
Context Sensitive Anomaly Monitoring of Process
Control Flow to Detect Mimicry Attacks and Impossible

Paths
�

Haizhi Xu, Wenliang Du, and Steve J. Chapin

Systems Assurance Institute, Syracuse University, Syracuse NY 13244, USA�
hxu02, wedu, chapin � @ecs.syr.edu

Abstract. Many intrusions amplify rights or circumvent defenses by issuing sys-
tem calls in ways that the original process did not. Defense against these attacks
emphasizes preventing attacking code from being introduced to the system and
detecting or preventing execution of the injected code. Another approach, where
this paper fits in, is to assume that both injection and execution have occurred,
and to detect and prevent the executing code from subverting the target system.
We propose a method using waypoints: marks along the normal execution path
that a process must follow to successfully access operating system services. Way-
points actively log trustworthy context information as the program executes, al-
lowing our anomaly monitor to both monitor control flow and restrict system call
permissions to conform to the legitimate needs of application functions. We de-
scribe our design and implementation of waypoints and present results showing
that waypoint-based anomaly monitors can detect a subset of mimicry attacks and
impossible paths.

Keywords: anomaly detection, context sensitive, waypoint, control flow monitoring, mimicry
attacks, impossible paths

1 Introduction

Common remote attacks on computer systems have exploited implementation errors to
inject code into running processes. Buffer overflow attacks are the best-known example
of this type of attacks. For years, people have been working on preventing, detecting,
and tolerating these attacks [1–13]. Despite these efforts, current systems are not secure.
Attackers frequently find new vulnerabilities and quickly develop adaptive methods that
circumvent security mechanisms.

Host-based defense can take place at one of three stages: preventing code injection,
preventing execution of the injected code, and detecting the attack after the injected
code has begun execution. One class of detection mechanisms, execution-monitoring
anomaly detection, compares a stream of observable events in the execution of a running
process to a profile of “known-good” behavior, and raises alerts on deviations from the
profile. While it is possible to treat each instruction executed by the process as an event

�
This work was supported in part by a Syracuse University Graduate Fellowship Award.

for comparison to the profile, typical anomaly detectors use system calls [6, 14–17] or
function calls [5, 18] as the granularity for events.

We focus our efforts on detecting attempts to subvert the system through the kernel
API (the system call interface), assuming the attacking code has started to run. We
monitor requests for system services (i.e., system calls) of running processes, and detect
anomalous requests that could not occur as a result of executing the code in the original
binary program image.

Two major problems that system-call based anomaly detection faces are mimicry
attacks [12, 19] and impossible paths [12]. A mimicry attack interleaves the real attack-
ing code with innocuous code, thereby impersonating a legitimate sequence of actions.
For example, if the legitimate code has the system call sequence

getuid() ... open() ... execve()

and the attack has the sequence

getuid() ... execve()

the attacker can add a “no-op” system call to match the legitimate attack sequence:

getuid() ... open("/dev/null"...) ... execve().

We further divide mimicry attacks into global mimicry attacks and local mimicry attacks.
Considering the minimum set of system calls necessary for the functionality of an appli-
cation function, the system call sequence in a global mimicry attack combines the legal
system calls of multiple functions, while a local mimicry attack uses the legal system
calls of only the running function.

An impossible path is a control path (with a sequence of system calls) that will never
be executed by the legal program, but is a legal path on the control flow graph of the
program. Impossible paths can be generated due to the nature of the non-deterministic
finite state automata (NDFSA). For example, when both location A and B can call func-
tion f(), function f() can return to either location A or B. The call graph for the
program allows a return-into-others impossible path wherein location A calls function
f(), but the return goes to location B, which behavior appears legal in the control flow
graph. This example attack is similar to a return-into-lib(c) attack in that both of them
modify the legal control path at the function return points.

This paper introduces our use of waypoints1 for assisting anomaly monitoring.
Waypoints are kernel-supported trustworthy markers on the execution path that the
process must follow when making system calls. In this paper, we use function-level
scoping as the context of a waypoint. If function C calls function D, then the active con-
text is that of D; upon function return, the active context is again that of C. Waypoints
provide control flow context for security checking, which supports call flow checking
approaches such as that in Feng, et al. [5] and allows us to check whether the process
being monitored has permission to make the requested system call in the context of the
current waypoint.

The work presented in this paper makes the following contributions:
1 This terminology is borrowed from route planning using a GPS system, while the term is as

old as navigation systems, meaning a specific location saved in the receiver’s memory that is
used along a planned route.

1. Kernel-supported waypoints provide fine-grained trustworthy context information
for on-line monitoring. Using this information, we can restrict a process to access
only those system calls that appeared in the original program fragment associated
with the waypoint context.
Waypoints can change the granularity of intrusion detection systems that monitor
system call sequences. The more waypoints we set between two system calls, the
more precise control of that program path we can provide to the detector.

2. Using the context information, our anomaly monitor can detect global mimicry
attacks that use permissions (i.e. allowed system calls) across multiple functions.
Any system service request falling out of the permission set of the current context
is abnormal.

3. Our anomaly monitor can detect return-into-others impossible paths attacks. We
use waypoints to monitor the function call flow and to guarantee that callees return
to the right locations.

In the next section, we describe our model of attacks in detail. Section 3 describes
our design and implementation of waypoints and the waypoint-based system call mon-
itor. In section 4 we present performance measurements of our approach. Section 5
summarizes related work. Section 6 discusses the limitations and our future work and
gives our conclusions.

2 Attack Models

Once the exploit code has a chance to run, it can access the system interface in the
following three ways, which we present in order of increasing code granularity:

1. Jumping to a system call instruction, or a series of such instructions, within the
injected code itself. Many remote attacks use shellcode—a piece of binary code
that executes a command shell for attackers [20]. Most shellcode issues system
requests directly through pre-compiled binary code. In this case, the attacker relies
on knowing the system call numbers and parameters at the time he compiles the
attack code, which, in the presence of a near monoculture in system architecture
and standardized operating systems, is a reasonable assumption. The control path
in this case is fully under the control of the attacker, as he controls the location of
the sensitive system call at the time of the code injection.

2. Transferring control to legitimate code elsewhere in the process; the target code can
be at any link on the path to the system call instruction. The attacking code achieves
its goal by executing from the target instruction forward to the desired system call.
The attack can be achieved either by creating fake parameters and then jumping
to a legitimate system call instruction, (e.g., making it appear that the argument to
an existing execve() call was "/bin/sh"), or by jumping to a point on the
path leading to an actual call (e.g. execve("/bin/sh")) in the original pro-
gram. Locations used in the latter attack include a system call wrapper function in
a system library such as libc, an entry in the procedure linkage table (PLT) using
the address in the corresponding global offset table (GOT), or an instruction in an
application function that leads to calling the above entries. This is the general form

of the return-into-lib(c) attack [21], in which the corrupted return address
on the stack forces a control transfer to a system call wrapper in the libc library.
For the remainder of this paper we will refer to this type of attack as an low-level
control transfer (LCT) attack. In contrast to defending against the shellcode attack,
it is of paramount importance to protect the control path when defending against an
LCT attack.

3. Calling an existing application function that performs the system call(s) that the at-
tacking code requires. While this is a form of control transfer attack, we distinguish
it from the LCT because the granularity of the attack is at the application function
level, not at the level of the individual instruction or system call. In this case, the
control path is the sequence of application-level function invocations leading to the
function that contains the attacking call.

Mimicry attacks can be achieved by directly jumping to injected code that mimics a
legal sequence of system calls or calling a sequence of lib(c) functions, which fall in the
above category 1 and 2 attacks. Attackers can also use category 3 attacks (i.e. calling
existing application functions), but this is easier to detect than the category 1 and 2
attacks by using call flow monitoring techniques. Attackers can also explore impossible
paths to elude detection by using the above three categories attacking techniques.

While function call flow monitoring can reduce attacks in category 3, and non-
executable data sections can block attacks in category 1, attacks using category 2 tech-
niques are more difficult to detect because they use legitimate code to achieve malicious
purposes. An important characteristic that attackers use is that the default protection
model permits programs to invoke any system call from any function, but in actuality
each system call is only invoked from a few locations in the legal code. While some
previous work has exploited the idea of binding system calls or other security sensitive
events with context [5, 18, 22–24], this paper explores this approach further. We intro-
duce the concept of waypoints to provide trustworthy control flow information, and
show how to apply the information in anomaly detection.

3 Waypoint-based System Call Access Control

We observe that an application function—a function in an application program, not a
library function—in general uses only a small subset of system service routines2, but
has the power to invoke any system call under the default Unix protection model. This
practice violates the principle of least privilege, which restricts a function to only invoke
systems calls that are necessary for its proper execution. For example, execve() is
not used by many legitimate functions, especially in setuid root regions, but it is com-
mon for exploit code to invoke that system call within the scope (or equivalently, the
stack frame) of any vulnerable function. Waypoints provide a mechanism for restricting
program access to system calls and enforces least privilege.

2 For example, in table 1 and 2 of section 3.3, only 3 out of 416 application functions being
monitored require execve() legally.

3.1 Waypoint Design

A waypoint, located in the code section, is a trustworthy checkpoint on control flow.
Waypoints can actively report control flow information in real-time to assist intrusion
detection, rather than gathering the information only at system call time. People can
assign security attributes to each waypoint or to a sequence of waypoints.

To achieve our goals, waypoints must embody the following properties:

1. Authentication
Because we assume that an attack has successfully started executing, and the attack
has the right to access the whole process image, it is possible that the attacking
code can overwrite code pointers. Although the code section is usually read-only,
dynamically-generated code will be located in memory with both read and write
permissions. This means that attackers have the ability to generate waypoints within
their own code, and we must therefore authenticate waypoints.
We authenticate the waypoints by their locations. Waypoints are deployed before
the process runs, such that the waypoint locations are registered at program loading
time. In this way, we can catch false waypoints generated at run time.

2. Integrity
Because attackers can access the whole process image, information generated at
and describing waypoints (e.g., their privileges) should be kept away from mali-
cious access. We store all waypoint-related data and code in the kernel.

3. Compatibility
Our waypoints work directly on binary code, so the original code may be generated
from different high-level languages or with different compilers.

A natural granularity for control flow monitoring is at the function level. To trace
function call flow, we set up waypoints at function entrance and exit. We generate way-
points and their associated permissions on a per-function basis through static analysis.

At run time, we can construct a push-down automata of the waypoints that parallels
the execution stack of the process. An entrance waypoint disables the permissions of
the previous waypoint, pushes the entrance waypoint on top of the waypoint stack, and
enables its permissions. A corresponding exit waypoint discards the top value on the
waypoint stack and restores the permissions of the previous waypoint.

It is possible that we assign different permissions to different parts of a function. In
this case, we need a middle waypoint. A middle waypoint does not change the waypoint
stack. It only changes permissions for the waypoint.

We deploy waypoints only in the application code. Although we do not set way-
points in libraries, we are concerned about library function exploitation. We treat se-
curity relevant events (system requests) triggered by library functions as running in the
context of the application function that initiated the library call(s).

The waypoint stack records a function call trace. Using this context information,
our access monitor can detect attacks in two ways: (1) flow monitoring—Globally, way-
points comprise the function call trace for the process. We can construct legal waypoint
paths for some security critical system requests (e.g. execve()), such that when such
a system call is made, the program must have passed a legal path. Similar ideas on con-
trol flow monitoring have been proposed in [5, 25], therefore, we do not discuss this

approach further in this paper. (2) permission monitoring—Locally, we use static anal-
ysis to determine the set of system calls (permissions) required for each function, and
ensure system calls invoked in the context of a function appears in its permission set.

3.2 Waypoint Implementation

If a piece of code needs to perform a system request legally, then we say that the piece
of code has a permission to issue the system request. To simplify the implementation,
we use a set to describe permissions for a waypoint and store the permission sets in a
bitmap table.

We generate waypoints and their corresponding permissions through static analysis.
We introduce global control flow information by defining the number of times that a
function can be invoked. Usually, an application function does not issue system requests
directly. It calls system call wrappers in the C library instead. The application may
call the wrapper functions indirectly by calling other library functions first. We build
a (transitive) map between system call wrappers and system call numbers. Currently,
we analyze the hierarchical functions manually. Our next step is to automate this whole
procedure.

We deploy the access monitor, together with the waypoint stack and the permission
bitmap table, in the operating system kernel, as shown in figure 1. There are two fields
in an entry of the waypoint stack, one is the location of the waypoint, the other is extra
information for access monitoring. Since we monitor application function call flow, we
use this field to store the return address from the function. In one application function,
there is one entry waypoint and one exit waypoint, the pair of which is stored in the
bitmap table. Field “entries” in the bitmap table indicates how many times a waypoint
can be passed. In our current implementation, we only distinguish between one entry
and multiple entries to avoid malicious jump to prologue code and function main(),
which usually contain some dangerous system calls and should be entered only once.

At a waypoint location, there should be some mechanism to trigger the waypoint
code in the kernel. We can invoke the waypoint code at several locations: an exception
handler, an unused system call number service routine, or a new soft interrupt handler.
We insert an illegal opcode at the waypoint location and run our waypoint management
code as an exception handler.

An attacker can overwrite the return address or other code pointer to redirect control
to a piece of shellcode or a library function. We protect the return address by saving it
on the waypoint stack when we pass the entrance waypoint. When a waypoint return is
executed at the exit waypoint, the return address on the regular stack is compared with
the saved value on the waypoint stack for return address corruption. The exit waypoint
identifier must also match with the entrance waypoint identifier, since they come in
pairs. If the attacking code uses an unpaired exit waypoint or a faked waypoint, the
comparison will fail. If the attack forces return into a different address, although the
control flow can be changed, the active permission set—the permission set belonging
to the most recently activated waypoint—is not changed, because the expected exit
waypoint has not passed. The attacking code will still be limited to the unchanged
permissions.

… ...
0804c0fc <ConfigCoding>:
 804c0fc: fe (bad) <--entrance waypoint
 804c0fd: 90 nop
 804c0fe: 90 nop
 804c0ff: 90 nop
 804c100: 55 push %ebp
 804c101: 89 e5 mov %esp,%ebp
 … …

 804c193: 31 c0 xor %eax,%eax
 804c195: 5f pop %edi
 804c196: c9 leave
 804c197: fe (bad) <--exit waypoint
 804c198: 90 nop
 804c199: 90 nop
 804c19a: 90 nop
 804c19b: c3 ret
… ...

kernel space

task_struct of the
process being
monitored

waypoint stack

prologue
main()

Table of permissions bitmap for application functions

ConfigCoding() read, write, close, ...

main() open, close, exit ...

prologue

n

1

1 execve, mmap, break ...

Entrance waypoint Return address

Entrance wp Exit wp
Number of

entries permissions

… ...

ReadConfig()

ConfigCoding()

--- ---
0x8049720 0x42015574

0x804ad78 0x8049dac
0x804c0fc 0x804aef2

0x80490a8 ---

0x8049720 0x804978e

0x804c0fc 0x804c197

… ...

Process table

Fig. 1. Data structures needed for the waypoint-based access monitor: a waypoint stack
and a table of permission bitmaps. The third column of the bitmap table indicates how
many times a waypoint may be activated. The prologue code and function main() are
allowed to run only one time during the process life. Function ConfigCoding() can be
called unlimited times.

3.3 Monitoring Granularity

In our implementation, each waypoint causes a kernel trap, and each guarded function
has at least two waypoints (an entrance/exit pair, plus optional middle waypoints). Thus,
the performance of the system is dependent on the granularity of waypoint insertion.
Our first implementation monitored every function, irrespective of whatever system
calls the function contained. As reported in section 4, the overhead can be substantial.

Not all system calls are equally useful for subverting a system. We define dangerous
system calls as those rated at threat level 1 in [26]. There are 22 dangerous system calls
in Linux: chmod, fchmod, chown, fchown, lchown, execve, mount,
rename, open, link, symlink, unlink, setuid, setresuid,
setfsuid, setreuid, setgroups, setgid, setfsgid, setresgid,
setregid, and create module. Such system calls can be used to take full control
of the system.

Table 1 and 2 show the number of functions containing dangerous system calls, and
the permissions distribution. The tables show us that only a small portion of the applica-
tion functions invoke dangerous system calls. Most functions call at most one dangerous
system call, and no function calls more than three. Only three functions (two in tar
and one in kon2) in the whole table require exec. Most functions invoking three dan-
gerous system calls contain only file system-related calls such as open, symlink, and
unlink.

program # of applica-
tion functions
totally

of functions
containing dan-
gerous system
calls

containing
3 dangerous
system calls

containing
2 dangerous
system calls

containing
1 dangerous
system calls

enscript 48 8 0 0 8
tar 165 26 3 3 20
gzip 92 6 1 3 2
kon2 111 10 1 5 4
totally 416 12% 1.2% 2.6% 8%

Table 1. number of functions invoking dangerous system calls, and the calls distribution.
Only 12% (50) of functions in our analysis use dangerous system calls, while 1.2% (5)
of them contains 3 dangeous calls.

The distribution of dangerous system calls shows that partitioning of system call
permissions should be effective. If an exploit happens within the context of one func-
tion, the attacker can use only those system calls authorized for that function, which
significantly restricts the power of attack in gaining control of the system. Existing
code-injection attacks exploit flaws in input routines, which do not, in general, have
permission to call dangerous system calls. Open, however, is used widely in applica-
tion functions (9% of application functions use it), requiring further restrictions to its
parameters.

program # of
fu

nc
tio

ns
cr

ea
te

m
od

ul
e

ex
ec

ve

se
tu

(/g
)id

op
en

/re
na

m
e

ch
ow

n(
/m

od
)

lin
k,

sy
m

(/u
n)

lin
k

enscript 48 0 0 0 8 0 0
tar 165 0 2 1 20 3 4
gzip 92 0 0 0 3 2 5
kon2 111 0 1 1 6 4 2
totally 416 0 0.7% 0.5% 9% 2.2% 2.6%

Table 2. number of functions invoking dangerous system calls. For example, 20 func-
tions in tar invokes open or rename. Only 0.7% (3) of all functions in our analysis call
execve.

The numbers show that as an alternative of monitoring every function, we can moni-
tor only functions containing dangerous system calls to detect subversions. In this case,
we have a default permission set that allows all other system calls, and only deploy
waypoints when switching between the general, default permissions and the strict, spe-
cific permissions associated with the function that uses dangerous system calls. This
is a conscious trade-off of capability for performance; we no longer have a full way-
point stack in the kernel that reflects all function calls during program execution, but
the overhead decreases significantly, as shown in figure 3 of section 4.

3.4 Waypoint-based Anomaly Monitoring

After generating waypoints and their permission sets for a program, we monitor the
program at run time. The procedure of the waypoint-based security monitor can be
described in the following steps:

1. Marking a process with waypoints
At the process initialization stage, we mark a process by setting a flag in its cor-
responding task struct in the process table, indicating whether the process is
being monitored or not. For a process being monitored, we set up a waypoint stack
and create a table of permission bitmaps for the waypoints. The permission sets are
generated statically.

2. Managing the waypoints at run time
Waypoints are authenticated by their linear addresses. We implement the manage-
ment procedure in an exception handler. When an exception is triggered, we first
check whether it is a legitimate waypoint or not. A legitimate waypoint satisfies
three conditions: (1) the process is being monitored; (2) the location of the excep-
tion (waypoint location) can be found in the legal waypoint list; and (3) the number
of times that the waypoint is activated is less than or equal to the maximum allowed
times. If the conditions are not satisfied, we pass control to the regular exception
handler.

After the verification, we manage the waypoint stack according to the type of the
waypoint. If it is an entrance waypoint, we push it onto the waypoint stack and ac-
tivate its permission set; if it is a middle waypoint, we only update the permissions;
and if it is an exit waypoint, we pop the corresponding entrance waypoint from the
stack and restore the previous permission set. After that, we emulate the original
instruction if necessary, adjust the program counter to the location of the next in-
struction and return from the exception handling. To simplify implementation, we
insert 4 nops at the waypoint locations and change the first nop to a waypoint
instruction (i.e. a bad instruction in our implementation). In this way, we can avoid
emulating the original instructions, because nops perform no operations.

3. Monitoring system requests
We implemented the access monitor as an in-kernel system call interceptor in front
of the system call dispatcher. In terms of access control logic, the subject is the
application function; the object is the system call number; and the operation is the
system call request. After trapping into the kernel for a system call, the access con-
trol monitor first verifies whether the current process is being monitored or not. If
yes, the monitor fetches the active waypoint from the top of the waypoint stack and
its corresponding permission set from the permissions bitmap table. If the request
belongs to the permission set, the monitor invokes the regular system service rou-
tine; otherwise, the monitor refuses the system call request and writes the violation
information in the kernel log.

3.5 Implementation Issues

We have considered the following issues in our implementation:

1. monitoring offspring processes
We monitor the offspring processes the same way as we monitor the parent process.
A child process inherits the monitor flag, the permission bitmap table, the waypoint
stack, and the stack pointer from the parent process. If the child is allowed to run
another program (e.g. by calling execve()), then the waypoint data structures of
the new program will replace the current ones.

2. multiple-thread support
Linux uses light-weight processes to support threads efficiently. Monitoring a light-
weight process is similar to monitoring an ordinary process, but requires a sepa-
rate waypoint stack for every thread. Our current implementation does not support
thread-based access monitoring.

3. number of passes
By restricting the number of times a waypoint can be passed during a process life
time, we can monitor some global control flow characteristics efficiently. In par-
ticular, we allow the program prologue to start only one time, because it typically
invokes dangerous system calls and is logically intended to run only once. We also
allow main() to start only once per process execution.

4. non-structured control flow
Control flow does not always follow paths of function invocation. In the C/C++
languages, the goto statement performs an unconditional transfer of control to

a named label, which must be in the current function. Because goto does not
cross a function boundary, it does not affect function entrance and exit waypoints.
However, it might jump across a middle waypoint, so we do not put any middle
waypoints between a goto instruction and the corresponding target location.
Setjmp sets a jump point for a non-local goto, using a jmp buf to store the cur-
rent execution stack environment, while longjmp changes the control flow with
the value in such a data structure. At the setjmp call, we use a waypoint to take a
snapshot of the in-kernel waypoint stack and the jmp buf, while at the longjmp
location, a waypoint ensures that the target structure matches a jmp buf in the
kernel, and replaces the current waypoint stack with the corresponding snapshot.

5. permissions switch with a low-overhead policy
Under our low-overhead policy, we only monitor functions that invoke dangerous
system calls. These functions may call one another, or call a function with only
default permissions, or vice versa. Permissions are switched on the function call
boundary. In the forward direction, where the caller has specific, elevated permis-
sions, we use a middle waypoint to switch to the default permission set before
calling, and switch the permissions back after returning. If the callee has specific,
elevated permissions, regular entrance and exit waypoints will activate them.

6. the raw system interface
To control the target system, an attacker may use the raw system interface (e.g.
/dev/mem and /dev/hda). This is an anomaly to most applications. Our waypoint-
based defense will restrict the opportunities for the attacker to call open, but fur-
ther defenses, e.g. parameter checking, are necessary for complete defense. Our
current implementation does not employ parameter checking. See [5, 25–27] for
further information on parameter monitoring.

3.6 Evasion Attacks and Defenses

Because the waypoint structures and code are located in the kernel, attackers cannot
manipulate them directly. However, an adaptive attack may create an illegal instruction
in the data sections as a fake waypoint or jump to the middle of a legitimate instruction
(in an X86 system) to trigger the waypoint activation mechanism. As we explained in
section 3.2, our waypoint management code can recognize the fake waypoints because
all the legitimate waypoints are loaded into the kernel at load time. If an attack inten-
tionally jumps over a waypoint, although it can change the control flow, the waypoint
stack is not updated neither is the permission set.

Our waypoint mechanism was originally designed to counter attacks of category 1
(shellcode based attacks) and category 2 (LCT attacks) described in section 2, because
these attacks bypass waypoints and therefore fail to acquire the associated permissions.
Evasion attacks may use the category 3 attack (function granularity attacks), if these
functions invoke the exact system calls and in the correct order, required by the attacker.
For such programs, the low-overhead policy may not supply sufficient trace information
to support function call flow monitoring, so full monitoring on function call path should
be done.

If an attack launches a local mimicry attack, using one or a sequence of legitimate
system calls of the current context, our mechanism cannot detect it. This is the general

case of abuse of the raw system interface mentioned above, and in similar fashion,
we must employ complementary techniques. In our implementation, we adopt system
interface randomization [2, 28] to counteract shellcode-based local mimicry attacks.

Existing implementations of system call number randomization [2] uses a permu-
tation of the system call numbers. A simple permutation of the relatively small space
(less than 256 system calls) allows attackers to guess the renumbering for a particular
system call in 128 tries on average, or 255 guesses in the worst case.

To survive this brute force attack, we use a substitution cipher to map from 8-bit
system call numbers to 32-bit numbers, thereby making a brute-force attack on the sys-
tem impractical. In Linux, a system call number � is an unsigned 8-bit integer between
0 and 255, and is carried to the kernel in register %eax, a 32-bit register, of which 24
bits are unused. In our implementation, we make use of the whole register to carry the
32-bit system call number. We generate a one-to-one mapping between the 8-bit system
call numbers and their corresponding 32-bit secrets. The access monitor restores the
original number correspondingly upon a system call.

3.7 An Example

To demonstrate the effectiveness of our waypoint mechanism, we attacked a real ap-
plication program in Linux, using both shellcode and return-into-lib(c) attacks. We
chose kon2 version 0.3.9b as the target. kon2 is a Kanji emulator for the console.
It is a setuid root application program. In version 0.3.9b, there is a buffer overflow vul-
nerability in function ConfigCoding() when using the -Coding command line
parameter. This vulnerability, if appropriately exploited, can lead to local users being
able to gain root privileges [29]. Part of the source code of the vulnerable function
ConfigCoding() is shown in figure 2(a), with the vulnerable statement highlighted.
Figure 2(b) shows its original binary code, and figure 2(c) shows the binary code with
waypoints added.

To help the shellcode attack reach our waypoint mechanism, we disabled the system
call renumbering and return address comparison features of our system during our ex-
periment. In the following attack and defense experiment, we show how the waypoint
mechanism can detect malicious system calls in both shellcode based and return-into-
lib(c) based attacks.

– Attack 1: calling a system call instruction located in the shellcode
In the attack, the return address of function ConfigCoding() is overflowed. In
this experiment, the faked return address redirects to a piece of shellcode. With-
out our protection, the attacking code generated a shell. With our mechanisms de-
ployed, the malicious system request execve(‘‘/bin/sh’’) was caught and
the shell was not generated. At the location of the ret instruction, an exit way-
point is triggered, and the permissions for ConfigCoding()’s parent function
(ReadConfig()) are activated. Because execve() is not among the permis-
sions of ReadConfig(), the system request is denied. It is interesting to see that
if the return address is overwritten, the malicious request is issued in the context of
the parent function, because the malicious request is issued after the execution of

static int ConfigCoding(const char *confstr)
{
 char reg[3][MAX_COLS]; <−−Fixed size buffer MAX_COLS=256
 int n, i;

 *reg[0] = *reg[1] = *reg[2] = ’\0’;
 sscanf(confstr, "%s %s %s", reg[0], reg[1], reg[2]);
 ^^^^^^^^^^^^^^^^^^^^^^^^^^buffer overflow vulnerability here

 return SUCCESS;
}

(a) A buffer−overflow vulnerable function in kon2

0804c0fc <ConfigCoding>:

 804c0fd: 90 nop
 804c0fe: 90 nop
 804c0ff: 90 nop
 804c100: 55 push %ebp
 804c101: 89 e5 mov %esp,%ebp

 804c193: 31 c0 xor %eax,%eax
 804c195: 5f pop %edi
 804c196: c9 leave

 804c198: 90 nop
 804c199: 90 nop
 804c19a: 90 nop
 804c19b: c3 ret

 804c0fc: 90 nop

 804c197: 90 nop

(b) the original binary code

0804c0fc <ConfigCoding>:
 804c0fc: fe (bad) <−−entrance waypoint
 804c0fd: 90 nop
 804c0fe: 90 nop
 804c0ff: 90 nop
 804c100: 55 push %ebp
 804c101: 89 e5 mov %esp,%ebp

 804c193: 31 c0 xor %eax,%eax
 804c195: 5f pop %edi
 804c196: c9 leave

 804c198: 90 nop
 804c199: 90 nop
 804c19a: 90 nop
 804c19b: c3 ret

(c) the binary code with waypoints added

 804c197: fe (bad) <−−exit waypoint

Fig. 2. a buffer overflow vulnerable function in kon2 and its waypoints

instruction ret and the exit waypoint. If our mechanisms are fully deployed, the
exit waypoint will guarantee that the return address is not faked.

– Attack 2: A low-level control transfer attack
Recall that a low-level control transfer attack can redirect control to legitimate code
for malicious purposes. In our experiment, we use the location of int execve
(const char *filename, char *const argv[], char *const
envp[]), a sensitive libc function, in the attacking code. Because neither
ConfigCoding() nor its caller ReadConfig() have the permission to call
system call execve(), the request is rejected by our monitor.
Note, it is difficult to detect the return-into-lib(c) attacks. Program shepherding [25]
ensures that library functions are called at only library entrance locations, and the
library callee functions must exist in the external symbol table of the ELF format
program. In kon2, because execl() and execlp() are used at other locations,
there are corresponding entries in the external symbol table; so at any library en-
trance point, this request can pass the shepherding check. In addition, program
shepherding monitors control flow only, so it is possible for an attack to compro-
mise control flow related data (e.g. GOT), making the return-into-lib(c) attack re-
alistic. In an IDS without control flow information, because execve() is used in
the program, a mimicry attack may pass the check.

The only dangerous system call in the context of ConfigCoding() is open().
Within this context, the attacker does not have much freedom in gaining control of
the system. Launching an execve() requires a global mimicry attack that crosses
function boundaries, which is subject to both the call flow and permissions monitoring.

4 Overhead Measurement and Analysis

We measured the overhead of the waypoint-based access monitor on a system of Red-
Hat Linux 9.0 (kernel version 2.4.20-8) on a 800MHz AMD Duron PC with 256MB
memory.

The overhead of the waypoint-based access monitor has two main causes: waypoint
registration in the exception handler and running the access monitor at each system call.
The system call mapping is done before running, so it does not introduce any run-time
overhead. The remapping at each system call is a binary search on a 256 entry table
in our implementation. Because the remapping takes only tens of instructions, this
overhead is negligible. The access monitor at the system call invocation compares the
coming request number with the permission bitmap. These comparison operations cost
little time. Therefore, the majority of the overhead is from the additional trap for the
waypoint registration code in the exception handler, where caches and pipelines will be
flushed.

Our measurement on a micro-benchmark program that calls a monitored function in
a tight loop shows that the overhead for one waypoint invocation is 0.395 microseconds
on average. This captures the cost of exception handling, but does not reveal overhead
due to cache and pipeline flushing.

To better understand these effects on real applications, we tested a few well known
GNU applications. We did not use real time, the time between program start and end,

because the overhead can be hidden by the overwhelming I/O time. Instead, we use user
time and sys time, the time that measures the process running in user mode and kernel
mode, correspondingly. These time gives us an accurate understanding of the overhead.

As shown in figure 3, when we monitor all functions, the user time increases by
about 10%–20%, but the system time increases dramatically. We attribute the increase
in user time to the flushing of cache and pipelines. In the GNU programs we measured
3-5 times overhead due to our waypoint mechanism.

0

10

20

30

40

50

60

70

80

90

100

R
un

tim
e

(in
 s

ec
on

ds
)

enscript
20M file

tar −c
kernel source

tar −x
192M file

gzip
68M file

gunzip
18M file

user time
system time

Fig. 3. overhead of the waypoint-based access monitor. For every group, the left side bar
shows the time of running the original program; the middle bar shows its running time
under waypoint-based access monitoring for all functions; and the right side bar shows
the result with monitoring only functions that invoke dangerous system calls.

When we monitor only dangerous functions, the overhead is smaller than for moni-
toring all functions. Dangerous-function monitoring for enscript,gzip andgunzip
introduces small overhead, but the overhead for tar is still high. In gunzip, there are
only a few function calls for checking the zip file and for decompressing it. Because
there are only a few waypoint invocations in the entire program execution, the running
time is close to the original running time. We conclude that the overhead depends on
not only how many functions are monitored, but also how frequently these functions
are invoked.

5 Related Work

There are three layers of defense in preventing attacks from subverting the system. The
first layer of defense is to prevent the malicious data and code from being injected,
typically by avoiding and tolerating implementation errors in the system. Existing tech-
niques include language-based or compiler-based techniques, such as type checking [9,
30–32], or protecting data pointers [33] and format strings [3]. The second layer of de-
fense is to prevent malicious code from being executed. Prevention methods include
instruction set randomization [34, 35], non-executable stack and heap pages [8, 10],
process image randomization [10, 13], and stack integrity guarding [4, 11]. The third
layer of defense attempts to prevent the executing attack code from doing further harm
though the system interface. Existing work at this stage includes anomaly detection [5,
6, 12, 24, 25, 27], process randomization [2, 10, 13, 28, 36], and instruction set random-
ization [34, 35].

Realizing that lack of context information in detection leads to certain false nega-
tives possible (e.g., the impossible-path problem and the mimicry attacks), some anomaly
monitors apply partial context information in anomaly detection [5, 24, 25]. The benefit
of using context information is that control path information between two system call
invocations can help detecting anomaly.

Retrieving user call stack information in system call interceptor [5] is promising in
bringing function call flow information to the anomaly monitor. We explore this ap-
proach further by providing trustworthy control flow information to the monitor. One
other difference is that while [5] emphasize the call stack signature at a system call in-
vocation, we put much effort on guarding with the permissions of application functions.
Program shepherding [25] uses an interpretor to monitor the control flow of a process. It
enforces application code to call library functions only through certain library entrance
points, and the target library function must be one of the external functions listed in the
external symbol table of the application executable. Because program shepherding does
not monitor the data flow, some control flow information, such as function pointers, may
be overwritten. If the overwritten pointer happens to be a library entry point, and the
attack chooses a library function that is used at any other locations in the program, the
attack can pass the check. Context related permissions can help in this situation. [24]
associates a system call with its invocation address. The return-into-lib(c) attack calls
a library function, rather than a piece of shellcode. In this case, the locations do not
provide enough control path information to the detector.

6 Conclusion

In this paper, we propose a new mechanism—waypoints—to provide trustworthy con-
trol flow information for anomaly monitoring. We demonstrated how to use our way-
point mechanism to detect global mimicry attacks. Our approach can also catch return-
into-others impossible paths by guarding the return addresses. Implementing waypoints
by kernel traps provides reliable control path information, but slows down an ordinary
program by 3-5 times. As a trade-off, by monitoring only dangerous system calls, we
can reduce the overhead by 16%-70%, but no longer monitor the complete function call
path.

As noted in our discussion of access to the raw system interface, waypoint-based
detection cannot find local mimicry attacks, because the function has the proper permis-
sions required to invoke the dangerous system calls. In our current implementation, we
associate a permission set with each waypoint, but a state machine can provide tighter
monitoring than a set. We will also investigate the use of complementary techniques,
such as parameter checking, to extend waypoints to defend against local mimicry at-
tacks.

Impossible paths may be generated at multiple granularities. Our waypoint mecha-
nism can detect only function-granular return-into-others impossible paths by guarding
return addresses.

Our waypoint mechanism cannot directly detect attacks through interpreted code.
Because we work at the binary code level, our mechanism does not “see” the interpreted
code. Rather, it monitors the interpreter itself, and so only sees actions taken by the
interpreter in response to directives in the interpreted code.

So far, we generate waypoints and their permissions statically, which does not sup-
port self-loading code. Our future work will be to support self-loading code by moving
waypoint set up procedure (by code instrumentation) to program load time. Additional
future work is to optimize performance. Some optimizations that we have discussed are
hoisting waypoints out of loops and merging waypoints for several consecutively called
functions.

Our prototype implementation of the waypoint mechanism for Linux X86 system
may be downloaded from http://www.sai.syr.edu/projects.

Acknowledgments

We thank Kyung-suk Lhee and the anonymous referees for their helpful comments.

References

1. Baratloo, A., Tsai, T., Singh, N.: Libsafe: Protecting critical elements of stacks. Technical
report, Avaya Labs Research (1999)

2. Chew, M., Song, D.: Mitigating buffer overflows by operating system randomization. Tech-
nical report, CMU department of computer science (2002)

3. Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman, G., Frantzen, M., Lokier, J.: Format-
Guard: Automatic Protection From printf Format String Vulnerabilities. In: proceedings of
the 2001 USENIX Security Symposium, Washington D.C. (2001)

4. Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wa-
gle, P., Zhang, Q.: StackGuard: Automatic Adaptive Detection and Prevention of Buffer-
Overflow Attacks. In: Proceedings of the 7th USENIX Security Symposium, San Antonio,
Texas (1998)

5. Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly Detection Using Call
Stack Information. In: Proceedings of the 2003 IEEE Symposium on Security and Privacy,
Berkeley, CA (2003)

6. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A Sense of Self for Unix Pro-
cesses. In: Proceedings of the 1996 IEEE Symposium on Security and Privacy. (1996)

7. Purczynski, W.: (kNoX—implementation of non-executable page protection mechanism)

8. Solar Designer: Non-Executable User Stack, (http://www.openwall.com/linux/)
9. Lhee, K., Chapin, S.J.: Type-Assisted Dynamic Buffer Overflow Detection. In: Proceedings

of the 11th USENIX Security Symposium, San Francisco (2002)
10. the Pax team: design & implementation of PaX,

(http://pageexec.virtualave.net/docs/index.html)
11. Vendicator: StackShield: A “stack smashing” technique protection tool for linux,

(http://www.angelfire.com/sk/stackshield/)
12. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proceedings of the 2001

IEEE Symposium on Security and Privacy. (2001)
13. Xu, J., Kalbarczyk, Z., Iyer, R.K.: Transparent Runtime Randomization for Security. In:

Proceedings of the 22nd Symposium on Reliable and Distributed Systems (SRDS), Florence,
Italy (2003)

14. Ghosh, A., Schwartzbard, A.: A study in using neural networks for anomaly and misuse
detection. In: 8th USENIX security symposium. (1999)

15. Lee, W., Stolfo, S.: Data mining approaches for intrusion detection. In: 7th USENIX security
symposium, San Antonio, TX (1998)

16. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting Intrusions Using System Calls: Alter-
native Data Models. In: Proceedings of the 1999 IEEE Symposium on Security and Privacy.
(1999)

17. Wespi, A., Dacier, M., Debar, H.: Intrusion detection using variable-length audit trail pat-
terns. In: 3rd International workshop on the recent advances in intrusion detection. Volume
LNCS 1907, Springer. (2000)

18. Abadi, M., Fournet, C.: Access control based on execution history. In: Proceedings of the
2003 Network and Distributed System Security Symposium. (2003)

19. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems. In: Pro-
ceedings of the 9th ACM Conference On Computer And Communication Security, Wash-
ington, DC, USA (2002)

20. Aleph One: Smashing The Stack For Fun And Profit. www.Phrack.org 49 (1996)
21. Nergal: The advanced return-into-lib(c) exploits. www.Phrack.org 58 (2001)
22. Box, D.: Essential .NET, Volume I: The Common Language Runtime. Addison Wesley

(2002)
23. Gong, L., Ellison, G., Dageforde, M.: Inside Java 2 Platform Security: Architecture, API

Design, and Implementation (2nd Edition). Addison Wesley (1999)
24. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automaton-based method for de-

tecting anomalous program behaviors. In: Proceedings of the IEEE Symposium on Security
and Privacy, IEEE Computer Society (2001) 144

25. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure execution via program shepherding.
In: Proceedings of the 11th USENIX Security Symposium, San Francisco, CA (2002)

26. Bernaschi, M., Gabrielli, E., Mancini, L.V.: Enhancements to the linux kernel for blocking
buffer overflow based attacks. In: 4th Linux showcase & conference. (2000)

27. Sekar, R., Venkatakrishnan, V., Basu, S., Bhatkar, S., DuVarney, D.C.: Model-carrying code:
a practical approach for safe execution of untrusted applications. In: Proceedings of the
nineteenth ACM symposium on Operating systems principles, ACM Press (2003) 15–28

28. Somayaji, A., Hofmeyr, S., Forrest, S.: Principles of a Computer Immune System. In:
Proceedings of the 1997 New Security Paradigms Workshop, UK (1997)

29. Red Hat security: Updated kon2 packages fix buffer overflow (2003)
30. Ashcraft, K., Engler, D.R.: Using programmer-written compiler extensions to catch security

holes. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy, Oakland, CA
(2002)

31. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Langauges (POPL ’97), Paris (1997) 106–119

32. Lhee, K., Chapin, S.J.: Buffer Overflow and Format String Overflow Vulnerabilities.
Software—Practice & Experience 33 (2003) 423–460

33. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: Pointguard: Protecting pointers from buffer
overflow vulnerabilities. In: Proceedings of the 12th USENIX Security Symposium. (2003)

34. Barrantes, E.G., Ackley, D.H., Forrest, S., Palmer, T.S., Stefanovic, D., Zovi, D.D.: Ran-
domized instruction set emulation to disrupt binary code injection attacks . In: Proceedings
of the 10th ACM Conference On Computer And Communication Security. (2003)

35. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering Code-Injection Attacks With
Instruction-Set Randomization. In: Proceedings of the 10th ACM Conference On Computer
And Communication Security. (2003)

36. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: An efficient approach to com-
bat a broad range of memory error exploits. In: Proceedings of the 12th USENIX Security
Symposium, Washington D.C. (2003)

