
A Practical Approach to Solve
Secure Multi-party Computation Problems∗

Wenliang Du and Zhijun Zhan
Center for Systems Assurance

Department of Electrical Engineering and Computer Science
Syracuse University, Syracuse, NY 13244

Email: wedu, zhzhan@ecs.syr.edu

ABSTRACT
Secure Multi-party Computation (SMC) problems deal with
the following situation: Two (or many) parties want to
jointly perform a computation. Each party needs to con-
tribute its private input to this computation, but no party
should disclose its private inputs to the other parties, or
to any third party. With the proliferation of the Internet,
SMC problems becomes more and more important. So far no
practical solution has emerged, largely because SMC studies
have been focusing on zero information disclosure, an ideal
security model that is expensive to achieve.

Aiming at developing practical solutions to SMC problems,
we propose a new paradigm, in which we use an acceptable
security model that allows partial information disclosure.
Our conjecture is that by lowering the restriction on the
security, we can achieve a much better performance. The
paradigm is motivated by the observation that in practice
people do accept a less secure but much more efficient solu-
tion because sometimes disclosing information about their
private data to certain degree is a risk that many people
would rather take if the performance gain is so significant.
Moreover, in our paradigm, the security is adjustable, such
that users can adjust the level of security based on their
definition of the acceptable security. We have developed
a number of techniques under this new paradigm, and are
currently conducting extensive studies based on this new
paradigm.
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The proliferation of the Internet has triggered tremendous
opportunities for cooperative computation, where people are
cooperating with each other to conduct computation tasks
based on the inputs they each supply. These computa-
tions could occur between trusted partners, between par-
tially trusted partners, or even between competitors. For ex-
ample, two competing financial organizations might jointly
invest in a project that must satisfy both organizations’ pri-
vate and valuable constraints, two countries might want to
plan a joint military action but each country has some se-
cret information that cannot be shared. Usually, to conduct
these computations, one must know inputs from all the par-
ticipants, but if nobody can be trusted enough to know all
the inputs, privacy becomes a critical issue.

A more general form of the problem is described in the fol-
lowing: two or more parties want to conduct a computation
based on their private inputs, but neither party is willing
to disclose its own input to anybody else. The problem is
how to conduct such a computation while preserving the
privacy of the inputs. This problem is referred to as Se-
cure Multi-party Computation problem (SMC) in the liter-
ature [25]. Generally speaking, A secure multi-party compu-
tation (SMC) problem deals with computing any function on
any input, in a distributed network where each participant
holds one of the inputs, ensuring that no more information
is revealed to a participant in the computation than can be
computed from that participant’s input and output [20].

The greatest challenge that all the solutions need to face is
how to satisfy the security requirement. To formally define
security [18], traditional SMC studies introduce the concepts
of the ideal model and the real model. In the ideal model,
the real parties are joined by a (third) trusted party, and the
computation is performed via this trusted party. In the real
model, the real SMC protocol is executed (and there exist
no trusted third parties). A protocol in the real model is
said to be secure with respect to certain adversarial behavior
if the possible real executions with such an adversary can be
“simulated” in the ideal model. Loosely speaking, whatever
information disclosure that can occur in the real model could
also occur in the ideal model. The security model based
on the above definition of security will be called the ideal
security model throughout this paper (to avoid the confusion
of the ideal security model with the ideal model, we reiterate
that the computation based on the ideal security model does
not use a trusted party).



Most of the studies of SMC problems are based on the ideal
security model. It is observed that achieving this kind of
security is not difficult, but achieving it efficiently is. Ac-
cording to the theoretical SMC studies, all of the SMC prob-
lems can be solved in theory using the circuit evaluation
protocol [18]. But using this general solution for special
cases of multi-party computation can be impractical; spe-
cial solutions should be developed for special cases for effi-
ciency reasons. Motivated by this observation, researchers
started to look for special solutions for each specific SMC
problem. A number of researchers have proposed various
solutions to the Private Information Retrieval (PIR) prob-
lem [9, 8, 21, 10, 22, 6, 16]; Du and Atallah have proposed
the solutions to the privacy-preserving statistical analysis,
scientific computation, and computational geometry prob-
lems [11, 15, 13, 2, 14]; Lindell and Pinkas have proposed
the privacy-preserving data mining problem [23]. However,
those solutions, although very elegant, are still not efficient
enough for practical uses. Practical solutions need to be de-
veloped. However, whether practical solutions based on the
ideal security model exist or not is still unknown.

Instead of following the traditional path to find practical so-
lutions, we ask these questions: Why do we have to achieve
this kind of ideal security? Is ideal security really necessary
in practice? In the real world, ideal security is of course pre-
ferred, but if the ideal security is too expensive to achieve,
people might prefer low-cost solutions that can achieve se-
curity at an “acceptable” level. In another words, sacrificing
some security or disclosing some limited information about
the private data for a better performance is often accept-
able in practice. For example, if the private information is
an array of numbers, disclosing some statistical information
about these numbers might be acceptable as long as the
actual raw data are not disclosed.

Therefore, we propose a new security paradigm: to study
the secure multi-party computation problems based on an
acceptable security model. The new paradigm is illustrated
in Figure 1. We refer the new problem as the Practical
Secure Multi-party Computation (PSMC) problem. PSMC
problem deals with computing any function on any input,
in a distributed network where each participant holds one
of the inputs, ensuring that only a limited amount of infor-
mation is revealed to a participant in the computation.

As the first step towards defining acceptable security, we use
the following informal definition in this paper; a more formal
definition is still under development.

A protocol achieves acceptable security, if an ad-
versary can only narrow down all the possible
values of the secret data to a domain with the
following properties:

1. The number of values in this domain is infi-
nite, or the number of values in this domain
is so large that a brute-force attack is com-
putationally infeasible.

2. The range of the domain is acceptable for
the application. The definition of the accept-
able range depends on specific applications.

We let the definition of the acceptable range be application
dependent because a range acceptable to one application
might be unacceptable to others. For example, knowing
that a number is within the domain of [0, 5] might not dis-
close important information for one application, but might
disclose enough information for another application. Thus,
this definition intrinsically implies that a solution satisfy-
ing this security definition should be adjustable in the sense
the range of the domain disclosed to an adversary should be
adjustable. Therefore users can adjust a protocol to satisfy
their security needs with the minimum cost.

Based on this new definition, we studied a number of known
SMC problems. Our results have shown that the perfor-
mance of our new solutions improves significantly. To demon-
strate how the new paradigm can lead to practical solutions,
we describe the solutions to the basic computations that
serves as the building blocks to many SMC problems. We
will compare the new solutions with the existing results to
understand the performance improvement achieved by our
new solutions. In particular, We will demonstrate how the
new paradigm can lead to practical solutions in two lev-
els: the computation model level and the techniques levels.
In the computation model level, we will describe the ex-
isting computation models that can serve our purpose. In
the techniques level, we will demonstrate various techniques
that have successfully achieved the acceptable security with
a much better performance.

The paper is organized in the following way: Section 2 dis-
cusses the related work. Section 3 defines the scalar product
problem that will be used throughout the paper. Then Sec-
tion 4 and Section 5 demonstrate the approaches we have
developed in achieving adjustable and acceptable security,
with Section 4 focusing on the approach at the computation
model level, and Section 5 focusing on more concrete tech-
niques level. Finally Section 6 concludes the paper and lays
out future work.

2. RELATED WORK
Secure Multi-party Computation. The history of the
multi-party computation problem is extensive since it was
introduced by Yao [25] and extended by Goldreich, Micali,
and Wigderson [19], and by many others: Goldwasser [20]
predicts that “the field of multi-party computations is today
where public-key cryptography was ten years ago, namely an
extremely powerful tool and rich theory whose real-life usage
is at this time only beginning but will become in the future
an integral part of our computing reality”.

Goldreich states in [18] that the general secure multi-party
computation problem is solvable in theory. However, he also
points out that using the solutions derived by these general
results for special cases of multi-party computation, can be
impractical; special solutions should be developed for special
cases for efficiency reasons.

Private Information Retrieval

Among various multi-party computation problems, the Pri-
vate Information Retrieval (PIR) problem has been widely
studied. PIR solutions provide a user with information from
a database in a private manner, namely, the user’s query in-
formation is not disclosed to the database. In this model,
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the database is viewed as an n-bit string x, and the user re-
trieves the i-th bit xi out of x, while giving the database no
information about the query i. The notion of PIR was in-
troduced in [9], and was extensively studied in the literature
[9, 8, 21, 10, 22, 6, 16].

PIR is not concerned with the privacy of the database. The
problem of Symmetrically Private Information Retrieval (SPIR)
is an extension of PIR where the database’s privacy is also
addressed. SPIR problem adds an extra requirement that
the user, on the other hand, cannot obtain any information
about the database in a single query except for the result.
SPIR was first introduced in [17], could be solved using PIR
protocols with a small complexity overhead [17, 24].

Privacy-Preserving Data Mining.

The privacy-preserving data mining problem is another spe-
cific secure multi-party computation problem that has been
discussed in the literature. Recently, two different privacy-
preserving data mining problems were proposed. In Lin-
dell and Pinkas’ paper [23], the problem is defined as this:
Two parties, each having a private database, want to jointly
conduct a data mining operation on the union of their two
databases. How could these two parties accomplish this
without disclosing their database to the other party, or any
third party. A solution based on oblivious transfer protocol
is presented in the paper. In Agrawal and Srikant’s paper [1],
the privacy-preserving data mining problem is defined as
this: Alice is allowed to conduct data mining operation on
a private database owned by Bob, how could Bob prevent
Alice from accessing precise information in individual data
records, while Alice is still able to conduct the data mining
operations? This problem, although very interesting, does
not fit into the secure multi-party computation framework.
A data perturbation method is used in this work.

Selective Private Function Evaluation.

Selective Private Function Evaluation (SPFE) was intro-
duced in [7]. In this problem, a client interacts with one
or more servers holding copies of a database x = x1, . . . , xn

in order to compute f(xi1 , . . . , xim
), for some function f

and indices i = i1, . . . , im chosen by the client. Ideally,
the client must learn nothing more about the database than
f(xi1 , . . . , xim

), and the servers should learn nothing. Var-
ious approaches for constructing sublinear-communication
SPFE protocols were presented in [7], both for the gen-
eral problem and for special cases of interest, such as the
statistical functions.

Other Specific SMC problems.

Secure Multi-party Computation problems also exist in many
other computation domains. New problems can emerge if we

combine the privacy requirements with a specific computa-
tion domain. Du and Atallah have studied a number of new
SMC problems [11, 15], including the privacy-preserving sci-
entific computation problem [13], the privacy-preserving sta-
tistical analysis problem [14], the privacy-preserving compu-
tational geometry problem [2], and the privacy-preserving
database query problem [12]. Like the other SMC studies,
all these works aim at achieving the ideal security.

3. SCALAR PRODUCT PROBLEM
To demonstrate our new paradigm, we will describe various
techniques that support our new paradigm, as well as dis-
cuss how those techniques work. To make it easy to compare
these techniques, we will use a single problem throughout
this paper. However, as we will mention later, our tech-
niques can solve a class of problems, not just this specific
problem. The problem is called Scalar Product Problem, it
is defined in the following:

Problem 1. (Scalar Product Problem) Alice has a vector
X = (x1, . . . , xn) and Bob has a vector Y = (y1, . . . , yn).
Alice (but not Bob) is to get the result of u = X ·Y +v where
v is a random scalar known to Bob only.

The purpose of Bob’s random v is as follows: If X · Y is a
partial result that Alice is not supposed to know, then giving
her X ·Y + v prevents Alice from knowing the partial result
(even though the scalar product has in fact been performed);
later, at the end of a multiple-step protocol, the effect of v
can be effectively “subtracted out” by Bob without revealing
v to Alice.

4. COMPUTATION MODELS
In the study of the Secure Two-party problems, A Two-
party model is usually used because it is an ideal model in
terms of the security it provides. The Two-party model con-
sists of just two parties (Figure 2.a), namely, Alice and Bob
will conduct the computation totally by themselves with-
out the help from any third party. If the two-party model
can provide a practical solution, we do not need another
model. However, according to our past experience, efficient
solutions for this model are usually difficult to find.

Since the goal of our research is to achieve practical secu-
rity, we will not limit ourselves to the Two-party model
only; we would like to investigate other computation mod-
els, and study whether practical solutions can be achieved
for those models. We understand that some computation
models might achieve a weaker security than the Two-party
model, but if the performance gain outweighs the security
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loss, if the security loss is acceptable in certain specific situ-
ations, the solutions based on those models are more likely
to be adopted in practice.

One of the interesting models we have studied is the Commodity-
Server Model depicted in Figure 2.b. The model introduces
an extra server, the commodity server, belonging to a third
party. The only requirement posed on the third server is
that it cannot collude with either participants. This server
has a few appealing features: First, this party does not par-
ticipate in the computation between participants, but it does
provide data for them to hide their private data. Second,
the data provided by the commodity server does not de-
pend on the participants’ private data, so the commodity
server does not need to know those private data. This fea-
ture gets the commodity server out of the picture of any
future liability issues in case some participant’s private data
is disclosed somehow. Furthermore, this feature makes it
easy to find such a server because not much trust is needed
for a commodity server. With these features, the commod-
ity server can generate independent data off-line, and sell
them as commodities to the participants (whence the name
“commodity server”). It should be pointed out that the
commodity server should not collude with any parties, oth-
erwise, the model simply becomes the Two-Party model. In
reality, finding such a commodity server is very feasible.

The commodity server model was first proposed by Beaver [4,
5], and has been used for solving Private Information Re-
trieval problems in the literature [4, 5, 10]. In the follow-
ing, we will describe a solution to the scalar product prob-
lem based on this model. It should be pointed out that
the performance of this protocol is much more efficient than
the other protocols that are based on the Two-party model.
Some of the protocols will be described later in the paper.

Protocol 1. (Scalar Product Protocol–Commodity Server
Approach)

Inputs: Alice has a vector X = (x1, . . . , xn), and Bob has
a vector Y = (y1, . . . , yn).

Outputs: Alice (but not Bob) gets X ·Y +v, and Bob gets
v.

1. The Commodity Server generates a pair of random
vectors Ra and Rb, and let ra + rb = Ra ·Rb, where ra

and rb are randomly generated. Then the server sends
Ra and ra to Alice, sends Rb and rb to Bob.

2. Alice sends X ′ = X +Ra to Bob, and Bob sends Y ′ =
Y + Rb to Alice.

3. Bob generates a random number v′, and computes X ′ ·
Y + v′, then sends the result to Alice. Bob also lets
v = v′ − rb.

4. Alice computes (X ′ ·Y + v′)− (Ra ·Y
′)+ ra = X ·Y +

(v′ − Ra · Rb + ra) = X · Y + (v′ − rb) = X · Y + v.

Theorem 1. Assuming that all of the random numbers
are generated from the real domain, Protocol 1 is secure such
that Bob does not learn X[i] for any i, and Alice does not
learn Y [i] for any i, where X[i] and Y [i] represent the vec-
tor’s ith element, respectively.

Proof. Claim 1: Protocol 1 does not allow Bob to learn
X.

Since X ′ = X + Ra is all what Bob gets, because of the
randomness, and the secrecy of Ra, Bob cannot find out X.

Claim 2: Suppose that protocol 1 does allow Alice to learn
Y , namely Alice can find a vector X ′, such that by sending
X ′ to Bob who follows the protocol, Alice can find out Y [i]
for some i. Formaly speaking, if the protocol is not secure,
then there exists a deterministic algorithm such that, given
X ′, for any Y , if the inputs of the algorithm are X ′, Y ′ =
Y + Rb and Z = X ′Y + v′, the algorithm outputs Y [i] for
some i.

Next, we construct an arbitrary Ŷ with Ŷ [i] 6= Y ′[i]. Let

R̂b = Y ′− Ŷ and v̂′ = X ′(Y −Y ′)+v′. Because Ŷ + R̂b still

equals to Y ′, and X ′Ŷ + v̂′ still equals to Z, the algorithm
should still output Y [i]. According to the deterministic algo-

rithm, the output should be Ŷ [i] = Y [i]. Since Ŷ [i] 6= Y ′[i],
we have a contradition, in another words, such deterministic
algorithm does not exist.

From claim 1 and claim 2, we conclude that protocol 1 does
not allow Bob to learn X, and it does not allow Alice to
learn Y either.

4.1 Security and Complexity Analysis.

If the random numbers are not generated from the real do-
main, Alice might get some information about Y . For ex-
ample, if the elements of Y are in the domain of [0, 100],
and we also know the random numbers are generated from



[0, 200] domain, then if an element of vector Y + Rb is 250,
we know the original element in vector Y is bigger than 50.

It should also be noted that our protocol does not deal with
the situation where one party lies about its input. For ex-
ample, instead sending Y + Rb, Bob sends Ŷ + Rb, where
Ŷ is an arbitrary vector. In that case, neither of them can
get correct results, but as we have shown, neither of them
can gain information about the other party’s private input
either.

In the third step, the purpose of the extra random v′ is for
Bob to protect the actual value of X ′ ·Y . If Alice is allowed
to know the actual result of X ′ · Y , Alice could learn par-
tial information about Y or probably the whole information
about Y if the same Y is used to compute several scalar
products.

The above protocol is based on the assumption that the
commodity server should not collude with either of Alice
and Bob. However, we can improve security of the protocol.
One way to improve it is that, instead of using only one
commodity server, we can use multiple commodity severs.
For example, if we use m number of commodity servers, we
can cut the vectors X and Y to m pairs of smaller vectors, by
using the above protocol, each commodity server can help
to compute the scalar product of one of the pairs among m
smaller vectors, the sum of the scalar products of these m
pairs is the final scalar product of X and Y.

The communication cost of this approach is just 4n. With
this cost, the solution is efficient enough to become practical.

5. DATA DISGUISING TECHNIQUES
In this section, we discuss a number of specific techniques
that are useful for data disguising. Some of the techniques
do allow information disclosure to some extent; therefore,
for each technique, we discuss what information is disclosed,
and what kind of privacy is achieved. More importantly, we
will discuss the properties of each technique, and the com-
putation each technique can support. If the data disguise
does not support any computation, then it is basically use-
less because our final goal is to conduct some computation.
Therefore, most of the encryption schemes, except the ho-
momorphic encryption scheme, are not of much use because
they do not support computation on the encrypted data.

5.1 Linear Transformation Disguise
We define X1 as a vector consisting of the first n/2 elements
of the vector X; we define X2 as a vector consisting of the
second n/2 elements of X. Similarly we define Y1 and Y2

for vector Y . Note that XY = X1Y1 + X2Y2. To compute
u = X · Y + v, Alice can send X1 to Bob while Bob sends
Y2 to Alice; Alice can then compute u = X1Y1 and Bob
can compute v = −X2Y2. This does not require each side
to disclose all data to the other side, but this scheme is
unacceptable because each party has disclosed half of their
private raw data.

To solve this problem, we can transform X (resp. Y ) to
another vector X ′ (resp. Y ′), such that disclosing partial
information about X ′ does not allow anybody to derive the
raw data of X. A linear transformation would achieve this

goal, namely if we let X ′ = XM , where M is an invertible
n × n matrix, disclosing half of the data of X ′ does not
allow any one to derive the original raw data of X. Based
on this observation, we derive our protocol (for the purpose
of simplicity, we assume n is even; this can be achieved by
padding the vectors with a 0 when n is odd):

Protocol 2. (Two-Party Scalar Product)

1. Alice and Bob jointly generate a random invertible n×
n matrix M .

2. Alice lets X ′ = XM , and divides X ′ equally to two
vectors X ′

1 and X ′

2. Alice sends X ′

2 to Bob.

3. Bob lets Y ′ = M−1Y , and divides Y ′ equally to two
vectors Y ′

1 and Y ′

2 . Bob sends Y ′

1 to Alice.

4. Alice computes u = X ′

1Y
′

1 .

5. Bob computes v = −X ′

2Y
′

2 .

It is easy to see that the above protocol achieves u = X ′Y ′+
v = XY + v.

Security and Complexity Analysis.
To analyze how secure this protocol is, we need to find out
how much Alice and Bob know about each other’s informa-
tion. According to this protocol, Bob knows n/2 data items
in vector XM . Let us consider X = (x1, . . . , xn) as n un-
known variable, and XM as a linear system of equations on
these n unknown variables. If Bob knows all of the n equa-
tions, Bob can easily solve this linear system, and recover
the values in X. However, in this protocol, Bob only knows
n/2 of the equations. Theoretically, if xi’s are in real num-
ber domain, based on these n/2 equations, there are infinite
number of solutions to the n unknown variables. Therefore,
although Bob learns n/2 linear combination of the data, it
is impossible for Bob to learn actual values of the data in
vector X.

The above protocol is secure if the values of the data items
in vector X and Y are real numbers. However, in situations
where these values are integers or just 0 or 1, sometimes n/2
equations might be enough for Bob to find the actual values
of xi’s if n is not very big. Therefore, the above protocol is
only secure in the real number domain.

We should be careful if we want to reuse X or Y for an-
other scalar product; otherwise the security might be com-
promised. For example, in order to compute another scalar
product XZ, Alice needs to disclose another n/2 equation
to Bob. If these n/2 equations are linear independent to the
first n/2 equations disclosed to Bob during the computation
of XY , Bob now has n equations, and therefore can solve
these n equations to find out the actual values of X. To
avoid this type of security compromise, we should use the
same matrix M when X (or Y ) is reused.

The communication cost of this protocol is n, which is as
good as the scalar product computation in the non-secure
situation, namely one party sends its vector in plain text to



the other party. The computation cost is O(n3) due to the
computation of M−1. However, there is a way to improve
the computation cost: instead of using a matrix of size n×n,
we can use n/m matrices, each of which has size m × m,
namely we cut the vector X and Y to n/m pairs of small
vectors, the sum of the scalar products of these n/m pairs is
the final scalar product of X and Y . For the scalar product
of each pair, we can use the above protocol with a random
matrix of size m × m. Therefore, the computation cost is
O(n/m ∗ (m)3) = O(nm2). If we choose a smaller m, the
computation cost is improved, but more information will be
disclosed. Thus, the security level can be adjusted by the
users who will decide the tradeoff between performance and
security.

5.2 (Z + V )-Disguise
If a secret data item Z needs to be stored at Alice’s place
without being disclosed to Alice, a simple solution is to give
Alice Z + V , where V is a data item consisting of random
numbers, and Alice does not know V . In a finite domain,
Z + V can perfectly hide Z; however, in an infinite domain,
Z + V can reveal some information about Z, although it is
still impossible to recover the value of Z. The bigger the
V is, the more secure the disguise will be. Therefore by
adjusting the size of the V , we can adjust the degree of the
disguise.

Regardless of how a data item is disguised, the data should
be able to be used in the computation we want to achieve;
otherwise, if the disguise is the sole purpose, we will just use
the encryption schemes, which are the best ways to disguise
data. In the next few subsections, we will discuss how the
basic computations can be conducted based on this Z + V
data disguise scheme.

We will start from the situation where Alice has a data
item X, and Bob has a data item Y ; they want to achieve
f(X, Y ), where f represents a basic computation. Since
some times knowing the result of f(X, Y ) and one of the
inputs allows one to derive the value of the other inputs,
we will not disclose the result of f(X, Y ) to anyone. There-
fore, in addition to using the (Z + V )-Disguise technique to
conduct the computation, we will use the same technique
to hide the result as well, namely, we will let Alice learn
f(X, Y ) + V and let Bob learn V .

The basic computations in our discussion include the addi-
tion, multiplication, and inverse. Most of the more compli-
cated computations can be based on these basic computa-
tions.

Problem 2. Two secrets, Z1 and Z2, are shared by Alice
and Bob in such a way that Alice only knows Z1 + V1 and
Z2 + V2, and Bob knows V1 and V2; however neither knows
either Z1 or Z2. Alice and Bob want to conduct the following
computations (In this problem Zi and Vi could both be, if
applicable, numbers, arrays of numbers, or Matrices):

• Z1 + Z2: Alice gets (Z1 + Z2) + V , and Bob gets V .

• Z1 · Z2: Alice gets Z1 · Z2 + V , and Bob gets V .

• U · Z1: Alice gets U · Z1 + V , and Bob gets U and V .
Because Alice does not know U , the computation can
still disguise the secret Z1 even if V is zero. In fact,
when we use the computation, sometimes, we will let
V be zero, and let V be non-zero at other times.

• Z−1

1
: Alice gets Z−1

1
+ V , and Bob gets V .

• (Z1 + Z2)
−1: Alice gets (Z1 + Z2)

−1 + V , and Bob
gets V . This computation can be obtained from the
solutions to the Z−1

1
computation because Alice knows

(Z1+Z2)+(V1+V2), and Bob knows (V1+V2), thus we
can achieve (Z1 + Z2)

−1 computation using the same
method.

• log Z1: Alice gets log Z1 + V , and Bob gets V .

• log(Z1 + Z2): Alice gets log(Z1 + Z2) + V , and Bob
gets V . Similar to the computation of (Z1 + Z2)

−1,
the computation of log(Z1 + Z2) is the same as the
computation of log Z1.

Next, we will describe the outline of each protocol. The most
important protocol is the (U · Z)-protocol, because most
of the other protocols can be derived from this protocol.
Therefore, we will only describe this protocol in details, and
give a brief outline of the other protocols.

Protocol 3. (Z1 +Z2)-protocol: This protocol is trivial.
Alice just needs to compute (Z1 + V1) + (Z2 + V2), and gets
(Z1 + Z2) + (V1 + V2); Bob needs to compute V = V1 + V2.
Therefore Alice has (Z1 + Z2) + V and Bob has V .

Protocol 4. (U · Z)-protocol: Because this protocol is
used as a building block by many other protocols described
later, its performance is very important. We have developed
several solutions for this protocol. Here, we first describe
one solution based on the oblivious transfer protocol. Later
in this section, we will describe another solution that is more
efficient but less secure.

1. Alice and Bob agree on two numbers p and m, such
that pm is large enough.

2. Alice randomly generates R1, . . . , Rm, such that
� m

j=1
Rj =

Z1 + V1.

3. Bob randomly generates r1, . . . , rm such that
� m

j=1
rj =

V − UV1.

4. For each j = 1, . . . , m, Alice and Bob conduct the fol-
lowing sub-steps:

(a) Alice generates a secret random number k, 1 ≤
k ≤ p.

(b) Alice sends (H1, . . . , Hp) to Bob, where Hk = Rj ,
and the rest of Hi’s are random. Because k is a
secret number known only to Alice, Bob does not
know the position of Rj .

(c) Bob computes Tj,i = U · Hi + rj for i = 1, . . . , p.



(d) Using the 1-out-of-p Oblivious Transfer protocol,
Alice gets Tj= Tj,k= U ·Rj + rj, while Bob learns
nothing about k.

5. Alice computes u =
� m

j=1
Tj = U · (Z1 + V1) + (V −

UV1) = U · Z1 + V .

Security and Complexity Analysis.
In the above protocol, Alice divides Z1 + V1 into m random
pieces R1, . . . , Rm, and then gets back U · Rj + rj for j =
1, . . . , n. Because of the randomness of Ri and its position
among other bogus data, Bob could not find out which one
is Ri. Certainly, there is 1 out of p possibility that Bob
can guess the correct Ri, but since Z1 + V1 is the sum of m
such random pieces, the chance that Bob guesses the correct
Z1 + V1 is 1 out pm, which could be very small if we chose
pm to be large enough.

The communication cost of this protocol is O(mpn). If we
let p = 2 and m = 128 (so the brute-force attack has to
conduct 2128 steps), the cost would be about 256n. This so-
lution is not a practical solution, although it is very secure
except for the information disclosed because of the (Z +V )-
Disguise. In the last section, we have described a solution
based on the Commodity-Server model; the cost of that so-
lution is only 4n, very close to the optimum cost of n. In
the next section, we are going to describe another solution
based on the Two-Party Model. That new solution only has
the communication cost of 2n, but the computation cost on
the other hand increases significantly.

Protocol 5. (Z1 · Z2)-protocol: This protocol is essen-
tially an application of the (U · Z)-protocol.

1. Bob randomly generates V , V3, and V4, such that V =
−V1V2 − (V3 + V4).

2. Alice computes W1 = (Z1 + V1) · (Z2 + V2) = Z1Z2 +
Z1V2 + Z2V1 + V1V 2.

3. Using the (U ·Z)-protocol on Z1 +V1 and V2, Alice can
get W2 = V2Z1 + V1V2 + V3.

4. Using the (U ·Z)-protocol on Z2 +V2 and V1, Alice can
get W3 = V1Z2 + V1V2 + V4.

5. Alice computes W1 − W2 − W3 = Z1Z2 + (−V1V2 −
(V3 + V4)) = Z1Z2 + V

Protocol 6. (Z−1)-protocol: This protocol assumes that
Z1 is a non-zero number or a non-singular matrix. By using
the (U ·Z)-protocol, Alice can get U ·Z1, and Bob gets U . Al-
ice can then compute (U ·Z1)

−1. They use the (U ·Z)-protocol
again, and this time Alice gets (U ·Z1)

−1 ·U)+V = Z−1

1
+V

and Bob gets V .

Protocol 7. log Z1-protocol: This protocol assumes that
Z1 is a positive number. First, Bob generates a random
number U and let V = logU . Then by using the (U · Z)-
protocol, Alice can get U · Z1. Then Alice computes log(U ·
Z1) = log Z1 + log U = log Z1 + V .

5.3 Polynomial Function Disguise
Another way to hide a secret Z = (z1, . . . , zn) is to use
the polynomial function of degree k. Each zi is hidden in
f(x) = akxk + . . .+a1x+a0, with the parameters a0, . . . , ak

being unknown to the person who holds f(zi). To find out
the value of zi, one needs to find out the k + 1 parameters.

A good property of this kind of disguise is that it can pre-
serve the order among z1, . . . , zn, if we know the domain of
the zi’s. Therefore by comparing f(zi) for i = 1, . . . , n, we
can find the minimum, maximum, and the total order among
these n secret numbers. We will describe a FindMin proto-
col to illustrate the use of the polynomial function disguise.
Comparing to the solution proposed in [3], this protocol is
significantly more efficient.

Problem 3. (FindMin Problem) Alice has an array of
numbers X = (z1 + v1, . . . , zn + vn), and Bob has an array
of numbers V = (v1, . . . , vn). They want to find out the m,
such that zm = min{zi|i = 1, . . . , n}. Nobody should know
the value of zi’s.

To solve this problem, Alice and Bob divide their data to
n/m groups, with each group containing m numbers. The
idea is to first find the minimum number within each group,
and thus get n/m numbers. Then we recursively divide
these n/m numbers to groups, and find the minimum num-
ber within each group, until there is only one number left.
This number is the smallest among all these n numbers.

So how to find the minimum number among m numbers?
Without the loss of generality, we suppose these m numbers
to be z1, . . . , zm. We will let Bob generate a k-degree func-
tion f(x), and Alice can use our scalar product protocol to
get the value of f(zi) (see footnote1), for i = 1, . . . , m. f(x)
is generated in a way such that f(zi) ≤ f(zj) if and only
if zi ≤ zj . This can be achieved if we know the possible
domain of those zi’s. For instance, if we know that all zi’s
are positive, we can find such a f(x). Because of this order-
preserving property, Alice can find the smallest zi by herself
without knowing the value of zi’s.

Security and Complexity Analysis.
The communication cost and the computation cost of the
above solution are decided by the number of the invoca-
tion of the scalar product protocol, and the degree k of the
function f(x). The number of the invocation equals to the
number of the recursive iterations, which equals to logm n.
By increasing the value of m, we can reduce the actual cost
of the solution; however, when the value of m becomes big-
ger, the security becomes weaker if k keeps to be the same.
This is because when a k-degree polynomial function is used
to disguise m numbers, the security is decided by the differ-
ence of k and m. Intuitively speaking, in our solution, we
are using k random numbers to hide m numbers. Therefore,
the bigger the value of k, the more secure our solution is.
Let us think about an extreme case when k = 1. It means

1Since zi = (zi +vi)−vi, if we expand the function f(zi), we
will find out that the evaluation of f(zi) is actually a scalar
product, with Alice knowing zi + vi and Bob knowing vi.



all these m numbers are actually hidden by a single num-
ber. Once this number is known, all these numbers will be
compromised. On the other hand, the bigger the value of k,
the more expensive the computation and computation cost
will be. Therefore, we can adjust the security and the cost
of our solution by adjusting the value of k.

Comparing to the FindMin protocol we developed before [3],
this protocol is much more efficient, but it is less secure
because several information about zi’s are disclosed. For
example, Since Alice is conducting the comparison, apart
from knowing the final result, the minimum elements, she
also knows which zi is bigger.

5.4 Other Disguise Techniques
There are many other disguise methods, and their appli-
cations are problem-dependent. We have successfully used
them to solve a number of specific secure two-party com-
putation problems. We briefly summarize these methods in
the following:

• Permutation: If the data is a list of numbers, some-
times, permute the order of these numbers might be a
useful technique to disguise the data. The technique
is used in [14] to hide the contents of a vector.

• Adding bogus data: If the data is a database, some-
times, adding significant amount of bogus records into
the database can make it not much useful if one does
not know which records are bogus records. Therefore,
by adding bogus data into a database, we can achieve
the data disguise to some degree. We are currently
exploiting this technique to achieve data disguise pur-
pose in another research project.

6. CONCLUSION AND FUTURE WORK
We propose a new security paradigm for the secure multi-
party computation studies. Instead of achieving the ideal
security like most of the studies of SMC problems, we pro-
pose a different goal, to achieve acceptable (and adjustable)
security. We have shown that various data disguise tech-
niques and the commodity-server computation model can
help improve the performance of the solutions with certain
degree of security sacrifice. We have also shown that our
techniques are adjustable towards either more efficient or
more secure, namely users can decide the degree of tradeoff
between the performance and the security. If the security
is very important to the users, and no information should
be disclosed, they can adjust the corresponding parameters
in our solutions to increase the security level. If the users
decide that disclosing partial information is still acceptable,
they can choose a parameter that can efficiently achieve their
requirements. We believe this new model, which takes into
the consideration the requirements from the practice, can
lead to the promising application of the secure multi-party
computation problems.

The work based on this new security paradigm is far from
complete, we need to develop more efficient data disguise
techniques and more computation models that can be used
to solve various specific secure multi-party (or two-party)
problems. In addition, in our future work, we also need to

find a way to quantify the security achieved in each proto-
col, so we can compare protocols regarding to the level of
security they can achieve.
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