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Abstract

We describe an methodology for testing a software
system for possible security flaws. Based on the ob-
servation that most security flaws are caused by the
program’s inappropriate interactions with the environ-
ment, and triggered by user’s malicious perturbation on
the environment (which we call an environment fault),
we view the security testing problem as the problem of
testing for the fault-tolerance properties of a software
system. We consider each environment perturbation
as a fault and the resulting security compromise a fail-
ure in the toleration of such faults. Our approach is
based on the well known technique of fault-injection.
Environment faults are injected into the system under
test and system behavior observed. The failure to tol-
erate faults is an indicator of a potential security flaw
in the system. An Environment-Application Interac-
tion (FAI) fault model is proposed which guides us to
decide what faults to inject. Based on FEAI, we have de-
veloped a security testing methodology, and apply it to
several applications. We successfully identified a num-
ber of wvulnerabilities including vulnerabilities in Win-
dows NT operating system.
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jection, environment perturbation.
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1 INTRODUCTION
Security testing

Reports of security violations due to software errors
are becoming increasingly common. We refer to such
errors as “security errors” or “security flaws.” This has
resulted in security related concerns among software
developers and users. All stages of software develop-
ment are motivated by the desire to make the product
secure and invulnerable to malicious intentions of some
users. Our work is concerned with the testing of soft-
ware with the goal of detecting errors that might lead
to security violations.

Traditional methods for detecting security flaws in-
clude penetration analysis and formal verification of
security kernels [18, 20]. Penetration analysis relies on
known security flaws in software systems other than
the one being tested. A team of individuals is given
the responsibility of penetrating the system using this
knowledge. Formal methods use a mathematical de-
scription of the security requirements and that of the
system that implements the requirements. The goal
of these methods is to show formally that the require-
ments are indeed met by the system.

A weakness of penetration analysis is that it requires
one either to know or be able to postulate the nature
of flaws that might exist in a system. Further, the ef-
fectiveness of penetration analysis is believed to be as
good as that of the team that performs the analysis. A
lack of an objective criterion to measure the adequacy
of penetration analysis leads to uncertainty in the re-
liability of the software system for which penetration
analysis did not reveal any security flaws.

Attractive due to the precision they provide, formal



methods suffer from the inherent difficulty in specify-
ing the requirements, the system, and then applying
the process of checking the requirements specification
against system specification.

Recently, several specific security testing techniques
have been developed [4, 8, 19, 24, 22, 29]. Adaptive
Vulnerability Analysis (AVA) is designed by Ghosh et
al. to quantitatively assess information system secu-
rity and survivability. This approach exercises soft-
ware in source-code form by simulating incoming mali-
cious and non-malicious attacks that fall under various
threat classes [22, 23, 28, 29]. Fuzz [9, 24] is a black-box
testing method designed by Miller et al, which feeds
randomly generated input stream to system utilities
in order to test how reliable they are. Bishop and
Dilger studied one class of the time-of-check-to-time-
of-use (TOCTTOU) flaws [4], and investigated using
static analysis method to identify such type of flaws.
Fink and Levitt employ application-slicing technique
to test privileged applications [8]; Gligor has also pro-
posed a security testing method using control synthesis
graphs [19]. As discussed in section 5, these techniques
are either restricted to some specific security flaws or
limited by the underlying testing techniques.

Another alternative for security testing is to use gen-
eral testing techniques, such as path testing, data-flow
testing, domain testing, and syntax testing [2]. How-
ever, the effectiveness of these techniques in revealing
security flaws is still unknown and more studies are
needed to justify their use in testing for security flaws.

Outline of our approach

Our approach for security testing employs a well
known technique in the testing of fault-tolerant sys-
tems, namely fault injection. This approach has drawn
upon years of research and experience in vulnerability
analysis [1, 3, 6, 17, 21]. Our approach relies on an em-
pirically supported belief that the environment plays a
significant role in triggering security flaws that lead to
security violations [10, 17].

The problem

For the purpose of our discussion, we assume that a
“system” is composed of an “application” and its “en-
vironment.” Thus, potentially, all codes that are not
considered as belonging to the application belong to
the environment. However, we can reduce the size of
the environment, by considering only those portions of
the code that have a direct or indirect coupling with
the application code. Such coupling might arise, for ex-
ample, due to the application’s use of global variables

declared in the environment or the use of common re-
sources such as files and network elements.

For various reasons, programmers tend to make as-
sumptions about the environment in which their appli-
cation will function. When these assumptions hold, the
application is likely to behave appropriately. But, be-
cause the environment, as a shared resource, can often
be perturbed by other subjects, especially malicious
users, these assumptions might not be true. How to
know whether a program can tolerate the environment
perturbation is the key problem that we want to solve
in this paper.

If we consider environment perturbations, especially
malicious perturbations to be (malicious) faults, the
above problem is considered as whether a program is
able to tolerate various environment faults (not leading
to security violations is considered toleration of such
faults). In the remainder of this paper, we will use the
terms “environment perturbation” and “environment
fault” interchangeably where there is no confusion.

Fault injection—the deliberate insertion of faults into
an operational system to determine its response—offers
an effective solution to validate the dependability of
fault-tolerant computer and software systems [5]. In
our approach, faults are injected into environment
thereby perturbing it. In other words, we perturb the
application environment during testing to see how the
program responds and whether there will be a secu-
rity violation under this perturbation. If not then the
system is considered secure.

Advantages of our approach

The use of environment fault injection technique
leads to several advantages. First, in practice, it is hard
to trigger certain anomalies in the environment, and
knowing how to trigger them depends on the tester’s
knowledge of the environment. Therefore, testing soft-
ware security under those environment anomalies be-
comes difficult. Fault injection technique provides a
way of emulating the environment anomalies without
having to be concerned with how they could occur in
practice. Second, our approach provides a systematic
way of deciding when to emulate environment faults.
If we want to test whether a system will behave ap-
propriately under certain environment anomalies, we
need to set up those environments. However, the set
up time is often difficult to control. If the set-up is too
early, the condition might change during the test, and
the environment state might not be what is expected
when an interaction between the application and the
environment takes place. If the environment is set up
too late, the effect it has on the application’s behav-



ior might not serve the purpose for which it was set
up. By exploiting static information in the applica-
tion and the environment’s source code, our approach
can, however, decide deterministically when to trigger
environment, faults. Third, unlike penetration analy-
sis, where the procedure is difficult to automate and
quantify, fault injection technique provides a capabil-
ity of automating the testing procedure. In addition,
we adopt a two-dimensional metrics to quantify the
quality of our testing procedure.

Resear ch issues

Fault injection requires the selection of a fault model
[5]. The choice of this model depends on the nature of
faults. Software errors arising from hardware faults, for
instance, are often modeled via bits of zeroes and ones
written into a data structure or a portion of the mem-
ory [15, 26], while protocol implementation errors aris-
ing from communication are often modeled via message
dropping, duplication, reordering, delaying etc. [14].
Understanding the nature of security faults provides
a basis for the application of fault injection. Several
studies have been concerned with the nature of security
faults [1, 3, 6, 17, 21].) However, we are not aware of
any study that classifies security flaws from the point of
view of environment perturbation. Some general fault
models have also been widely used [13, 27, 22, 29]. The
semantic gap between these models and the environ-
ment faults that lead to security violations is wide and
the relationship between faults injected and faults lead-
ing to security violations is still unknown. We have de-
veloped an Environment-Application Interaction (EAT)
fault model which serves as the basis for the fault in-
jection technique described here. The advantage of the
EAI model is in its capability of emulating environment
faults that are likely to cause security violations.

Another issue in fault injection technique is the lo-
cation, within the system under test, where faults are
to be injected. In the current stage of our research, we
inject environment faults at the points where the envi-
ronment and the application interact. In future work,
we plan to exploit static analysis to further reduce the
number of fault injection locations by finding the equiv-
alence relationship among those locations. The moti-
vation for using static analysis method is that we can
reduce the testing efforts by utilizing static information
from the program.

A general issue about software testing is “what is an
acceptable test adequacy criterion?” [11]. We adopt
a two-dimensional coverage metric (code coverage and
fault coverage) to measure test adequacy.

The remainder of this paper is organized as follows:

section 2 presents the fault model. A methodology for
security testing is presented in section 3. In section 4
we will show the results of using this methodology in
detecting real world programs. Finally a brief overview
of related studies is presented in section 5 followed by
summary of this research and the potential for future
work in section 6.

2 AN ENVIRONMENT
MODEL

FAULT

In order to determine system behavior under vari-
ous environment conditions, an engineer must be able
to determine the effects of environment perturbation on
a given system. Therefore, it is useful to inject faults
that manifest themselves as errors in systems at the
environment-application interaction level. To maintain
confidence in the validity of the errors, the model used
for these injections should be drawn from actual en-
vironment faults, while faults injected into the system
should be able to emulate those environment faults ap-
propriately. One assumption behind this requirement
is that a security violation resulting due to the injected
fault is similar to one that results due to an environ-
ment fault that arises during the intended use of the
system.

2.1 Terminology

Definition 2.1. (Internal State and Internal Entity)
Any element in an application’s code and data space is
considered an internal entity. A state consisting of the
status of these entities is called an internal state.

Variable ¢ in a application, for example, is an inter-
nal entity. The value of 7 is a part of an internal state.
The size of a buffer used in the application is also a
part of its internal state. In general, all information
in this application’s data space, stack space, and heap
space are part of its internal state.

Definition 2.2. (Environment Entity and Environ-
ment State) Any element that is external to an appli-
cation’s code and data space is called an environment
entity. A state that consists of the status of these en-
tities is called an environment state.

For instance, file and network are treated as envi-
ronment entities. The permission of a file, existence of
a file, ownership of a file, real user-id of a process, and
the effective user-id of process are different parts of an
environment state.

It should be noted that the distinction between the
internal entity and environment entity always depends



on the scope of the program. If the program under
test is the whole operating system, then many usual
environment, entities, such as files, belong to the inter-
nal entities; however, if the program under test is an
application of a component of the operating system,
entities like files now become environment entities. In
this study, we focus on testing applications and com-
ponents of an operating system.

A key difference between an environment and an
internal entity, which makes implementation of a secure
system difficult and error-prone, is the shared nature
of the environment entity. An application is not the
only one that can access and change an environment
entity. Other objects, such as other users, may access
and change the environment entity as well. Internal
entity, on the other hand, is private to an application
in the sense that only the application can modify and
access them, assuming that the underlying operating
system provides protected process space.

In concurrent programming, shared resources are
handled by wusing the mutual exclusion and the
semaphore mechanism to guarantee assumptions about
the state of shared resources. However, we believe that
few programmers use a similar mechanism to guarantee
their assumption about the state of the environment.
There are several reasons for this. First, programmers
might not have recognized that the environment enti-
ties are shared resources. When, for example, an appli-
cation writes to a file, it checks that it has the permis-
sion to write to that file, and then assumes that right
in subsequent operations to that file without noticing
that a malicious attacker could have change the envi-
ronment thereby rendering the assumption false. Most
security flaws resulting from race conditions [4] are
caused by such dubious assumptions. Second, although
some mechanisms, such as file locking, guarantee that
a programmer’s assumption hold on some part of the
environment, state, there is no general mechanism to
do the same because the environment entity has vari-
ous attributes and the mutual exclusion and semaphore
mechanisms could not handle them easily. As a result,
programmers often use ad hoc mechanisms to guaran-
tee the correctness of their assumptions. This can lead
to errors more readily than would be the case when a
standard mechanism is used.

2.2 Developing afault model

In order to provide high confidence in the valid-
ity of the security flaws caused by environment faults,
the methodology described here models systems at a
high level. We refer to this level as the Environment-
Application Interaction (EAT) level. Fault injection

at the interaction level attempts to emulate what a
“real” attacker does. Since most of the vulnerabil-
ity databases record the way attackers exploit a vul-
nerability, we transform these exploits to environment
faults to be injected with little analysis on those records
thereby narrowing the semantic gap between faults in-
jected at the interaction level and faults that really
occur during the intended use of the system. In con-
trast, other studies [22, 29] inject faults at the program
statement level thereby leaving a large semantic gap be-
tween faults injected and those that might arise during
the intended use of the application.

2.3 An EAI fault model

In general, environment faults affect an application
in two different ways. First, an application receives
inputs from its environment. The environment faults
now become faults in the input, which is then inherited
by an internal entity of the application. From this point
onwards the environment faults propagate through the
application via the internal entities. If the application
does not handle the faults correctly, a security viola-
tion might occur. The direct reason for this violation
appear to be faults in the internal entity. However,
this violation is due to the propagation of environment
faults. Stated differently, the environment indirectly
causes a security violation, through the medium of the
internal entity. Figure 1(a) shows this indirect way in
which the environment faults affect an application.

Consider the following example. Suppose that an
application receives its input from the network. Any
fault in the network message related to this input is
inherited by an internal entity. When the application
does a memory copy from this message to an inter-
nal buffer without checking the buffer’s boundaries, the
fault in the network message, the fault being “message
too long,” now triggers a violation of security policy.

A second way in which an environment fault affects
the application is that the fault does not propagate
via the internal entity; instead, it stays within the en-
vironment entity and when the application interacts
with the environment without correctly dealing with
these faults, security policy will be violated. In this
case, the environment faults are the direct cause of se-
curity violation and the medium for environment faults
is the environment entity itself. Figure 1(b) shows this
direct way in which the environment faults affect an
application.

Let us now consider an example to illustrate this
second kind of interaction. Suppose that an applica-
tion needs to execute a file. There are two possibili-
ties: one is that the file belongs to the user who runs
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Figure 1. Interaction Model

the application. Here the environment attribute is the
file’s ownership. In this case the execution is safe. The
other possibility is that the file belongs to some mali-
cious user. This is an environment fault created by the
malicious user. Now the individual who runs the appli-
cation assumes that the file belongs to the application.
If the application does not deal with this environment
fault, it might execute arbitrary commands in that file
thereby resulting in a security violation.

The most error-prone interactions between an ap-
plication and the environment are those that involving
files. Programmers tend to use an abstraction of a file
that includes only a subset of the file attributes. A file
name with a location or file content, for example, is
a commonly used abstraction of a file. The environ-
ment faults, such as a long file name or a file name
with special characters, associated with this abstrac-
tion will propagate via the internal entity. If the ap-
plication does not place appropriate checks on these
internal entities, such environment faults will cause se-
curity violations such as those due to buffer overflow
and the execution of an unintended command. The
environment, faults associated with the remaining file
attributes, such as whether the file is a symbolic link,
the ownership of the file, existence of the file, and the

permissions associated with the file, will not propagate
via an internal entity. Although these attributes are
extrinsic to the application, if not dealt correctly, they
are likely to directly affect the interaction between ap-
plication and environment.

In summary, we have categorized the environment
faults according to the way they affect applications.
Environment faults which affect programs via internal
entities are called indirect environment faults. Envi-
ronment faults which affect programs via environment
entities are called direct environment faults.

Indirect environment faults are further divided into
five sub-categories according to their origins: (1) user
input, (2) environment variable, (3) file system input,
(4) network input, (5) process input. These five cate-
gories are the primary sources where a program get its
inputs from.

A number of environment entities can affect a pro-
gram’s behavior directly. We categorize them ac-
cording to traditional operating system categorization,
namely, we further classify direct environment faults
into three sub-categories: (1) file system, (2) process,
(3) network. Although there are other type of envi-
ronment entities in an operating system, we decide not
to adopt them in our direct environment fault model



because we do not see significant amount of vulnera-
bilities caused by those types of environment entities.
However, we could easily extend our model to accom-
modate future new type of vulnerabilities.

3 ENVIRONMENT FAULT INJEC-
TION METHODOLOGY

3.1 Fault injection

Like the EAI model, which models the environment
faults at the interaction level, fault injections are also
done at the interaction level. The previous section clas-
sifies the environment faults into direct and indirect
environment faults. These faults are injected using the
following mechanisms:

1. Indirect Environment Fault Injections: An
indirect environment fault occurs at the interac-
tion point where an application requests its envi-
ronment for an input. The input that the environ-
ment provides to the application will most likely
affect the application’s behavior. A secure appli-
cation should tolerate an unexpected anomaly in
the environment input. One way to perturb the
input is to use random input as in Fuzz [9, 24].
However, this approach dramatically increases the
testing space, which and calls for a significantly
large amount of testing effort. The Fuzz approach
does not exploit the semantics of each input. Our
vulnerability analysis, however, has shown that in-
puts most likely to cause security violations tend
to have patterns according to their semantics. If,
for instance, the input is a list of paths used to
search for a command, then security failure will
most likely occur when the order of these paths
is altered, a new path is inserted or deleted, or
the length of the list is increased. Other kinds of
perturbations are less likely to cause security fail-
ure. Thus, by an examination of rare cases and
by concentrating instead on fault patterns already
observed, we reduce the testing space considerably.

Faults injected into the application are based on
patterns that are likely to cause security faults.
These patterns come from our investigation of a
vulnerability database and other studies reported
in the literature. The faults are summarized in
Table 1.

2. Direct Environment Faults Injections: A di-
rect environment fault occurs at the interaction
point where the application accesses an environ-
ment entity for creation, modification, reading or

execution of an environment entity. Different sta-
tus of environment entity attributes will affect the
consequences of those interactions. Thus, the en-
vironment fault injections are used to perturb the
attributes of an environment entity at points of
interaction to see how the application responds to
the perturbation. For example, before an applica-
tion executes an open operation to a named file,
several perturbations are performed on this file by
changing its attributes such as its existence, per-
missions, ownership, and the type of the file since
failure to handle these attributes is likely to cause
security violations. These attributes are and their
their perturbation are presented in Table 2.

3.2 Test adequacy criterion

An important issue in the management of software
testing is to “ensure that prior to the start of testing
the objectives of testing are known and agreed upon
and that the objectives are set in terms that can be
measured.” Such objectives “should be quantified, rea-
sonable, and achievable” [12].

We use fault coverage and interaction coverage mea-
sure test adequacy. Fault coverage is defined as the
percentage of the number of faults tolerated with re-
spect to that of the faults injected. Our conjecture is
that the higher the fault coverage the more secure the
application is. In addition to fault coverage, an addi-
tional measurement of the testing effort is the inter-
action coverage. Interaction coverage is defined as the
percentage of the number of interaction points where
we injected faults with respect to the total number of
interaction points. Once again, we conjecture that the
higher the interaction coverage, the more dependable
the testing result are. Of course we assume that faults
found during testing are removed. These two coverage
criteria lead to a 2-dimensional metric for measuring
test adequacy.

Figure 2 shows the 2-dimensional metric and four
sample points of significance. The metric serves as a
quantitative evaluation of a test set. Point 1 is rep-
resentative of the region where testing resulted in low
interaction and fault coverage. In this case testing is
considered inadequate. Point 2 is representative of the
region where the fault coverage is high but interaction
coverage is low. The test is considered inadequate since
in this test, only a few interactions are perturbed, how
the system behaves under perturbation of other inter-
actions is still unknown.

Point 3 is representative of an insecure region be-
cause the fault coverage is so low that we consider the
application is likely to be vulnerable to the perturba-



Table 1. Indirect Environment Faults and Environment Perturbations

Internal Entity | Semantic Attribute Fault Injections
User file name + change length, use relative path, use absolute path, insert
Input directory name special characters such as “..”, “/” in the name
command change length, use relative path, use absolute path, insert
special characters such as “|”, “&”, “>” or newline in the
command
file name + change length, use relative path, use absolute path, use
directory name special characters, such as “|”, “&” or “>” in the name
Environment execution path + change length, rearrange order of path, insert a untrusted
Variable library path path, use incorrect path, use recursive path
permission mask change mask to 0 so it will not mask any permission bit
File file name + change length, use relative path, use absolute path, use
System directory name special characters in the name such as “|”, “&” or “>” in
Input name
file extension change to other file extensions like “.exe” in Windows sys-
tem; change length of file extension
IP address change length of the address, use bad-formatted address
Network packet change size of the packet, use bad-formatted packet
Input host name change length of host name, use bad-formatted host name
DNS reply change length of the DNS reply, use bad-formatted reply
Process message change length of the message, use bad-formatted message
Input
2. For each test case, do step 3 to 9.
1.0+ 2 4 . For each interaction point in the execution trace,
o decide if the application asks for an input. If there
8’ is no input, only inject direct environment faults;
Fob) if there is an input, inject both direct and indirect
8 environment faults.
g 1 3 . Decide the object where faults will be injected.
Lali . Establish a fault list corresponding to this object
using Tablel and Table 2.

Interaction Coverage 10

Figure 2. Test Adequacy Metric

tion of the environment. The safest region is indicated
by point, 4 which corresponds to a high interaction and
fault coverage.

3.3 Procedure

The procedure of our Environment Fault Injection
Methodology consists of the following steps:

1. Set count and n to 0.

. For each fault in the list, inject it before the in-

teraction point for the direct environment faults;
inject each fault after the interaction point for the
indirect environment faults since in this case, we
want to change the value the internal entity re-
ceives from the input.

. Increase n by 1.

. Detect if security policy is violated. If so, increase

count by 1.

. Calculate interaction coverage. If the test ade-

quacy criteria for interaction coverage is satisfied
then stop else repeat steps 3-9 until the adequacy
criteria for interaction coverage is achieved.



10. Divide count by n yielding a to obtain the vul-
nerability assessment score (fault coverage) for the
application.

3.4 Multiple Perturbations

Although in theory, a combination of & multiple per-
turbations can cause security breaches while each sin-
gle perturbation cannot, our experience shows that this
theoretic situation is rarely usual in practice. Therefore
our testing procedure only deals with a single perturba-
tion. To deal with multiple perturbations, many chal-
lenging issues still exist. For example, an important
issue is how to form a multiple perturbation scenario?
We cannot afford to use an arbitrary combination of
all the perturbation candidates. We will continue eval-
uate the validity of our experience about the multiple
perturbations, and if necessary, to develop a procedure
that can handle multiple perturbations.

3.5 Example

To illustrate the steps shown above, we consider an
example of fault injection. The following code is taken
from BSD version of 1pr.c. Notice that 1pr is a priv-
ileged application. It is a set-UID application which
means that it runs in the root’s privilege even when
it is invoked by a user who does not have the same
privilege as the root.

f = create(n, 0660);

if (£<0) {
printf (¢ ‘%s: cannot create %s’’, name, n);
cleanup();

}
(code skipped here)

if (write(f, buf, i)!=i) {

printf(¢‘%s: %s: temp file write error\n’’,

name, n);
break;

Suppose that we have decided to perturb the envi-
ronment at a place where the create system call is
issued. This is an interaction point where 1pr inter-
acts with the file system. There is no input in this
case and hence we simply carry out direct environment
fault injections.

The next step is to identify the object. Here, n is
a file name, and hence the object is the file referred
to using this file name. Then we refer to Table 2 and
get a list of attributes that need to be perturbed. This
list includes 1) file existence, 2) file ownership, 3) file
permission, 4) symbolic link, 5) file content invariance,

6) file name invariance and 7) working directory. A
further analysis shows that attributes 5 and 6 are not
applicable in this case as this is supposed to be the first
time the file is encountered.

We then perturb the remaining four attributes of the
file and inject the faults into the application. For exam-
ple, the perturbation of the “existence” means that we
make the file exist or not exist before the application
creates it. The perturbation of “symbolic link” means
that we make the file link to some other file, such as
the password file, before the application creates it.

After fault injection, we execute the application and
detect if there is any violation of the security policy.
In this case the violation is detected when we perturb
attributes 1, 2, 3 and 4. Doing so causes 1pr to write to
a file even when the user who runs it does not have the
appropriate ownership and file permissions. Thus when
the file is linked to the password file, the password file
is be modified by 1pr. The problem here is that the
application assumes that the file does not exist before
the creation or assumes that the file belongs to the user
who runs the application. In a real environment, this
assumption could easily be false and the fault injection
test points out a security vulnerability.

4 RESULT
41 Turnin

Turnin is a program used in Purdue for electroni-
cally submitting files for grading. Before students in a
class can use this program, the teaching assistant (TA)
for this class should have set up his account (or a ded-
icated course account) correspondingly. This includes
creating a submit directory under the home directory
of this account, creating a Projlist file under submit
directory, which specifies a list of projects students
could be able to turnin. Students can type “turnin
-¢ coursename -1” to view the list of projects; students
can type “turnin -c coursename -p projectname files”
to turnin their project files. After submission, the sub-
mitted files will be copied to TA’s submit directory.

Since turnin program allows students to copy their
files to TA’s protected directory, the program is run-
ning as SUID, which means its effective user is root.
The program consists of 1310 lines of code.

Following our method, we have identified 8 inter-
action places where programmers could possibly have
made assumptions about the environment. We make 41
environment perturbation to check whether program-
mers indeed made the assumptions, and whether the
failure of these assumptions can affect program’s secu-
rity. Among those perturbations, 9 perturbation lead



Table 2.

Direct Environment Faults and Environment Perturbations

Environment Entity

Attribute

Fault Injections

file existence

delete an existing file or make a non-existing file exist

file ownership

change ownership to the owner of the process, other normal
users, or root

File file permission flip the permission bit,
System symbolic link if the file is a symbolic link, change the target it links to; if
the file is not a symbolic link, change it to a symbolic link
file content modify file
invariance
file name change file name
invariance
working start application in different directory
directory
message make the message come from other network entity instead
authenticity of where it is expected to come from
protocol purposely violates underlying protocol by omitting a pro-
tocol step, adding an extra step, reordering steps

socket share the socket with another process

Network service deny the service that application is asking for
availability
entity change the entity with which the application interacts to
trustability a untrusted one
message make the message come from other process instead of
authenticity where it is expected to come from

Process process change the entity with which the application interacts to
trustability a untrusted one
service deny the service that application is asking for
availability




to security violation, which means the failure of as-
sumptions on these 9 situation could lead to a vulner-
ability in the program. Then we investigated each as-
sumptions by asking whether they are reasonable. For
example, programmers obviously made an assumption
that /usr/local/lib/turnin.cf file is trusted. Our
perturbation testing found out that if this assumptions
is false, the system’s security will be violated. Since the
turnin.cf will always be protected, so is its directory,
we believe the assumption is quite reasonable, there is
no vulnerability regarding to this assumption.

However, one assumption seems unreasonable to us,
it turns out to be a vulnerability, and is hence exploited
by us after we have known the assumption. The prob-
lematic code is list in the following:

if ((FILE #)0 == (fp = fopen(pcFile, "r"))) {
printf("can not find project list file\n");
exit (9);

Since fopen is an interaction point where potential
assumption might be made, we perturb the environ-
ment status of pcFile, making it only readable by root,
not by the people who is running the turnin program.
The result is that by running “turnin -c coursename
-1”, we can successfully read the contents of the file
that we are not supposed to be able to read. So, here
the programmers have made an assumption that peo-
ple are allowed to read file pointed by pcFile using
turnin program, and its failure can cause security vi-
olation. Now, the question is: is this assumption rea-
sonable? The result turns out to be NO since TA can
make pcFile point to any file he wants, then using
turnin program to read the contents of that file.

Knowing this fact, we designed a following sce-
nario: a TA makes the Projlist a symbolic link to
/etc/shadow, which is not readable by anyone ex-
cept root. Then the TA runs “turnin -c¢ course-
name -1”, Voila, the program prints out the content
of /etc/shadow!

Another perturbation we have done is perturbing
the attributes of the argument in the following code:

execve (acTar, nargv, environ);

Since nargv contains file names, according to table 1,
we have inserted special characters, such as “/%, “./”,
in front of the file names. The program does a good job
in forbidding the “/” character, however, it does not
resist the perturbation of inserting “../” in the front.
Knowing this fact, a student can submit several “.lo-
gin” files with different number of “../” in front of the
“login” file, such that when his TA unpacks the sub-
mitted file, the TA’s “.login” will be overwritten by the
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student’s malicious “.login” file, which can do anything
evil to the TA.

The turnin program has been used in Purdue Uni-
versity widely since 1993, and we became the first to
identify these vulnerabilities. After our discovery, the
university quickly verified the problem and patched the
turnin program.

4.2 Windows NT Registry

In Windows NT operation system, registry direc-
tory is a critical part to the system security. Registry
directory is essentially an organized storage for operat-
ing system’s and application’s data which are globally
shared by different applications and components. An
appropriate configuration on each registry key in the
registry directory is a key factor for security. Many
security vulnerabilities have been reported due to in-
appropriate configuration of the registry keys. In the
Windows NT 4.0 (SP3), there are still keys that are
not protected. Our task is to test the related modules
of the operating system, and find whether it is secure
to leave those registry keys unprotected.

First of all, we use static analysis technique to find
out where these unprotected keys are used [7], then we
apply the EPA method to find if programmers have
made assumptions that can fail.

We have identified 9 unprotected registry keys that
could be exploited to break the system security, and
indeed we came up with test cases to actually exploit
the vulnerabilities. Furthermore, based on the similar-
ities of these 9 registry keys and other 20 unprotected
keys, we speculate that the same vulnerabilities exist
for those 20 keys as well. However, we have not been
able to perturb the modules that used the other 20 keys
yet due to the lack of knowledge of how those modules
work. The 9 registry keys that we have exploited are
the results of applying our perturbation technique.

Due to the agreement with Microsoft, we are not
revealing the exact keys and source codes that have
the vulnerabilities. So, in the next discussion, we will
not refer to any specific key, except the purpose of the
key and the problem with the key.

One of the keys in the registry directory specifies a
name for a font file. It seems pretty safe to give ev-
erybody the right to modify this registry key until we
have found a module in the system that invokes a func-
tion call to actually delete this file. To know whether
the program has done the correct checking before the
delete or not, we did a perturbation on the properties
of this file according to Table 2, making it writable
only by administrator, and also making it point to a
very important file (such as system configuration file)



instead of just a font file. It turns out that the program
fails to respond securely under this environment per-
turbation - when administrators run this module, they
will actually delete the file specified by this registry key
regardless of whether this file is a font file or a security
critical file. The assumption behind this “delete” en-
vironment interaction is that the programmers assume
the file name always points to a font file or a unim-
portant file, however, since everybody has the right to
modify the value of this registry key, the assumption
fail to sustain.

Another vulnerability we have found is associated
with user logon module. When a user logons, the mod-
ule will find the user’s profile from a directory speci-
fied in a registry key. Using our EAI model, we have
managed to perturb the trustability attribute of the di-
rectory, and found out that the program does not deal
with the situation when the directory is not trusted,
which means, whenever a user logs in, the logon module
will go to the untrusted directory, and grab a specified
profile for you. Therefore, by the environment per-
turbation, we have found out that programmers have
made a fatal assumption about the trustability of the
profile directory. After knowing the fact, it becomes
straightforward to design a test case and fail the pro-
grammers’ assumptions.

5 COMPARISON WITH RELATED
WORK

A significant amount of computer security testing
is performed using penetration testing. Security is as-
sessed by attempting to break into an installed sys-
tem by exploiting well-known vulnerabilities. Sev-
eral researchers, including Linde and Attanasio [18],
Pfleeger [25], describes the process of penetration test-
ing. As pointed out by Pfleeger, the success of pen-
etration testing depends on testers’ skill, experience,
and familiarity with the system. Moreover, the lack of
well defined and tested criteria to decide when to stop
penetration testing causes penetration testing difficult
to use.

Our research attempts to overcome the above men-
tioned difficulties. It has a deterministic procedure to
conduct and test, a criterion to decide when testing
should stop. It overcomes the limitation of the lack of
knowledge of the environment by emulating possible at-
tacks using the faults injection technique. Finally, our
approach overcomes the limitation of testers’ knowl-
edge by offering a set of concrete faults that should be
injected into application.

Adaptive Vulnerability Analysis (AVA) is designed
by Ghosh et al. to quantitatively assess information
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system security and survivability. This approach exer-
cises software in source-code form by simulating incom-
ing malicious and non-malicious attacks that fall under
various threat classes [22, 23, 28, 29]. In this respect,
our own work parallels the AVA approach. A major
divergence appears, however, with respect to how in-
coming attacks are simulated. AVA chooses to per-
turb the internal state of the executing application by
corrupting the flow of data and the internal states as-
signed to application variables. Our approach chooses
to perturb the environment state by changing the at-
tributes of the environment entity and perturbing the
input that an application receives from the environ-
ment. Our approach should be considered as comple-
mentary to AVA.

For attacks that do not affect the internal states of
an application, AVA appears incapable of simulating
them by only perturbing the internal states. For vul-
nerabilities that are caused purely by incorrect inter-
nal states, our approach cannot simulate them by only
perturbing the environment. One disadvantage of the
AVA is the semantic gap between the attacks during
the use of an application and the perturbation AVA
makes during testing. In other words, knowing that
the application fails under certain perturbation, it is
difficult to derive what kind of attacks correspond to
this failure. This makes it difficult to assess the validity
of the perturbation. Our approach narrows the seman-
tic gap by perturbing at the environment-application
level since most attacks really occur due to intentional
perturbation of the environment.

Fuzz [9, 24] is a black-box testing method designed
by Miller et al, which feeds randomly generated input
stream to system utilities in order to test how reliable
they are. The Ballista [16] testing methodology in-
volves automatically generating combinations of excep-
tional and valid parameter values to be used in calling
software modules. Both of these testing methods focus
on the system reliability instead of security.

Bishop and Dilger studied one class of the time-of-
check-to-time-of-use (TOCTTOU) flaws [4], and inves-
tigated using static analysis method to identify such
type of flaws. Fink and Levitt employ application-
slicing technique to test privileged applications [8];
Gligor has also proposed a security testing method us-
ing control synthesis graphs [19]. They both achieve a
certain degree of success in security testing.

6 SUMMARY AND FUTURE WORK

We have presented a white-box security testing
methodology using environment perturbation tech-
nique, a variant of the fault injection technique. The



methodology is based on the Environment-Application
Interaction (EAT) model, which captures the properties
of a family of software vulnerability. We have applied
this methodology to several real-world systems and ap-
plications, and we have successfully identified a number
of security flaws that exist for several years without be-
ing discovered.

Future work will concentrate on applying this
methodology to more applications. We are in the
progress of developing and conducting a set of experi-
ments to evaluate the effectiveness of this methodology.
In the future, we hope to be able to develop a prototype
tool for security testing based on this methodology.
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