
Fine-Grained Access Control for HTML5-Based Mobile
Applications in Android

Xing Jin, Lusha Wang, Tongbo Luo, and Wenliang Du∗

Dept. of Electrical Engineering & Computer Science, Syracuse University
Syracuse, New York, USA

ABSTRACT
HTML5-based mobile applications are becoming more and
more popular because they can run on different platforms.
Several newly introduced mobile OS natively support HTML5-
based applications. For those that do not provide native sup-
port, such as Android, iOS, and Windows Phone, developers
can develop HTML5-based applications using middlewares,
such as PhoneGap [17]. In these platforms, programs are
loaded into a web component, called WebView, which can
render HTML5 pages and execute JavaScript code. In order
for the program to access the system resources, which are
isolated from the content inside WebView due to its sand-
box, bridges need to be built between JavaScript and the
native code (e.g. Java code in Android). Unfortunately,
such bridges break the existing protection that was origi-
nally built into WebView.

In this paper, we study the potential risks of HTML5-
based applications, and investigate how the existing mobile
systems’ access control supports these applications. We fo-
cus on Android and the PhoneGap middleware. However,
our ideas can be applied to other platforms. Our studies
indicate that Android does not provide an adequate access
control for this kind of applications. We propose a fine-
grained access control mechanism for the bridge in Android
system. We have implemented our scheme in Android and
have evaluated its effectiveness and performance.

1. INTRODUCTION
Mobile application (or mobile app) [13] is software appli-

cation that runs on mobile devices, such as smartphones and
tablets. In most mobile operating systems, mobile apps are
written using a language chosen by the OS. For example,
Android chooses Java, iOS chooses Objective C, and Win-
dows Phone chooses C#. Applications written using the
platform-selected language are called native mobile apps, be-
cause they are natively supported by the OS. Native mobile
apps have advantages: they are more effective at integrating
the unique features of the mobile device into apps, such as
the telephone, voice recorder and camera. They also offer
better user experience and performance. Unfortunately, the
development of native mobile application is seen as expen-
sive and laborious, because developers often need to support
multiple platforms, and porting the code from one platform
to another is not an easy task [11,30].

HTML5-Based Mobile Applications. With the in-
∗This work is supported in part by NSF grants No. 1017771,
No. 1318814, and by a Google research award.

creasing support for HTML5, HTML5-based mobile appli-
cations are becoming more and more popular [7, 10, 19].
These applications are built on standard technologies such as
HTML5, CSS and JavaScript, with HTML5 and CSS being
used for building the graphical user interface, and JavaScript
being used for the programming logic. Because these tech-
nologies are the basis of the Web, they are universally sup-
ported by all mainstream mobile systems. Porting such apps
from one platform to another is much more simplified; of
course, if they use platform-specific APIs, they need to be
modified to run on a different platform, but this job is much
easier than porting the native mobile applications [11,35].

Due to HTML5-based mobile applications’ advantages,
most new mobile systems choose to support them as their
native applications, instead of choosing their own platform-
specific languages, like what Android, iOS, and Windows
Phone did. This way, it will be much easier for developers
to develop applications for them. Mozilla recently released
its “made of the web” Firefox OS [6] in late February 2013,
and Samsung released Tizen [20] operating system in 2012.
They are designed to execute HTML5 applications directly
in the system and allow them to communicate directly with
the device’s hardware using JavaScript.

The advantages of HTML5-based applications have also
attracted people to use the same technology to develop ap-
plications for existing popular mobile platforms such as An-
droid and iOS, so developers only need to develop one ver-
sion of applications that can run on multiple platforms. Be-
cause the OS cannot natively support HTML5-based appli-
cations, middleware is needed for such applications to run
on these platforms. Several such middlewares have been
developed, including PhoneGap [17], RhoMobile [18], Ap-
pcelerator [2], WidgetPad [24], MoSync [14], etc. Because
PhoneGap is the most popular one [16], in the rest of this
paper, we use PhoneGap to represent this entire class of
middlewares.

An essential technology needed for HTML5-based appli-
cations is web container, which renders HTML files and ex-
ecutes JavaScript program. Because all mobile devices need
to access the Web, such a web container is built into almost
all mobile operating systems. For Firefox OS and Tizen,
web container is an integral part of the operating system.
For Android, iOS, and Windows Phone, web container is a
component that can be embedded into any application. In
Android, the name of the component is WebView; in iOS,
it is called UIWebView; in Windows Phone, it is called Win-

dowsBrowser. Since we mainly focus on Android, we use
WebView throughout this paper.

1

Web container is designed to host web contents, but it is
not sufficient to support HTML5-based mobile applications.
Because of its purpose, web container allows its inside con-
tents to only access the resources related to the Web (e.g.
cookies, HTML5 local storage, etc.); many of the device re-
sources are beyond the reach of the content inside web con-
tainer. This is achieved by the sandbox built into all web
containers; without it, contents from malicious web sites can
pose great threats to the system. Unfortunately, this design
makes it impossible to use the web container to host mobile
applications, because these applications need to access de-
vice resources, such as camera, bluetooth, contact list, SMS,
phone functions, etc. To solve this problem, a bridge has to
be added to web container, allowing JavaScript code inside
to access the native system resources.

The Emerging Threats. The bridges essentially create
holes on the sandbox of web container. If these holes do
not come with an adequate access control, they will soon
become an area of active attacks. If we only use web con-
tainer to hold trusted contents (such as HTML page from
a local file), then these holes do not pose a problem, be-
cause on most platforms, there is another layer of sandbox,
the application sandbox, which restricts the privileges of the
application. Unfortunately, web containers are designed to
host not only local HTML files, but also HTML files from
remote web servers. Therefore, using web containers to host
mobile applications adds a great risk that does not exist for
native applications. We describe some potential attacks on
HTML5-based mobile applications in the following.

HTML5-based mobile applications can easily include third-
party components in themselves, and the code for these com-
ponents may not be known during the installation, like ad-
vertisements, Facebook and Twitter social plugins [5,21]. In
Android’s and iOS’s native application scenario, the source
of the app and its corresponding dynamic code is known and
trusted by the developers. Besides that, digital signature on
the code adds a level of trustworthiness to the code. For
HTML5-based mobile applications, programs are written in
JavaScript. Due to the nature of the Web, JavaScript code
can be loaded into applications dynamically. For example,
an HTML5-based application may use an iframe to load ad-
vertisement, which is fetched from a remote server; it may
dynamically load a remote JavaScript library and execute
the code from the library (commonly used in web appli-
cations); it may also display an HTML-encoded text that
comes from remote resources (JavaScript code may be em-
bedded in the text). If these untrusted JavaScript programs
are executed inside an application’s WebView, there is no
additional protection against the JavaScript code that comes
from untrusted resource (e.g. remote web server) versus the
code that comes from the developers. In all these scenarios,
the JavaScript code from these resources may have the same
privileges as the one installed by the users, unless the un-
derlying access control mechanism can tell them apart and
give them different privileges. Unfortunately, the PhoneGap
framework in Android and iOS does not achieve this.

We did an study on the PhoneGap framework for An-
droid. In the application that we used in this study, there
are two regions: one is called the main frame, and the other
is called subframe (achieved using iframe). The main frame
contains the code from the developers and the subframe con-
tains the code from a third-party. The application is given

a set of permissions, which are meant to be given to the
code running in the main frame. However, our investigation
shows that the JavaScript code inside the subframe can use
exactly the same permissions. For example, if the applica-
tion is given a permission to send SMS messages, and if the
application happens to load a third-party web page (e.g. ad-
vertisements) into its iframe, the code from the third party
can also send SMS messages. Neither PhoneGap nor An-
droid has an appropriate mechanism to protect against this
kind of attacks.

Because HTML5-based applications use web technologies,
they are potentially subject to most of the attacks that we
have seen in the Web. Moreover, due to the holes on the
sandbox, the damage of these attacks may be amplified.
Imagine that an HTML5-based application is used to dis-
play SMS messages. Even though the app and the pages are
benign, attackers can exploit vulnerabilities in the app by
sending a malicious SMS message to the user, which contains
JavaScript code. When the application reads the message
and displays it to the user, the JavaScript code is executed.
When that happens, the malicious JavaScript will have the
same privileges as the application does, and can therefore
read all the SMS messages on the phone, then send them to
a remote server, and launch other attacks. The root cause
of this attack is because the app may display messages us-
ing typical DOM APIs, such as document.write. If devel-
opers do not filter out the embedded JavaScript code, the
JavaScript code will be invoked when the SMS message is
displayed inside the web container. This is very much like
the cross-site scripting (XSS) attack [33], which is still one
of the most common attacks on web applications. If we do
not provide a good access control for HTML5-based appli-
cations, this attack will soon find a new venue in mobile
platforms, and so will other types of attacks on the Web.
Being able to run HTML5-base mobile applications poten-
tially amplifies the problems that we are still battling with
in the Web. Although these attacks seem hypothetical, we
have demonstrated that the XSS attack works. When more
and more HTML5-based mobile applications are developed,
attacks like this may soon become popular.

Contribution of this paper. In this paper, we make
the following contributions: (1) We systematically study the
“bridges”that expose mobile resources to JavaScript in order
to support HTML5-based mobile apps. Based on the emerg-
ing threats that we have identified, we point out that most
mobile systems’ access controls support for HTML5-based
mobile applications is not sufficient, because the assump-
tions that are true for native mobile applications may not
be true anymore for HTML5-based applications. (2) We pro-
pose a fine-grained access control model for Android, which
can provide a solid trusted computing base for HTML5-
based applications. We have implemented it in Android.

In the rest of this paper, we first conduct an in-depth
analysis of the access control for HTML5-based applications
(Section 2). Then we present the design of a fine-grained
access control system (Section 3). We have implemented
our design in Android, which involves the modification of the
operating system code and the WebKit engine [23]. We use
a comprehensive evaluation to demonstrate the effectiveness
and the efficiency of our design (Section 5).

2

2. THE PROBLEM
To support HTML5-based mobile applications, bridges

need to be provided, so JavaScript code inside web con-
tainer can access the system resources, which were originally
blocked by the sandbox of web container. There are two typ-
ical approaches. One is used by Firefox OS and Tizen OS,
which natively supports HTML5-based applications; we call
it the Native-API approach. The second approach is used
by the PhoneGap middleware and alike in Android and iOS;
we call it the Middleware approach.

2.1 Native-API Approach
The most straightforward approach to support HTML5-

based mobile applications is to directly implement system-
access APIs inside web containers, and expose these APIs
to the JavaScript engine, so JavaScript code can directly
invoke these APIs and access system resources. Firefox OS
and Tizen both use this approach.

Firefox OS uses Gecko [8] as application runtime to sup-
port mobile web apps; it provides a list of APIs [22] to allow
JavaScript code to access system resources. At the same
time, Gecko enforces runtime access control: whenever a
Web API is requested, the access control module checks
whether the app has the privilege to take the action or not
(shown in Figure 1). It relies on the Same-Origin Policy
to enforce app-level sandbox and it grants privileges based
on the type of the app. A remotely loaded app can only
request two Web APIs: geolocation and desktop notifica-
tion; only privileged and certified applications are able to
obtain more Web APIs, but they have to be local content or
system apps. Additionally, when requesting certain critical
Web APIs, such as geolocation, contacts, etc, the request
will be prompted to users at runtime. Such kind of privi-
leges are granted at the per-origin basis. The access control
model used is called API-based access control.

2.2 Middleware Approach
Web content within the WebView component in Android

or iOS does not have the direct API accesses to system re-
sources. For the sake of clarity, we only use Android as
an example in the following description. In Android, ap-
plications written in Java can access system APIs, because
the APIs are already exposed to the Java Virtual Machine
(Dalvik VM) either through Java classes or through JNI
(Java Native Interface) [34]. These APIs are not exposed
to the JavaScript engine. To allow JavaScript to access
these APIs, a bridge is needed, which is written in Java
and exposed to JavaScript. PhoneGap basically serves as
this bridge.

PhoneGap is written in Java (and in Objective C for iOS).
Applications that use the PhoneGap middleware need to in-
clude PhoneGap as a Java library. PhoneGap uses some
techniques (discussed next) to allow the JavaScript code in-
side web container to invoke the PhoneGap APIs. Once
PhoneGap code is invoked, it can further invoke system APIs
on behalf of the JavaScript code. There exist two approaches
that help JavaScript code invoke PhoneGap APIs that are
written in Java: one is indirect invocation, and the other is
direct invocation.

The Indirect Approach: Event-base Invocation. We-
bView allows Java code outside the web container to regis-
ter an event listener, so when an event is generated inside

the web container by JavaScript, the correponding event-
listener code written in Java is triggered. In some sense,
JavaScript code can indirectly invoke Java code. In An-
droid, JavaScript code can generate a Prompt event, which
triggers the onJsPrompt handler. Both iOS and Windows
Phone have similar mechanisms. This is how the PhoneGap
middleware implements the bridge between JavaScript and
the system native APIs.

Direct Approach: Object-based Invocation. Web-
View in Android has another mechanism for JavaScript code
to invoke Java code, and this mechanism is supported only
in Android, not in iOS or Windows Phone. The goal of this
approach is to allow applications to expose a Java object to
the JavaScript engine, so JavaScript can directly invoke the
APIs of this object, rather than going through the event-
handler approach (see Figure 1). This is made possible by
the addJavascriptInterface API in WebView. Applica-
tions can use this API to bind Java objects to WebView, so
all the public methods of these Java objects can be directly
invoked by the JavaScript code inside WebView.

Functionality-wise, the indirect and direct approaches are
similar; they are also similar to the two typical ways of how
system calls are triggered in operating systems [29]. The
indirect approach is similar to the “trapping to the kernel”
approach using interruptions, and the direct approach is sim-
ilar to the SYSENTER/SYSEXIT approach, which allows pro-
grams to directly enter the kernel space (only to dedicated
entry points) without causing an interruption.

Performance-wise, the direct approach is more efficient
than the indirect approach. That is why the SYSENTER/SY-

SEXIT instructions were created. That is also why PhoneGap
switched from the first approach to the second one in its new
version, after having been bought by Adobe. The switch
was mostly motivated by the performance [1]. We also did
a comparison, and the performance difference is significant,
exceeding 30%, and can be more when scenarios get more
complicated.

2.3 Security Problems
Android does not provide a system-level access control to

protect the invocation from JavaScript to Java, whether the
invocation is indirect or direct. It is application’s or middle-
ware’s responsibility to enforce the access control. For the
indirect approach, the job is easier, as there is a single en-
try point, i.e., the event handler; this place can be used for
access control. Unfortunately, for the direct approach using
addJavascriptInterface, implementing access control in-
side applications and middleware is problematic due to the
following reasons.

First, when applications attach a Java object to Web-
View, it can perform access control based on the origin of the
page inside WebView (typically using a whitelist, like what
PhoneGap does), but once the object is attached, there is
no more access control when the object’s APIs are invoked,
unlike the onJsPrompt() approach, which can conduct ac-
cess control on every invocation. This is not a problem if the
contents inside WebView all come from the same origin. Un-
fortunately, when a Java object is attached to WebView, it is
attached to all the frames inside WebView, such as iframes.
These frames are not subject to the whitelist checking at the
attaching time (only the main frame is subject to that access
control); namely, even if their URLs are not on the whitelist,

3

App	
 Firefox	
 OS	

Page	
 Container	

	

Web	
 API	

	
 Access	

Control	

Web	
 API	

……	

JavaScript	

HTML5	

CSS	

SMS	

BaBery	

Contacts	

Camera	

(a) Native-API approach: Firefox OS

PhoneGap	
 App	
 PhoneGap	
 Framework	
 Android	

SMS	

Contacts	

Ba9ery	

Camera	

Page	
 Container	

No	
 Access	

Control	

JavaScript	

HTML5	

CSS	

SMS	
 Plugin	

Ba9ery	
 Plugin	

Camera	
 Plugin	

Contacts	
 Plugin	

Java	

object	

(b) Middleware approach: PhoneGap on Android

Figure 1: The native-API approach and middleware approach

they can still be loaded into iframes. The assumption be-
hind this decision is that if we trust a web page, we should
trust all the frames it contains; this is a wrong assumption.

Second, once a Java object is attached to WebView, there
is no further restriction on what permissions an invocation
can have. Currently, the invocation has all the application’s
permissions, even though it is potentially triggered by un-
trusted code. Clearly, there is a lack of granularity. There
is no easy way for applications to restrict what permissions
an invocation can have, because the permissions used by an
invocation is not clear during the invocation time. For ex-
ample, when a Java API is invoked by JavaScript, it is not
easy to know whether the API will lead to the use of camera
or not.

2.4 Our Approach
We believe that the current access control systems for

Android and PhoneGap are not appropriate for support-
ing HTML5-based mobile applications. If the situation is
not improved, the problem will get worse, because more and
more developers are going to switch to developing HTML5-
based applications. This calls for a research to study what
kind of access control system is adequate for this emerging
type of mobile applications. The solution should have the
following properties:

• The solution should be built into Android, not Phone-
Gap. This is because PhoneGap is not the only frame-
work that supports HTML5-based mobile application
development. There are several other frameworks, in-
cluding RhoMobile [18], Appcelerator [2], MoSync [14],
WidgetPad [24], etc. A solution at the OS level can
benefit all these frameworks.

• We should not give all the application’s permissions
to every frame inside WebView. Because the page in
WebView can embed pages from different origins, it is
important for the system to distinguish between the
accesses initiated by untrusted origins from those by
trusted ones, and give them different permissions.

3. DESIGN

3.1 Access Control Model
Before talking about our access control model, we need

to answer one question: why not use the API-based access
control that is used by Firefox OS? Namely, the system can

decide which APIs can be invoked by the JavaScript code
inside WebView. There are three reasons that make Fire-
fox’s API-based model inappropriate for Android. First, as
Felt et al. points out, in Android, there are more than 1000
APIs that involve privileged operations [32]. If we conduct
API-based access control, developers need to decide which of
these APIs can or cannot be invoked by the code inside We-
bView. This is simply impractical. Second, in Firefox OS,
all the APIs exposed to JavaScript are system APIs, and
their functionalities are well defined. However, in the We-
bView case, the APIs invoked by JavaScript code, whether
through indirect invocation or direct invocation, are pro-
vided by applications or PhoneGap libraries; Android has
no idea what these APIs are capable of doing. Relying on
developers to tell the system exactly what privileged opera-
tions can be invoked by the APIs is not a reliable solution.
Third, Android uses permission-based access control, so if
we use API-based access control for WebView, these two
models may not work well. For these reasons, we decide
to adopt the same permission-based access control model in
our work.

The fundamental problem of WebView is that when Java-
Script code invokes Java code through the bridge on the web
container, there is no isolation of privileges, so all the invoca-
tions from the bridge have the same privileges. In Android,
this means all the invocations have the same permissions
that are assigned to the application. A good access control
system should be able to grant different permissions to dif-
ferent invocations, depending on where the invocations are
initiated. Inside WebView, contents from multiple origins
can co-exist, because each page inside WebView can have
frames (such as iframes), which can contain pages from dif-
ferent URLs, some are more trustworthy than the others.
Thus, different frames should be granted with different per-
missions.

We propose an access control model that allows developers
to assign different permissions to different frames. We use
an example to illustrate our model. Figure 2(a) illustrates
the original access control model in Android, and our model
is illustrated in Figure 2(b). In both figures, The main frame
is called “UNTAPPD”, and it has three iframe pages: Face-
book, Twitter, and a page from an untrusted origin. The
application has four permissions, P1, . . . , P4. In Figure 2(a),
we can see that all the iframes have these four permissions.
In Figure 2(b), through the configuration provided by the
developer, different sets of permissions are given to differ-
ent frames, based on the requirement of the web pages and

4

P1	

P2	
 	
 	

P3	

P4	
 	

	

System	

Resources	

Network	

Communica-­‐
1ons:	
 P1	

	

External	

Storage:	
 P2	

	

Contacts:	
 P3	

Internet:	
 P4	

……	

App-­‐level	

Access	

Control	

Java	

Object	

App	

Permissions	

WebView	

(a) Original

	

P2	
 P3P4	

	
 	
 	
 	

P1	
 P2P3	
 P4	

WebView	

Java	

Object	

System	

Resources	

No	
 Access	

Network	

Communica5ons:	

P1	

	

External	
 Storage:	

P2	

	

Contacts:	
 P3	

Internet:	
 P4	

……	

Our	
 Finer-­‐
grained	
 	

Access	

Control	

	
 Permissions	

for	
 each	
 subject	

	

P4	

	
 	
 	
 	

	

P4	

	
 	
 	
 	

(b) Our Finer-grained Access Control

Figure 2: Access control in the original Android and our proposed model

how much developers trust them. We can even prohibit an
untrusted page from invoking any Java API from its frame.

3.2 Policy Configuration
We provide two ways for developers to assign permissions.

First, developers can assign permissions directly to each
frame (in the HTML file), and this kind of permissions is
called frame permissions (denoted by Pframe). Second, de-
velopers can also assign permissions to origins (in the mani-
fest file), and these permissions are called origin permissions
(denoted by Porigin). We also use Papp to represent the
permission assigned to the entire application. The effective
permissions (Peffective) for each frame is the intersection of
these three types of permissions:

Peffective = Papp

\
Pframe

\
Porigin (1)

It should be noted that Porigin can change, so every time
the origin inside a frame changes, a new Peffective will be
calculated for this frame. The definition of “origin” in our
model is the same as the “origin” in the Same-Origin Policy,
i.e., it is the unique combinations of three elements: port,
scheme, and domain. Because the INTERNET permission is
assumed to be a necessity for mobile web applications, de-
velopers do not have to set this permission for frames or
origins as long as it is requested for the application.

Frame Permission Assignment. Developers can spec-
ify frame permissions using the permissions attribute for
frames (see Figure 3) in HTML code. The field can be ei-
ther empty, NULL, or contain a list of permission names
separated by space. If this attribute is not specified, it auto-
matically inherits the permissions of its parent frames. The
NULL permission means that the JavaScript code inside this
frame cannot invoke any Java API: there is no bridge for this
frame. This is different from an empty permission list: an
empty list means that JavaScript code inside the frame can
invoke Java APIs, but the execution of the Java code does
not have any Android permission.

Condi&ons	
 Code	

Non-­‐empty	
 	

permissions	

<iframe	
 permissions	
 =“READ_CONTACTS”	
 	

src	
 =	
 “h?p://www.facebook.com”/>	
 	

Empty	
 	

permission	
 <iframe	
 permissions	
 =“	
 ”	
 src	
 =	
 “h?p://www.facebook.com”/>	
 	

NULL	
 <iframe	
 permissions	
 =“NULL”	
 src	
 =	
 “h?p://www.facebook.com”/>	
 	

No	
 frame	
 policy	
 <iframe	
 src	
 =	
 “h?p://www.facebook.com”/>	
 	

Figure 3: Frame Permission Configuration

Origin Permission Assignment. We use an example

to explain how to assign origin permissions. As shown in
Figure 2, the “Untappd” app requires the following permis-
sions: INTERNET, ACCESS_NETWORK_STATE, READ_EXTERNAL_

STORAGE, WRITE_EXTERNAL_STORAGE, READ_CONTACT, etc. De-
velopers configure origin permissions in the manifest file. We
introduce a new tag called “access”, which uses an attribute
called “origin” to specify origins; we also introduce a nested
tag called “origin-permission”, which specifies the permis-
sions assigned to the origin. See the following example.
<access origin=http://*.untappd.com>

<origin-permission android:name="ACCESS_NETWORK_STATE" />
<origin-permission android:name="READ_EXTERNAL_STORAGE" />
<origin-permission android:name="WRITE_EXTERNAL_STORAGE" />
<origin-permission android:name="READ_CONTACT" />

</access>
<access origin=http://*.facebook.com>

<origin-permission android:name="READ_CONTACT" />
<origin-permission android:name="READ_EXTERNAL_STORAGE" />
<origin-permission android:name="WRITE_EXTERNAL_STORAGE" />

</access>
<access origin=http://*.twitter.com></access>

Note: JavaScript code in WebView can access system re-
sources through two types of APIs: one is the native APIs
exposed by the WebView to the pages inside, such as DOM
APIs. The other type is the application APIs (written in
Java) exposed to WebView through addJavascriptInter-

face() and the event-handler mechanism. We focus on the
second type. Our solution can be easily extended to cover
the first type.

Policy Enforcement. To enforce the security policy de-
scribed above, we need to solve the following three problems:
(1) Where to store the policy information in the system? (2)
How to intercept the invocation from JavaScript code to na-
tive Java code through the bridge, so we can set the effective
permissions for this invocation? (3) Where to check the ef-
fective permissions in order to enforce access control? We
discuss our design decisions based on these three problems.

3.3 Assigning Effective Permission to Frame
As we have discussed above, our security policies are spec-

ified in two places: in HTML pages (for frame permissions)
and in the manifest file (for origin permissions). To read
the permission information, we extend the existing manifest
file parser and the HTML parser (in Webkit) to retrieve the
permission information from these two places. The origin
permissions will be stored in the same place where Android
stores permissions for each application. The frame permis-
sion is stored as an attribute of the frame object in the DOM
tree. Using Equation (1), we can calculate the effective per-
mission of a frame.

5

WebView	

JavaScript	

Java	
 Class	

Class	
 ClassFoo{	

	
 	
 	
 	
 	
 	
 	
 public	
 void	
 bar()	
 {}	

}	

1.  Bind	

using	
 addJavascriptInterface	

(javaFoo,	
 “jsFoo”)	

2.	
 invoke	
 ClassFoo	
 javaFoo	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 =new	
 ClassFoo()	

jsFoo.bar()	

Figure 4: How JavaScript invokes a Java API

Every time a page is loaded into a frame, an object called
SecurityOrigin is created, and this object is used by browsers
to enforce the same-origin policy, so JavaScript code from
one origin cannot access the resources belonging to other
origins. There is one SecurityOrigin object per frame. We
store the frame’s effective permission in this object. Every
time a new page is loaded into a frame, the effective permis-
sions will be recalculated, and the corresponding values in
SecurityOrigin will be updated accordingly.

3.4 Setting Effective Permission at Invocation
Setting the effective permissions for each frame is not

enough, we need to ensure that when JavaScript inside a
frame invokes a Java API through the bridge, the API is ex-
ecuted only with the frame’s effective permissions, not the
application’s permissions. To achieve this goal, we need to
understand how JavaScript invokes a Java API in Android;
we need to intercept this invocation, and set the effective
permissions before the API code starts running.

As we have discussed before, there are two ways for JavaS-
cript in WebView to invoke Java code: indirect invoca-
tion and direct invocation. The indirect invocation is quite
straightforward, and easy to be intercepted. The direct invo-
cation, i.e., through the APIs attached by addJavascript-

Interface(), is quite complicated. In the following, we only
focus on the direct invocation method.

How JavaScript invokes Java code. In browsers, it is
often necessary to allow JavaScript to interact with browser
plugins, such as Flash, PDF reader, Java Applet, etc. A de
facto standard for such an interaction was initially developed
for Netscape, but was subsequently implemented by many
other browsers [15]. It is called Netscape Plugin Applica-
tion Programming Interface (NPAPI) [15], which provides
a cross-platform plugin architecture for browsers. It allows
JavaScript within a browser to access the APIs of plug-ins,
and vice versa. In Android, from the WebView’s perspec-
tive, Java is treated just as a plugin, and invocation of Java
code from JavaScript follows the NPAPI standard.

To explain how NPAPI works, we use an example, which
is depicted in Figure 4. In this example, there is a Java
class called ClassFoo, and an instance of this class called
javaFoo. This instance is bound to WebView through add-

JavascriptInterface(), resulting in a new JavaScript ob-
ject called jsFoo in WebView. When the JavaScript code
in WebView invokes jsFoo.bar(), a series of actions will
be performed, leading to the eventual invocation of the bar

method of the Java object javaFoo.
Figure 5 shows how the APIs of plugins (Java object, C#

object, etc) are provided to JavaScript. We will use Java as
an example to illustrate the process. First, we need to make
the APIs of the Java object javaFoo invokable by the code
outside Java Virtual Machine (JVM). This is done through
JNI: the Java object javaFoo is converted into a JNI object,
which is further wrapped into a new object called JavaIn-

stance, along with the JVM environment, so native code

Na#ve	

NPAPI	

Java-­‐	

Script	

Java	
 C#	
 Ac#on	

Script	

NPObject	

Intermediate	
 	

Object	
 Java	
 C#	
 Ac#on	

Script	

V8Object	
 JSC	
 ……	

Figure 5: The NPAPI Architecture

(written in C++) can call the methods of this Java object
and access its fields. JavaInstance is further wrapped into
an object called NPObject, which is defined in the NPAPI
architecture. Finally, a JavaScript object called V8Object is
created (Android uses the V8 JavaScript engine), and this
object contains a reference to the NPObject and essential
callback functions. This object is then given a name jsFoo

(specified by addJavascriptInterface()) and made avail-
able to JavaScript code. After this is done, JavaScript code
can invoke jsFoo.bar(), which will eventually lead to the
invocation of javaFoo.bar().

Invocation reverses the above wrapping process. When
V8Object is created, a callback function (defined in NPOb-

ject) is registered to this JavaScript object, so when any
method is invoked, the callback function will be invoked.
Therefore, when JavaScript calls jsFoo.bar(), the callback
function is triggered; it retrieves the NPObject object, ex-
tracts the JavaInstance object, and eventually gets the JNI
object. After that, the Java function is called through the
JNI mechanism: basically, it invokes the attached JVM in-
stance, passes to it the Java object reference, method name,
and arguments, and JVM does the rest.

Adjusting the Effective Permission at Runtime. The
current NPAPI design in Android does not change the effec-
tive permissions when JavaScript invokes Java; that is why
the invocation automatically inherits all the application’s
permissions. To change that, we need to intercept the in-
vocation, identify which frame the invocation comes from,
retrieve the effective permissions stored in the frame’s Se-

curityOrigin, and then set the effective permissions of the
invocation. From Figure 5, we can see that there are several
places where we can intercept the invocation. We choose
the place between V8Object and NPObject, because at this
point, it is easier to get the frame information. Moreover,
this design does not depend on the types of plugins, so it
also works if the plugins are not Java, but C# or Flash, etc.

Once we intercept the invocation, we need to set the effec-
tive permissions of the runtime environment, so the system
knows what permissions to check when the code triggered
by this invocation tries to access protected resources. The
question is whether we should do it at the process level or
thread level. In Android, the invocation from JavaScript to
Java is thread-based, so the effective permissions can only
be set at the thread level, not the process level. Android is
built upon Linux, and in the Linux kernel, threads are repre-
sented as task_struct. Whenever an application creates a
new user-space thread, a new task_struct is created in the
kernel. We attach the effective permissions to this thread

6

data structure.
Although the API invocation runs in a single thread in

WebKit, an application may create another thread to con-
duct the task. This is the case in PhoneGap: when a Phone-
Gap API is invoked, one thread is used, but PhoneGap
quickly spawns another thread and hands the rest of the
job to this new thread, so it can return to accept another
invocation. We need to ensure that the effective permissions
are also handed over to the new thread, so it has adequate
permissions to finish the task. What makes things more
complicated is that in PhoneGap and many other applica-
tions, the new thread is not actually created, but fetched
from the idle pool, i.e., the thread is already created. We
need to set the effective permissions correctly, and clear the
effective permissions before returning the thread back to the
idle pool. We use the hook functions of thread to set and
clear the permissions accordingly.

3.5 Checking Effective Permissions
We extend Android’s existing Reference Monitor to check

the effective permissions when an application tries to ac-
cess protected resources, such as external storage, camera,
contact, etc. In Android’s original reference monitor, the ap-
plication’s User ID (UID) is used to find out the permissions
of the application, and access control is conducted based on
these permissions. To enforce our access control model, we
need to use Thread ID (TID) to find out the effective permis-
sions of the current thread, and then conduct access control
based on the effective permissions. This only involves small
changes to the existing reference monitor. For backward
compatibility, if a thread does not have an effective permis-
sion list, access control will fall back to the original Android
access control model, so we will not break the existing ap-
plications. However, we ensure that every thread involved
in the JavaScript-to-Java invocation will have an effective
permission list, even if the list is empty.

4. POTENTIAL ATTACKS
There can be some potential attacks against our access

control system. We discuss how our system handles these
potential attacks.

A Principal Increasing Privilege. A JavaScript pro-
gram may attempt to get more privileges using the DOM
API function setAttribute to modify the permission at-
tribute of the iframe tag [25]. However, the configuration
information is not exposed to JavaScript program. There-
fore, such attempts to modify the attributes cannot succeed.

One page can use document.domain to change its origin to
a superdomain [50]. If developers give b.com more permis-
sions than its sub-domain a.b.com, a page in a.b.com can
change its origin to b.com, and can thus gain more privileges.
Our design will track this change, check the permissions as-
signed to the previous frame and calculate the conjunction
of both permission sets, and use the result as the effective
permissions.

Scoping Rule. JavaScript programs from an iframe
can create nested iframes. A malicious JavaScript program
may attempt to use this feature to create an iframe with
higher privileges than the parent frame. Therefore, our de-
sign enforces a scoping rule to protect against such at-
tempts. The scoping rule ensures that the permissions as-

signed to child frames cannot exceed the main frame’s own
permissions. Formally speaking, when a frame tag is labeled
with permission=“p1, p2”, then the privileges of the princi-
pals within the scope of this frame, including all sub frames,
are bounded by {p1, p2}. Our framework implementation
strictly enforces this rule. Our scoping rule also applies to
the pop-up windows.

Changing Other Frame’s Location. JavaScript pro-
grams in one frame can change the location of the main
frame page even if they come from different origins [36].
In a potential attack, an untrusted page is restricted to an
iframe with very few permissions. To gain more power, the
JavaScript program in this page can navigate the main frame
to the page’s URL, so this untrusted page is loaded into the
main frame. Although the page is still subject to the origin-
based security policy, the frame-based policy is successfully
negated. Our design enforces a strict policy to prevent the
script from lower privileged frame to make any change to
the frames of higher privilege.

5. EVALUATION
In this section, we evaluate our work on two aspects: ef-

fectiveness and performance. First, we use different cases
to show how our work can be effectively used to isolate the
privilege of web components at the frame level. Then, we
evaluate the overhead caused by our work.

5.1 Restrict Permissions of Untrusted Frames
In this experiment, we show how our work can achieve

privilege isolation for frames. In all our experiments, we
assume that the INTERNET permission is granted. We use a
PhoneGap application called HealthTap [9], which is a very
popular app with more than one million downloads. We
added several contact entries into the phone, one of which
is Alice, with phone number and email address. We will use
this information in our demonstration.

HealthTap requires the following permissions: SEND_SMS,
READ_EXTERNAL_STORAGE, READ_PHONE_STATE, GET_ACCOUNTS,
INTERNET, WAKE_LOCK, ACCESS_LOCATION_EXTRA_COMMANDS,
ACCESS_COARSE_LOCATION, READ_CONTACTS, ACCESS_NETWORK
_STATE, ACCESS_FINE_LOCATION, CAMERA, BROADCAST_STICKY.

Several permissions are related to mobile system resources.
Once granted, all the frames in this app can access the corre-
sponding mobile system resources, using the app’s full priv-
ilege, through the bridge attached by PhoneGap. With our
work, we can easily limit the privileges of the frames with-
out affecting the original application. We achieve that by
setting the origin permissions and/or frame permissions.

To show how our work can limit the privileges of frames,
we need to slightly change the app. We first use Apktool
to disassemble the application APK file; then we add an
iframe into the original app’s webpage; finally we repackage
the APK file with the modified manifest file and sign it with
our key. Now we can demonstrate how to limit the privileges
of iframes.

Advertisement. The most common case of using iframe
is to load advertisement. We construct a Verizon advertise-
ment webpage, host it on a remote server, and load it in
an iframe inside the modified app. The app is shown in
Figure 6(a). This advertisement needs to invite more peo-
ple to join Verizon, so it has to read the contacts on the

7

phone and send invitations to friends. We specify the origin
permissions for the advertisement’s origin as the following:

<access origin="http://*.verizonads.com">
<origin-permission

android:name="android.permission.READ_CONTACTS"/>
</access>

(a) Screenshot of app

(b) Invite friend to Verizon

Figure 6: App with Advertisement

From our setup, the effective permission of the iframe is
limited to READ_CONTACTS, i.e., the iframe can only read the
contact, but cannot access other mobile resources such as
SMS message. If the advertisement tries to collect more
information from the user, it can only get the contact infor-
mation and nothing else. Figure 6(b) shows that the page
in the iframe gets Alice’s contact information on the phone,
but if it tries to send SMS messages to other phones, a se-
curity exception will be thrown (see Figure 7(b)) and the
request will be denied, because this iframe does not have the
SEND_SMS permission. In the original Android system, if the
advertisement tries to send SMS messages, it will succeed
(see Figure 7(a)), because the app does have the SEND_SMS

permission.

Social Network Plugin. Developers often include social
network plugins, such as the Facebook“Like”button, in their
applications to attract more users, and iframes is widely used
to load social network plugins. In this evaluation, we load
a Facebook “Like” button into an iframe of the HealthTap

app (see Figure 8(a)). Since we know that these kinds of
social network plugin do not need to require mobile system
resources, we should not give this iframe any permission.
We can give this frame an empty permission list:

<iframe src="http://www.facebook.com/plugins/like.php?href=https
%3A%2F%2Fwww.facebook.com%2FHealthTap&&" permissions="">
</iframe>

From Figure 8(b), we can see that in the mainframe we
can still get Alice’s email address. But if attackers try to get
the contacts in the iframe, a “Permission Denial” exception
will be thrown (see Figure 8(c)). This is because the frame
permission of this iframe is empty, i.e., it can invoke Java
APIs, but will not be able to have any permission during
the execution. In this situation, we can see that although
the app has the READ_CONTACTS permission, the iframe that
loads the Facebook plugin does not have the permission.

Phone 5554 Phone 5556

(a) Phone5554 successfully sends an SMS to Phone5556

Security Exception

(b) Fail to send SMS

Figure 7: Send SMS

Sometimes, if the social network plugin is a faked one, not
from Facebook, it will fail if it tries to invoke Java APIs. As
Figure 8(d) shows, the API cannot be found. This is because
the origin is not in the origin permissions list, which means
this origin is not trusted, and the JavaScript code from this
origin cannot invoke any Java API through the WebView
bridges.

5.2 Reduce Damages Caused by Mistakes
The cross-site scripting (XSS) attack is one of the most

common attacks on web applications. We demonstrate that
if mobile applications are written using the web technologies,
XSS attacks can be launched against mobile applications as
well. We then demonstrate how our access control can help
reduce the damage.

For the demonstration purpose, we wrote an HTML5-
based mobile app; one of the functionalities of this app is
to display SMS messages. The app is given the INTERNET,
READ_CONTACTS, and READ_SMS permissions. The app uses
PhoneGap to access the system resources, such as SMS and
contacts. To display SMS messages, the app invokes commonly-
used APIs, including the DOM API document.write and
JQuery APIs. It should be noted that if a message contains
JavaScript code, these APIs will execute the code, instead
of displaying it.

This mobile app is vulnerable to XSS attacks. Attackers
can send to their victims an SMS message that contains ma-
licious JavaScript code. In Figure 9, Phone 5554 sends to
Phone 5556 such an SMS message. The app we wrote reads
the SMS message and displays it. From the figure, we can
see that the embedded JavaScript code is executed, and the
victim’s contact information is retrieved by this JavaScript
code. The situation will be worse if the app has more per-
missions such as WRITE_CONTACTS and SEND_SMS, because the
malicious JavaScript can then delete the victim’s contacts

8

(a) Screenshot of app

(b) Mainframe get contact

Security Exception

(c) Security exception caused by not having enough permis-
sion to read contact

Method not Find

(d) Cannot find Java object

Figure 8: App with Social Network Plugin

and send out SMS messages. We have installed this app on
real phones (using Verizon and T-Mobile), and the attack
also works. Apparently, these service providers do not fil-
ter out JavaScript code in SMS messages, as nobody has
demonstrated such an attack before. Although the app we
wrote is intentionally built for the demonstration purpose,
the error in the code does represent a very typical error that
many developers can make.

Phone 5554 Phone 5556

Malicious
Message

Contact information
is stolen

Figure 9: Phone5554 sends a malicious SMS mes-
sage to Phone5556

Our access control mechanism restricts application’s priv-
ileges at the frame level, so it may not solve this problem
completely; however, using our access control mechanism,
we can place such an error-prone code inside an iframe, and
give this iframe a very limited set of permissions. This way,
even if the malicious JavaScript code in the SMS message is
triggered, its damage will be limited. In our future work, we
will systematically study this kind of attacks and develop
finer-grained access control to deal with this new threat.

5.3 Performance Evaluation
Our environment is set up as the following: we use Jelly

Bean (android-4.2.1 r2), and we run our modified Android
in Unbuntu 11.04 using an emulator. The configuration for
the emulator is the following: Nexus One (3.7, 480*720:
hdpi), RAM (2 GB), VM Heap (32 MB), Internal Stor-
age (200 MB), and No SDCard. The hosting machine is
Intel Core i7-3540M @ 3.00GHZ, with 8GB memory.

System Overhead. To evaluate the performance of our
system, we use a popular Android Benchmarking tool: An-
TuTu. It runs a set of tests and provides a score report about
memory performance, CPU integer performance and CPU
floating point performance etc. Table 1 shows the results
(average scores of multiple runs) of the AnTuTu Benchmark.
From the benchmark, we can observe that our modification
imposes no significant overhead on these parameters: all
overheads are below 1%.

AnTuTu Original SDK Modified SDK Difference
Total Score 1254.2 1252.7 -0.12%

Memory Access 387.2 386.5 -0.18%
Integer Operation 454.6 456.2 0.35%

Float-point Operation 134.1 134 -0.01%
2-D Graphic 39.3 39 -0.77%
3-D Graphic 26.5 26.3 -0.75%
Database IO 212.5 210.7 -0.85%

Table 1: Benchmark Scores

Application Overhead. We evaluate the performance
impact of our work on applications. We mainly focus on
the applications that attach APIs to WebView using add-

JavascriptInterface(). We measure the followings: over-
head in page loading and overhead in API invocations. They
are the places where we made the most changes in Android.

Because the need to calculate the effective permissions
when a page is loaded, there will be overhead in page loading.
The overhead is shown in Figure 10(a). If the webpage is
not in the origin-permission list, the overhead is about 5.6%
to 8.2%, depending on the number of URLs in the list. If
the webpage is in the list, the overhead is a little bit higher:
about 7.4% to 11.3%. This is only a one-time cost.

220

270

320

370 Not in Origin Permission List

In Origin Permission List

120

170

220

Original 3URL 10URL 30URLms

Our Access Control

(a) Loading Overhead

2400

2500

2600

2700

2800

2900

3000

3100
Time(ms)

Our Access Control

2200

2300

2400

Original 3URL 10URL 30URL

(b) Invocation Overhead

Figure 10: Overhead

When JavaScript code calls the developer-specified APIs
from the HTML code, permissions are checked either in the
kernel or at the framework. Figure 10(b) shows the result of
how much time we need to invoke 100 APIs. As it shows, in
our modified Android System the invocation time is about
4.9% higher than the original system when there are 3 URLs

9

in the origin-permission list. The overhead is 5.3% when
there are 30 URLs in the origin permissions list, which is
almost the same as 3 URLs.

6. RELATED WORK

Privilege Separation and Isolation in Web A large
number of works have been proposed to limit the privi-
lege of JavaScript in web applications: The sandbox at-
tribute of iframe [26] allows developers to decide whether
to allow JavaScript to execute or not; it has been imple-
mented by most browsers and is also very coarse-grained.
Content Security Policy [4] and ConSCRIPT [45] present
client-side fine-grained and application-specific security poli-
cies. Adjail [40] focuses on isolating the JavaScript of third-
party advertisements by creating a shadow page and let-
ting ads to run inside it. Maffeis et al. [42, 43] propose
a language-based approach to filter and rewrite untrusted
JavaScript. Similarly, Caja [3] and ADsafe [31] use a safe
subset of JavaScript, and they eliminate dangerous DOM
APIs such as eval and document.write, which could allow
advertisements to take control of the entire webpage. Sev-
eral works focus on sandbox components in mashups [46,52].
A representative work of the holistic approach is the Es-
cudo work [37]: Escudo proposes a ring-based access control
model for web browsers. Zhou and Evans [53] propose to
isolate third-party JavaScript from accessing private user
data within webpage. Akhawe et al. [28] propose a tempo-
rary origin-based approach to enforce privilege separation
for HTML5 apps.

Privilege Separation and Isolation in Android Ad-
vertisements are critical third-party components of mobile
applications, and they have the same privileges as the host-
ing app. Several works attempt to address this problem
by separating advertisements’ privileges from the apps: Ad-
Split [48] isolates the advertisement into a separate process
so that ads will have a separate set of permissions; Leon-
tiadis et al. [39] also use a separate application to host the
advertisement with IPC to support communications with
the app. AdDroid [47] provides its own advertisement SDK
and ads-specific permissions aiming at protecting user pri-
vacy. Jeon et al. [38] propose a finer-grained access control
by splitting existing permissions into multiple finer-grained
ones to align with Least Privilege principle.

Security Concerns of WebView The problems with the
addJavascriptInterface in WebView were initially identi-
fied by Luo et al. [41]. Another work mainly focuses on how
the exposed JavaScript interface is used in ads library and
their privacy concerns [51].

Expose Mobile Resources to Web Agarwal et al. [12]
and Adappa et al. [27] propose a middleware design to ex-
pose mobile system resources to mobile mashups [44]. They
define a fine-grained policy to specify a list of APIs that
one component of Mashup can access. However, their ap-
proaches do not have frame-level policy like ours and their
access control is enforced at the exposed API point. If devel-
opers write their own native Java objects and then expose
them to JavaScript, their access control will be bypassed.
Similarly, Singh proposes to extend the origin concept to
mobile web applications and also propose a design to expose
APIs to the origins of one web applications in Android [49],

the architecture is similar to Firefox OS and the work dis-
cussed above. As we argued in Section 3, our system-level
permission-based solution is more appropriate in Android
than the API-based access control.

7. SUMMARY
In this paper, we study the potential security problems

of the HTML5-based applications in mobile systems. We
have identified the insufficiency of the access control in the
existing platforms. We propose a fine-grained access con-
trol mechanism to support HTML5-based applications in
Android platform. In our access control, we define a frame-
based and origin-based policy to separate subjects within
the same application. We enforce our access control in the
operating system, so developers of the HTML5-based appli-
cations only need to configure their security policies, with-
out worrying about implementing the enforcement by them-
selves. Our implementation only requires light-weight code
modification of the original Android system, and poses only
small overhead. The evaluation demonstrates that our ac-
cess control prototype can effectively separate privileges for
different principles within the same app.

8. REFERENCES
[1] http://mail-archives.apache.org/mod_mbox/

incubator-callback-dev/201208.mbox/\%

3C184786566.604.1345647222886.JavaMail.

jiratomcat\@arcas\%3E/.

[2] Appcelerator platform.
http://www.appcelerator.com/.

[3] Caja. http://code.google.com/p/google-caja/.

[4] Content security policy. http://www.w3.org/TR/CSP/.

[5] Facebook social plugin.
https://developers.facebook.com/docs/plugins/.

[6] Firefox os. https://developer.mozilla.org/en-US/
docs/Mozilla/Firefox_OS.

[7] The future of mobile development: Html5 vs. native
apps. http://www.businessinsider.com/
html5-vs-native-apps-for-mobile-2013-4?op=1/.

[8] Gecko. https://developer.mozilla.org/en-US/
docs/Mozilla/Gecko/.

[9] Healthtap application. https://www.healthtap.com/.

[10] Html5 vs. apps: Where the debate stands now, and
why it matters. http://www.businessinsider.com/
html5-vs-apps-where-the-debate-stands-now-and\

-why-it-matters-2013-4/.

[11] Html5 vs native: The mobile app debate. http:
//www.html5rocks.com/en/mobile/nativedebate/.

[12] A middleware framework for mashing device and
telecom features with the web. http:
//domino.research.ibm.com/library/cyberdig.

nsf/papers/78674C5DF95D79D08525776F0045E601/.

[13] Mobile app.
http://en.wikipedia.org/wiki/Mobile_app.

[14] Mosync: App development made easy.
http://www.mosync.com//.

[15] Npapi. http://en.wikipedia.org/wiki/NPAPI/.

[16] Phonegap best and free cross-platform mobile app
framework.
http://crossplatformappmart.blogspot.com/2013/

03/phonegap-best-free-cross-platform.html.

10

[17] Phonegap: Easily create apps using the web
technologies you know and love: Html, css and
javascript. http://phonegap.com.

[18] Rhomobile suite. http://www.motorolasolutions.
com/US-EN/Business+Product+and+Services/

Software+and+Applications/RhoMobile+Suite.

[19] The shared future of html5 and native apps. http://
www.itbusinessedge.com/blogs/data-and-telecom/

the-shared-future-of-html5-and-native-apps.

html/.

[20] Tizen. https://www.tizen.org/.

[21] Twitter social plugin. http:
//www.addthis.com/social-plugins/tweet-button/.

[22] Webapi. https://wiki.mozilla.org/WebAPI/.

[23] The webkit open source project.
http://www.webkit.org/.

[24] Widgetpad: Open-source, web-based environment for
mobile developers.
http://readwrite.com/2009/09/21/widgetpad/.

[25] Xml dom setattribute() method.
http://www.w3schools.com/dom/met_element_

setattribute.asp/.

[26] Html5 sandbox attribute.
http://www.whatwg.org/specs/web-apps/

current-work/#attr-iframe-sandbox, 2010.

[27] S. Adappa, V. Agarwal, S. Goyal, P. Kumaraguru,
and S. Mittal. User controllable security and privacy
for mobile mashups. In Proceedings of the 12th
Workshop on Mobile Computing Systems and
Applications, HotMobile ’11, pages 35–40, New York,
NY, USA, 2011. ACM.

[28] D. Akhawe, P. Saxena, and D. Song. Privilege
separation in html5 applications. In Proceedings of the
21st USENIX conference on Security symposium,
Security’12, pages 23–23, Berkeley, CA, USA, 2012.
USENIX Association.

[29] D. Bovet and M. Cesati. Understanding The Linux
Kernel. Oreilly & Associates Inc, 2005.

[30] A. Charland and B. Leroux. Mobile application
development: web vs. native. Commun. ACM,
54(5):49–53, May 2011.

[31] D. Crockford. ADSafe. http://www.adsafe.org.

[32] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified. In
Proceedings of the 18th ACM conference on Computer
and communications security, CCS ’11, pages 627–638,
New York, NY, USA, 2011. ACM.

[33] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P. D.
Petkov. XSS Attacks: Cross Site Scripting Exploits
and Defense. Syngress Publishing, 2007.

[34] R. Gordon. Essential JNI: Java Native Interface.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1998.

[35] N. Huy and D. vanThanh. Evaluation of mobile app
paradigms. In Proceedings of the 10th International
Conference on Advances in Mobile Computing &
Multimedia, MoMM ’12, pages 25–30, New York, NY,
USA, 2012. ACM.

[36] C. Jackson and H. J. Wang. Subspace: secure
cross-domain communication for web mashups. In
Proceedings of the 16th international conference on

World Wide Web, WWW ’07, pages 611–620, New
York, NY, USA, 2007. ACM.

[37] K. Jayaraman, W. Du, B. Rajagopalan, and S. J.
Chapin. Escudo: A fine-grained protection model for
web browsers. In Proceedings of the 2010 IEEE 30th
International Conference on Distributed Computing
Systems, ICDCS ’10, pages 231–240, Washington, DC,
USA, 2010. IEEE Computer Society.

[38] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel,
N. Reddy, J. S. Foster, and T. Millstein. Dr. android
and mr. hide: fine-grained permissions in android
applications. In Proceedings of the second ACM
workshop on Security and privacy in smartphones and
mobile devices, SPSM ’12, pages 3–14, New York, NY,
USA, 2012. ACM.

[39] I. Leontiadis, C. Efstratiou, M. Picone, and
C. Mascolo. Don’t kill my ads!: balancing privacy in
an ad-supported mobile application market. In
Proceedings of the Twelfth Workshop on Mobile
Computing Systems & Applications, HotMobile
’12, pages 2:1–2:6, New York, NY, USA, 2012. ACM.

[40] M. T. Louw, K. T. Ganesh, and V. N.
Venkatakrishnan. Adjail: practical enforcement of
confidentiality and integrity policies on web
advertisements. In Proceedings of the 19th USENIX
conference on Security, USENIX Security’10, pages
24–24, Berkeley, CA, USA, 2010. USENIX
Association.

[41] T. Luo, Hao Hao, W. Du, Y. Wang, and H. Yin.
Attacks on webview in the android system. In
Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC ’11, pages 343–352,
New York, NY, USA, 2011. ACM.

[42] S. Maffeis, J. C. Mitchell, and A. Taly. Isolating
javascript with filters, rewriting, and wrappers. In
Proceedings of the 14th European conference on
Research in computer security, ESORICS’09, pages
505–522, Berlin, Heidelberg, 2009. Springer-Verlag.

[43] S. Maffeis and A. Taly. Language-based isolation of
untrusted javascript. In Proceedings of the 2009 22nd
IEEE Computer Security Foundations Symposium,
CSF ’09, pages 77–91, Washington, DC, USA, 2009.
IEEE Computer Society.

[44] E. M. Maximilien. Mobile mashups: Thoughts,
directions, and challenges. In Semantic Computing,
2008 IEEE International Conference on, pages
597–600, 2008.

[45] L. A. Meyerovich and B. Livshits. Conscript:
Specifying and enforcing fine-grained security policies
for javascript in the browser. In Proceedings of the
2010 IEEE Symposium on Security and Privacy, SP
’10, pages 481–496, Washington, DC, USA, 2010.
IEEE Computer Society.

[46] J. Mickens and M. Finifter. Jigsaw: efficient, low-effort
mashup isolation. In Proceedings of the 3rd USENIX
conference on Web Application Development,
WebApps’12, pages 2–2, Berkeley, CA, USA, 2012.
USENIX Association.

[47] P. Paul, P. F. Adrienne, G. Nunez, and D. Wagner.
AdDroid: Privilege Separation for Applications and
Advertisers in Android. In Proceedings of the 7th
ACM Symposium on Information, Computer and

11

Communications Security, AsiaCCS ’12, 2012.

[48] S. Shekhar, M. Dietz, and D. S. Wallach. AdSplit:
Separating Smartphone Advertising from
Applications. In Proceedings of the 21st USENIX
conference on Security symposium, USENIX Security
’12, pages 28–28, Berkeley, CA, USA, 2012. USENIX
Association.

[49] K. Singh. Can Mobile learn from the Web? In IEEE
Computer Society Security and Privacy Workshops,
WPSP ’12, 2012.

[50] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. On
the incoherencies in web browser access control
policies. In Proceedings of the 2010 IEEE Symposium
on Security and Privacy, SP ’10, pages 463–478,
Washington, DC, USA, 2010. IEEE Computer Society.

[51] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and
H. Chen. Investigating User Privacy in Android Ad
Libraries. In IEEE Mobile Security Technologies
(MoST) 2012, MoST ’12, 2012.

[52] H. J. Wang, X. Fan, J. Howell, and C. Jackson.
Protection and communication abstractions for web
browsers in mashupos. In Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems
principles, SOSP ’07, pages 1–16, New York, NY,
USA, 2007. ACM.

[53] Y. Zhou and D. Evans. Protecting private web content
from embedded scripts. In Proceedings of the 16th
European conference on Research in computer
security, ESORICS’11, pages 60–79, Berlin,
Heidelberg, 2011. Springer-Verlag.

12

