the behavior of caller and callee functions, and
add edges in the constructed call graph to connect them. Such bridges mitigate
the reachability issues (control flow) on the call graph, but do not explicitly
catenate the data flow.

To this end, we would like to connect broken links at the bytecode level,
independent from the static analysis platform. The output will be a fixed jar
file with all broken links connected. Benefit from this, researchers can apply it
directly for different purposes with their own choices of static analysis platforms.
More specifically, we propose to rewrite the bytecode of collected system services
to connect the broken links. ANRED performs bytecode rewriting using the
shrike utility in WALA, which is capable of looping through all instructions
from the given bytecode. Ideally, once the invocation that causes broken links is
found, we rewrite the instruction to bridge the connection. The real challenges
lie in patching a diversity of invocations with a generic scheme. We use the
MyHandler example in Figure 1(b) to explain the details.

First of all, there are various functions for delivering messages with differ-
ent arguments. In Java, replacing the current invocation to handleMessage()
requires loading the correct handler instance and constructing the proper ar-
guments. An easier and more stable approach is to add instructions at the
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end, instead of replacing existing ones. In the MyHandler case, ANRED adds
the invocation to handleMessage() at the end of setComponent() function,
as demonstrated in Figure 4(b). However, adding the instruction still requires
the creation of corresponding handler instance and argument instances. To be
more specific, in order to invoke handleMessage(), an instance of the MyHandler
class is needed, as well as a Messsage instance if the argument is not empty. It
is quite challenging to statically accommodate all situations. Our design choice
is to invoke the handleMessage() API as a static function and provide generic
objects as necessary arguments. Although the generated jar may not execute
properly, it is not an issue since static analysis does not check for conflicting
method descriptors. To handle the case where the handler class type is inher-
ited, ANRED locates the outermost class, and searches all internal classes for
the ones that extend the base handler class or implement the callback interface.
Theoretically, such approach will generate false mappings when multiple handler
classes are present within the same outer class, however, our observation is that,
inside each Android system service, there is usually only one handler class in
use. Eventually, the bridge will be connected as in Figure 4(b).

3.5 Target APIs Harvest

To detect mismatches between storage operations and cleanup logic, a complete
list of saving and deleting API pairs is necessary. For instance, the AbcService
shown in Figure 1 uses db.putStringForUser() to save entries into a database.
To check the existence of data residue, we would like to know the usage of
corresponding deleting API (in this case, identical to the saving API) in han-
dling app uninstallation. The manual identification of such API pairs is a tedious
work, and lacks the guarantee on code coverage. Instead, ANRED applies heuris-
tics generalized from manual inspection to harvest API pairs automatically. In
particular, we categorize all saving/deleting API pairs into SQLiteDatabase,
SharedPreference, Settings, Java_Util and XML. For each category, we then
generalize heuristics at the level of package, class and function. At the top level,
each category corresponds to a Java package, and all classes in it will be the
source of API pairs. At the second level, we exclude classes that are irrele-
vant to storage operations. To illustrate, although thousands of classes exist
in the Java_Util category, we can safely remove those related to Exception,
Concurrency or Thread. At the last stage, both saving and deleting APIs fol-
low strict naming schemes, like put*()/remove*() in Java_Util classes and
create*()/delete*() in File classes. Such naming schemes allow a further
filtering on the API descriptors directly. With these three levels of heuristics,
ANRED is able to reliably exclude 95% of total API candidates.

3.6 Risk Evaluation

Following the steps above, ANRED constructs two call graphs, i.e., saving graph
and deleting graph, for each collected system service. Guided by the storage API
pairs, we can further gather all saving and deleting operations via traversing
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<image c a r r i e r="" manufacturer="" model="" name="" r eg i on="" ve r s i on="">
......
<s e r v i c e category="java_util" f i n i s h e d="" i b i nde r="" name=""

output_time_cost="" s i z e="" type="">
......
<re s i due complexity="1000" d e l e t i n g I n s t r u c t i o n s="" name=""

s a v i n g I n s t r u c t i o n s=""/>
......

</se rv i c e >
......
<serv i ceDetec t i onCost ></serv i ceDetec t i onCost >
<rewr i t ingCost ></rewr i t ingCost>
<res idueDetect ionCost ></res idueDetect ionCost>

</image>

Fig. 5. ANRED Final Report Template

through corresponding call graphs. Ideally, only the mismatches indicate data
residue instances. However, as shown in Figure 1 and previous work [40], the data
cleanup logic may be flawed. As a result, ANRED quantifies the likelihood of
each data residue instance with respect to the complexity of data deleting logic.
A variant [11] of the standard Cyclomatic complexity [5] is used in ANRED
against each deleting function. When the deleting logic is missing, we assign the
largest complexity value, indicating the highest risk for this instance to be a real
data residue vulnerability. At the image level, ANRED further aggregates all
data residue instances together into a well-formatted XML report as shown in
Figure 5.

4 Implementation

The implementation of ANRED consists of around 7,500 Lines Of Java Code
(LOC) and 5,000 lines of Python code with comments included. We further
break down the entire code base into four modules: Jar extraction, Jar decom-
pilation, residue detection and result analysis. The code composition and library
dependency for individual module is shown in Table 4.1. To handle different
situations, our code base contains functions with small deviations. For instance,
we have slightly different Python scripts to extract jars from Nexus images and
Samsung images. We emphasize that, those functions are counted twice in the
presented statistics, i.e., the count of effective LOC will be smaller. The code
base of ANRED, as well as our image collection and evaluation results from
Section 5, are publicly available on [2].

4.1 Bridging Broken Links

ANRED leverages WALA’s shrike utility to bridge broken links caused by the
Handler, Thread, AsyncTask and ServiceConnection classes in Android. We
fit jar files into shrike individually, and traverse through each embedded class,
functions in each class and bytecode instructions in each function. For each
instruction, we check it against the candidate invocations that can cause bro-
ken links. In the Handler case, such invocations include send*Message() and
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Module #LOC Language Dependency
Jar Extraction 1438 Python ext4utils [8]

Jar Decompilation 2638 Python dex2jar [6], apktool [3], dextra [7]
deodex-lollipop [13], baksmali/smali [15]

Residue Detection 7568 Java WALA [16]
Result Analysis 857 Python -

Table 1: ANRED Code Base Breakdown

sendToTarget() APIs, while in the AsyncTask case, execute*() typed APIs
will be our candidates. For functions that do not contain candidate invocations,
they stay untouched in the fixed jar file.

For each target instruction identified, ANRED records its position within
the method body and inserts a static invocation to the callee function. Such a
function invocation requires totally four types of instructions. NewInstructions
are used to create generic java objects to be fed as function arguments, followed
by StoreInstructions and LoadInstructions, which store and load the gen-
erated variables, respectively. Eventually, an InvocationInstruction initiates
the function call. In shrike, each InvocationInstruction consists of four seg-
ments: function descriptor, object type, function name and dispatch mode. As
explained in Section 3.4, ANRED dispatches this instruction as a static invoca-
tion, and searches from the outermost class for the object type. While function
name is self-explanatory, an accurate function descriptor could be challenging
to obtain. In most cases, we can manually craft the descriptor string according
to the Android documentation. However, in the AsyncTask case, all callee func-
tions contain Params..., known as Java Varargs [12] that takes an arbitrary
number of values with arbitrary types upon invocation. ANRED overcomes the
challenge by directly resolving the function descriptor from the object class im-
plementation. Specifically, we search the entire class hierarchy for the class that
implements the object type, and then obtain descriptor for each function inside.

4.2 Building Class Hierarchy and Call Graph

ANRED totally constructs three call graphs: one for system service collection,
one for the saving logic analysis and the last one for the deleting logic analysis.
Since these three graphs serve for different purposes, they demand different level
of precision. In particular, we use RTA [18,19] algorithm in constructing the
call graph for system service collection, as it is relatively simple and fast. All
we need from this call graph is the identification of certain APIs. In contrast,
we employ 0-CFA [32,36] algorithm to construct call graphs for the saving and
deleting logic analysis, since they both require an accurate control flow and data
flow dependency.

4.3 Discussion

There are a few limitations resulting from ANRED’s implementation. First of
all, WALA can only perform static analysis on Java bytecode, excluding native
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Samsung 1 7 1 5 6 40 8 3 71
Amazon 1 1

Blu 1 1
CM 52 15 22 20 1 10 1 11 54 12 92 66 356

Geeks 1 1
Google 3 1 8 3 5 7 9 1 6 7 7 9 4 4 3 6 49 132
HTC 2 1 3
LG 1 1 1 3

Moto 2 2
Sony 2 2
Xiaomi 4 2 4 2 2 15 5 34
Total 3 54 23 8 36 1 38 18 11 6 1 64 7 87 7 5 20 7 144 66 606
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Fig. 6. Distribution of Collected Android Images for ANRED Evaluation

Android system services from our study. From the previous study [40], the per-
centage of native services is relatively small. Secondly, the complexity of static
analysis has long been a concern. In the data residue detection process, we make
the best effort to guarantee the code coverage, but there will be inaccuracy in-
troduced in various stages, such as in the code decompilation and broken link
re-connection. At last, human effort is still needed to validate possible data
residue instances reported by ANRED. However, as we show in Section 5.2, the
manual involvement has been greatly reduced with the help of ANRED, yet more
data residue instances are captured.

5 Evaluation

We have collected a total of 606 Android images from various sources [10,9,14,4,1].
Figure 5 depicts the distribution of our image collection with respect to the di-
versity of vendors as well as coverage of Android versions. In particular, we
have covered all major vendors, such as Samsung, HTC, CyanogenMod (CM, in
short), Google, Xiaomi, etc, and all major Android versions from Gingerbread
up to the newest Marshmallow. Throughout the experiment, we consider the OS
provider, instead of the device manufacturer, as the real vendor of the image. For
instance, we have labeled Google as the vendor for all Nexus images. CM pro-
vides Android OS for various device models from different manufacturers, and
thus, it becomes the vendor for all of them. We have conducted our experiments
on Dell PowerEdge T620 with Intel Xeon CPU E5-2660 v2 @ 2.20GHz run-
ning Ubuntu 14.04.1 LTS. The Jar extraction and decompilation stages took
around one week to finish for all images, and the processing outputs are available
on [2]. After that, we ran ANRED against each image with 16G heap memory
size allocated for the Java Virtual Machine (JVM) and with the default timeout
value (60s) for each system service.
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5.1 Panorama of Android Data Residue

Overview On average, we have identified 191 likely data residue instances on
each image, with 106 (55.5%) of them being labeled as missing data removal logic.
Not all of them will necessarily lead to the data residue vulnerability, depending
on whether the data leftover is security-critical and exploitable by adversaries.
To separate the data residue instances introduced by vendor customization and
the ones inherited from the AOSP code base, we consider Google images as
the reference. Given one data residue instance on a vendor image, we label it
as AOSP instance if such instance has also been identified on Google images
with the same version number. Otherwise, we consider it as vendor introduced
instance. For images that do not have a corresponding Google image in our
collection, we exclude them from our data analysis. In following sections, we
further break down the data residue situation on Android from four perspectives:
vendor, version, service category and residue type.

Vendor-wise View In our image collection, the version distribution varies
greatly from vendor to vendor. Thus, a direct comparison of the average residue
count for each vendor will not accurately reflect the effect of vendor customiza-
tion on the data residue vulnerability. To remove the version bias, we compare
the percentage of vendor introduced data residue instances instead. The result
is shown in Figure 7(a). We have observed that, vendor customization is indeed
a big factor contributing to the data residue vulnerability. In particular, vendors
like Samsung, Amazon, HTC, and Sony are responsible for more than 65% of
data residue instances identified on their images. One extreme case is the Ama-
zon image running 4.4.4. Our analysis result indicates that, 95% of data residue
instances identified on this image are due to the heavy customization. Even for
vendors like Moto, LG and Xiaomi, the percentage of vendor introduced data
residue instances is higher than 40%. In comparison, Blu, Geeks and CM make
fewer changes to the Android OS, and thus, only introduce a small portion of
data residue instances to their images.

Version-wise View Apart from vendor customization, we would like to fur-
ther evaluate the effect of Android’s frequent version upgrade on the data residue
vulnerability. The data residue trend across different Android versions is mean-
ingful only if all selected images are belonging to the same vendor. We have
chosen three vendors, i.e., Google, Samsung and CM, since our image collection
contains different versions of these vendors. The results are depicted in Fig-
ure 7(b), Figure 7(c) and Figure 7(d), respectively. As Figure 7(b) shows, the
average count of AOSP data residue instances fluctuates around 100 across ver-
sion upgrade. We have observed that, there is always an increment when new
Android branches, like Ice Cream Sandwich (4.0.x) and Lollipop (5.0.x), are re-
leased. We suspect that, new branches tend to come with new features, and thus,
introduce new system services with possible data residue instances.

The version trends on Samsung images and CM images have quite different
characteristics, as shown in Figure 7(c) and Figure 7(d). For Samsung, as the
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Fig. 7. Effect of Vendor Customization and Version Upgrade on Data Residue

version increases, we have observed a steady decrease of data residue instances
inherited from AOSP code base. In comparison, the percentage of vendor in-
troduced ones rises from 44% to 84%. The result indicates that, Samsung’s
customization on Android OS has grown heavier as Android evolves, result-
ing in fewer similarities with AOSP images. Thus, the data residue situation on
upcoming Samsung images will be mostly determined by the level of its own cus-
tomization. On the other hand, the count of data residue instances introduced
by CM remains the same at around 15 from Gingerbread to Lollipop. Clearly,
the customization performed by CM is quite consistent across version upgrade.
In this case, the data residue situation on upcoming CM images depends highly
on the corresponding AOSP version release.

Service-wise View ANRED has considered two categories of system services
in the static analysis stage, i.e., preloaded app services and framework services.
We have separated their effects and concluded that the majority (65%) of iden-
tified data residue instances are from framework services. This is consistent with
the manual analysis result from previous work [40], where only 2 (download and
print) out of 12 instances are within preloaded apps. However, we argue that,
the framework developers and preloaded app developers should work together
to remove all the data residue instances.

Residue-wise View As mentioned in Section 3.5, we have included five types
of data residue instances in our analysis, i.e., SQLiteDatabase, SharedPreference,
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Fig. 8. Data Residue Instance Distribution based on the Complexity of Deleting Logic

Settings, Java_Util and XML. With a total of 116K data residue instances
identified on all images from our collection, 73% of them are in memory data
structures (Java_Util) and configuration entries (Settings). In comparison,
previous work [40] has also identified 8 (2 capability instances, 5 Settings in-
stances and 1 permission instance) out of 12 instances belonging to those two
types. It is worth mentioning that, among all data residue instances, 1,629 (1.4%)
unique ones are found. In this process, we have used a combination of service
name, residue type and entry name as the key to remove duplicates. Moreover,
only 312 (19%) of the unique ones are from AOSP images, while the rest (81%)
are all introduced by vendor customization.

Risk Quantification In our analysis, we have identified an average of 85
instances on each image that have data deletion operations in place upon app
uninstallation. However, the complexity of each one’s deleting logic varies greatly.
We further calculate the average count of data residue instances for each com-
plexity value. The overall distribution is shown in Figure 8. A total of 42 (50%)
instances have deleting complexity value less than 10, and thus, should be con-
sidered as safe. However, the deleting logic of the other half is overcomplicated
and may lead to security flaws. To understand how bad the situation is, we
zoom in to the region with complexity value between 11 and 200, as shown in
Figure 8. Surprisingly, a significant portion of functions that handle data removal
upon app uninstallation even have a complexity value larger than 30. Based on
our analysis, we suggest system service developers to follow clear guidelines to
remove app data upon its uninstallation.

5.2 ANRED Effectiveness

To demonstrate the effectiveness of ANRED, we have evaluated it against AOSP
5.0.1 image, which was manually examined in previous work [40]. We use their
results as the basis for comparison. The analysis takes 11 minutes in ANRED
with the default 60s timeout value, and covers a total of 133 system services.
Among them, 123 (%92.5) services are finished within timeout limit. Totally,
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Instances Category Damage Frequency
backup_transport Settings data leakage 359 (%59)
app restrictions XML privilege escalation 396 (%65)

notification_policy XML privilege escalation 200 (%33)
app-ops XML - -

media_store Content Provider - -

Table 2: New Data Residue Instances Identified by ANRED on AOSP 5.0.1

253 likely data residue instances are identified on this image. More importantly,
205 (%81) of them have a complexity value larger than 10, which are considered
as highly risky [11]. We have further validated all 205 risky instances manually.
This process was completed by one single Android security analyst within a
day, in comparison with 6 person-month in the previous work [40]. It is made
possible because of ANRED’s detailed report, which not only presents each likely
data residue instance, but also pinpoints its saving instruction and risky deleting
instruction. We envision that, Android vendors will utilize ANRED in a similar
manner to detect and remove data residue instances from their images before
the final release.

In addition to the significantly reduced human involvement, we are able to
capture 10 out of 12 real data residue instances presented in [40]. The only
two missing instances are Keystore and Download, which have been resolved
on Android Lollipop. The previous work reproduces the vulnerability on KitKat
and prior versions. One representative data residue vulnerability is on Android
printing framework. ANRED actually identifies two related instances: one from
the XML category corresponding to the print record residue and the other one
from the File category mapping to the print content residue. Other than that,
ANRED has detected five new data residue instances. Three of them are actually
exploitable, leading to data leakage and privilege escalation attacks. We have
further measured the frequency of those three vulnerabilities within our image
collection. As summarized in Table 2, these vulnerabilities are pervasive, with a
total of 571 (%94) unique images containing at least one of them.

Backup Mis-transport Android backup framework helps to copy a user’s
persistent app data to remote cloud storage. Internally, there is a system ser-
vice called BackupManagerService, which forwards all requests from registered
client apps to the current enabled backup service. Android backup service serves
as a backup transport between the device and the remote storage. Once enabled,
the package name and service name will be jointly saved into Android Settings
with entry name backup_transport. However, this configuration entry will re-
main effective even after the referring app has been uninstalled. As a result,
an adversary can impersonate the uninstalled app and mis-transport the user’s
private data to malicious servers. This is not a big concern right now, as only
vendor issued backup services can be installed on the device. But in the future,
if Android decides to open this feature to 3rd-party apps, such a residue instance
demands great attention.
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App No-restrictions The multi-user feature on Android has been a viable ap-
proach for creating another restricted environment on the same device. On tablet
devices, the restricted profile feature has been used mainly for parental control,
while on Android phones, such restricted environment, namely managed profile,
is favored by enterprise companies to control the environment where company-
specific apps and data are running. In both cases, an administrator app is re-
sponsible for specifying the restrictions of individual apps. Such configurations
will be saved into user_id.xml by a system service, UserManagerService, with
attribute restrictions. However, these access control policies will not be re-
moved, even after the targeted app has been uninstalled. In return, an adversary
can inherit all privilege from the uninstalled app.

Notification Flooding Android supports three levels of notification restric-
tions on each app, i.e., allow, block and priority. By default, any notifications
from the app will be allowed. However, a user can flip the configuration from the
Settings app or choose to show priority ones only. The corresponding specifica-
tions will be saved in notification_policy.xml by a system service, namely
NotificationManagerService, with attribute notification-policy. We have
found that, when an app is removed from the device, its notification policy con-
figured by the user will be left over. Thus, an adversary can impersonate this
app and flood the user with annoying notifications.

Two Harmless Residue Instances Another two data residue instances have
been found in our manual verification, but with limited implications. For in-
stance, Android system service, AppOpsService, saves restrictions on app op-
erations into appops.xml, but fails to immediately clean them up upon app
uninstallation. Actually, the cleanup task is scheduled periodically for every 30
minutes. The second instance is related to the mediastore provider on Android,
which contains meta data for all available media on both internal and exter-
nal storage. An app can send a request to MediaScannerService for adding
a media file into the mediastore. When the app is uninstalled, although the
file is deleted from the file system, its meta data remains in the mediastore
until Android scans the system for new media, which typically happens when
the system first boots up or can be called explicitly from apps. Noting that the
meta data includes a URI referring to the actual file, we further evaluated it
against the capability intruding attack as in the Clipboard residue case [40].
However, as it turns out, URIs saved in mediastore do not possess any capabil-
ities and immune from this attack. In both residue cases, although the attacking
time window is quite small, we argue that, a timely data cleanup approach, like
BroadcastReceiver, should be employed to provide better security guarantee.

5.3 ANRED Performance

Time Consumption On average, it takes ANRED 43.5 minutes to analyze
one image, with 1.6 minutes (3.6%) on system service extraction, 6.5 minutes
(15%) on jar patching and 35.4 minutes (81.4%) on static analysis.
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System Service Analysis - Success Rate With an average of 205 system
services being analyzed for each image in ANRED, 82.67% of them are finished
in our experiment. In particular, framework services (86.53%) have a higher
success rate than preloaded app services (80.63%). A closer look at the jar
decompilation results reveals that, certain preloaded apps have applied code
obfuscation techniques in the final packaging process. Another factor affecting
the success rate is the timeout value. In our experiment, we have used the default
60s timeout value. With more time allowed for each service, the success rate of
ANRED’s system service analysis can be improved.

Broken Link Patching Stats In our experiment, ANRED totally patched
around 3 million broken links. In particular, Thread and Handler are the two
most commonly used classes in Android framework and preloaded apps. They
account for a total of 92% of the overall patched broken links. As mentioned
in Section 3.4, ANRED patches broken links with static invocations inserted
at the end, while the object type is resolved based on a heuristic. We have
further measured the accurate connection rate of ANRED for different categories
of broken links. The result demonstrates the reliability of ANRED with 86%
accurate connection rate on average. The patching accuracy for AsyncTask and
ServiceConnection is slightly lower, indicating that multiple implementations
of them may coexist in certain system services. Even for those cases, ANRED is
still able to patch broken links conservatively without causing any exceptions.

6 Related Work

Android Vulnerability Exploration Earlier and recent research work have
identified several worrisome security vulnerabilities in the Android apps. Promi-
nent examples include the re-delegation problem [28], content providers leak and
pollution [31], crypto-misuse in Android apps [25] and vulnerabilities in the An-
droid’s WebView component [34]. Other studies revealed security risks in the An-
droid system itself. PileUp [37] uncovers a flaw in the PackagemMangerService
that targets system update and allows a malicious app installed on a lower
version Android and claiming specific capabilities to actually acquire these ca-
pabilities after system update. Two other works [27,39] reveal exploits on the
ClipboardService that enables an unprivileged attacker to gain access to im-
portant private data. Our work aims to automatically detect the data residue
vulnerability [40] scattering through a wider range of system services.

Static Analysis Several systems have been accordingly proposed to miti-
gate these discovered vulnerabilities. A great deal of previous studies aims to
mitigate the confused deputy problem and permission leaks by either check-
ing IPC call chains or by monitoring the communication between apps at run
time [20,21,24,28,29]. To better understand the scope of the attacks discovered,
several other static analysis frameworks have been proposed, including Com-
Droid [23], CHEX [33], FlowDroid [17], DroidSafe [30], Epicc [35], etc. These
tools, however, analyze Android apps and cannot handle framework-level code,
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thus, cannot be adopted to automatically discover the data residue vulnerability
in system services within the Android framework. Our efforts in this work aim to
fill this gap by introducing ANRED, which automatically examines each system
service’s bytecode to accurately uncover any data residue instances.

Dynamic Analysis Few Other dynamic approaches have been proposed to
detect and defeat the discovered vulnerabilities. A prominent example in the
literature is TaintDroid [26], a framework that allows to perform taint analysis
on Android to track data flow across apps and the OS. Another prominent
tool is DroidScope [38], which runs the whole Android platform on an emulator
to reconstruct both Dalvik and OS level semantics. Dynamic solutions could
possibly enable us to uncover data residue vulnerabilities at app uninstallation
time. However, the triggering conditions leading to the data residue problem
(such as device reboot, app installation and uninstallation) are difficult to fully
emulate using dynamic approaches. Besides, even if taint tracking might look like
a possible solution for detecting the data residue problem, the process is quite
complicated because the data creation points might not necessarily appear in
apps. ANRED aims to overcome these challenges that cannot be solved through
a dynamic solution, through a purely static solution that performs the detection
of data residue problems automatically and efficiently.

7 Conclusion

In this project, we propose ANRED to automatically detect data residue in-
stances on a large scale of Android images with minimal human involvement.
The evaluation results against 606 images have again brought questions over
the extensive vendor customization and frequent version upgrade on Android.
We hope that, vendors can use ANRED to check their images against the data
residue vulnerability before shipping with new devices. More importantly, Google
should take the lead to provide a clear guideline in reacting to the event of app
uninstallation. Additional efforts are also required from the research committee
to propose a runtime solution to eliminate the data residue vulnerability.
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