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ABSTRACT
Mobile devices today provide a hardware-protected mode called
Trusted Execution Environment (TEE) to help protect users from a
compromised OS and hypervisor. Today TEE can only be leveraged
either by vendor apps or by developers who work with the vendor.
Since vendors consider third-party app code untrusted inside the
TEE, to allow an app to leverage TEE, app developers have to
write the app code in a tailored way to work with the vendor’s
SDK. We proposed a novel design to integrate TEE with mobile
OS to allow any app to leverage the TEE. Our design incorporates
TEE support at the OS level, allowing apps to leverage the TEE
without adding app-specific code into the TEE, and while using
existing interface to interact with the mobile OS. We implemented
our design, called TruZ-Droid, by integrating TrustZone TEE with
the Android OS. TruZ-Droid allows apps to leverage the TEE to
protect the following: (i) user’s secret input and confirmation, and
(ii) sending of user’s secrets to the authorized server. We built a
prototype using the TrustZone-enabled HiKey board to evaluate
our design. We demonstrated TruZ-Droid’s effectiveness by adding
new security features to existing apps to protect user’s sensitive
information and attest user’s confirmation. TruZ-Droid’s real-world
use case evaluation shows that apps can leverage TrustZone while
using existing OS APIs. Our usability study proves that users can
correctly interact with TruZ-Droid to protect their security sensitive
activities and data.
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1 INTRODUCTION
Smartphones have become an essential part of our lives, and are
used daily for important tasks such as banking, shopping, text mes-
saging, etc. The security of the software running on these devices
has become more critical because of widespread smartphone usage.
Unfortunately, the recent trend has not been promising. CVE re-
ports show a rise in the number of vulnerabilities in the Android OS,
increasing from 125 in 2015 to 523 in 2016 [1]. The design of mobile
OSes, such as Android, introduces risks by allowing the untrusted
code from app markets to run. By compromising the OS, malware
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can steal user’s secret information such as bank passwords, and
spoof actions such as transferring money out of the user’s bank
accounts on behalf of the user. A technology called TEE (Trusted
Execution Environment) has been introduced to help protect users
in the event of OS compromise.

The most commonly deployed TEE on mobile devices is ARM
TrustZone. Other hardware technologies also support the TEE, in-
cluding AMD Platform Security Processor, Apple Secure Enclave
and Intel Software Guard Extensions (SGX). TrustZone provides a
trusted execution environment on the device (called secure world),
isolated from the environment where normal apps are installed
(called normal world). TrustZone’s security protection can provide
confidentiality and integrity guarantees for user’s intended activ-
ities, leading to its application in many scenarios. For instance,
Samsung pay [17] allows users to protect their credit card informa-
tion in the secure world. Users’ typed credit card numbers or pin
codes are stored in the secure world rather than in the normal world.
Bitcoin Ledger [6] allows the user to confirm a bitcoin transaction
inside the secure world; otherwise, the transaction is not accepted
by the server. While TrustZone provides a tremendous value for
mobile device users, its benefit is only enjoyed by apps supported
by device and TEE vendors.

There are two primary ways for apps to leverage TEE; either the
app is developed by a device manufacturer like Samsung, or the app
developer has worked with the TEE vendor to use their SDK (e.g.
Trustonic SDK [14]) and TAM services (e.g. Intercede MyTAM [13])
with OTrP [15]. The first approach is used by apps like Samsung
Pay [17], while the second approach is used by apps like Alipay [2].
Since utilizing TEE requires collaborating with the vendor to tailor
the app to work with the vendor SDK, such approach makes the use
of TEE difficult for the mass of app developers, preventing them
from utilizing TrustZone’s confidentiality and integrity benefits
to protect user’s intended activities. Device and TEE vendors do
not want to open TEE to any app due to security concerns because
vendors do not want any untrusted code to run inside the secure
world. This restriction is necessary because allowing untrusted
code to run is exactly what has contributed to the OS compromise
in the normal world. This is also the reason why TrustZone is
locked down in commercial phones before they are shipped, so
nobody (other than the vendors) can make changes to the code
inside the secure world.

We believe that allowing third-party apps, such as banking, shop-
ping, and medical apps, to use TrustZone can benefit users signif-
icantly. Apps commonly take secret input via keyboard and send
to servers. Taking mobile banking as an example, we identify two
potential risks if a banking app does not use TrustZone. First, when
login to the bank’s server, users need to type a password, which
can be stolen if the OS is compromised. Second, when the user
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conducts a money-transfer transaction, the compromised OS can
replace the receiver’s account number with the one belonging to
the attacker, leading to loss of money. If such an app can use Trust-
Zone, the aforementioned risks can be minimized. TrustZone can
allow users to type their password in the right app without leaking
to the untrusted normal-world OS. Moreover, before an important
transaction is committed, TrustZone can ask users for confirma-
tion, so that the transaction can be attested and its integrity can be
preserved.

It is important to allow apps to use TEE via existing normal-
world OS APIs and without a need to install app-specific TA in
the secure world. This is a challenging requirement. Without such
support, developers need to make significant changes to their apps
to use TrustZone, discouraging them from using it in their apps.

In this paper, we present a design that allows normal-world
apps to leverage TrustZone via existing OS APIs. We achieved the
goal by incorporating the generic TrustZone support at the OS
level so that normal-world apps can use TrustZone without the
need to put their own code inside the secure world. We make the
following contributions: (1)We proposed a novel design to integrate
TrustZone with the mobile OS. Our design consists of two major
components: TruZ-UI used for protecting user’s confidential input
and integrity preserved confirmation. TruZ-HTTP and split SSL
used for sending the TEE-protected data to authorized servers. (2)
We implemented our system design in the Android OS, running
on a prototype that we built using the TrustZone-enabled HiKey
board. (3) We evaluated our system using real-world apps, including
both open-source and closed-source apps. The evaluation results
show that our system allows third-party apps to leverage TrustZone
for a variety of use cases with minimal changes to apps. We also
evaluate the usability of TruZ-Droid based on users’ feedback. Our
evaluation results show that users can make the right access control
decision to protect their security sensitive activities using TruZ-
Droid.

2 PROBLEM AND IDEAS
In this section, we discuss the problems and constraints in providing
TrustZone support to third-party apps and our ideas on how to
solve these problems.

Figure 1: Threat Model

2.1 Threat Model
We assume the adversary model as shown in Figure 1. The user of
the device is trusted. The normal world that includes the apps and
Android OS is untrusted. They may attempt to steal the user’s secret
data and spoof an unauthorized action on the user’s behalf. The
secure world that includes the Trusted Applications (TA) and TEE
OS is trusted. It will protect the user’s confidentiality and integrity

when the normal world is compromised. We assume that the server
is trusted after it is authorized by the user. The authorized server
wants to protect the user’s confidential data and verify the integrity
of the user’s request; other unauthorized servers are considered
untrusted and they may collaborate with the normal world to steal
the user’s secret data.

2.2 Problem
We state the following problem: How to enable third-party apps to
reuse the existing OS interfaces to leverage generic TrustZone support
to protect user’s private data and enforce user’s intention without
putting app-specific code in the TEE?

We further break down the problem into (a) protecting user’s
sensitive data and sending it to the server, and (b) protecting and
attesting user’s intention. Users type sensitive inputs when using
Android applications. In order for an app to protect such inputs
using TrustZone, users should be able to type a secret without al-
lowing the compromised OS to see the secret. Given a protected
secret, the app should be able to send the secret to the authorized
server without leaking the secret to the compromised OS. In or-
der for an app to enforce user’s intention using TrustZone, users
should be able to confirm an action (e.g., money transfer) and the
compromised OS should not be able to modify the user’s confirmed
action. The user’s confirmation should be attested (signed) using
TrustZone. The attested confirmation should allow the receiving
server to verify that the action was confirmed by the user.

The problem of protecting user’s sensitive data and user’s inten-
tion has been solved by TrustZone, but the current solutions [45, 53,
55, 57] do not satisfy the following constraints: (a) normal-world
apps can reuse existing OS interfaces to leverage the TrustZone
support, (b) no app-specific logic in the secure world, and (c) mini-
mize Trusted Computing Base (TCB) while providing generic TEE
support. In order to allow an app to protect user’s activities and
data with minimal changes, the developer should be able to use
existing Android components and APIs, and still be able to leverage
TEE support. If an app is required to replace Android components
to integrate TEE support, it would result in a significant change to
the app. An example of this is Samsung KNOX [55], which provides
a vendor SDK that allows app logic to be integrated with TrustZone
components in the secure world. It is important to not require the
app developer to write code in the secure world, which minimizes
the risks to the secure world. Research works [45, 53, 57] allow
application-specific logic to run in either the Trusted Application
(TA) or the TEE OS [18]. Such an approach restricts the number of
apps that can use these research works and increases the risk in
the secure world.

Given the identified constraints, we further elaborate on the prob-
lems of protecting user’s interaction and sending of TEE-protected
data to the server.

Protecting user interaction. To protect user’s secret data, we
need to protect the interaction between the user and the device so
that the secret data will be never given to the normal-world OS.
One of the primary ways that users use to interact with the device
for the secret data is via touch input. Two common types of touch-
based interactions are typing text (e.g., password) and confirming an
action (e.g., confirmmoney transfer). A compromised normal-world
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Figure 2: Binding Between Code and UI

OS poses a risk to such interactions. For example, the OS may steal
the user’s text input. The OS may confirm an action on the user’s
behalf or change the action after the user confirms it. TrustZone can
be leveraged to protect such interactions because of the hardware-
level isolation it offers. Given the risks to such interactions from
a compromised OS, we state the following problem: How to allow
the normal-world apps to reuse existing EditText and Dialog APIs to
protect UI interaction for text input and action confirmation using
TrustZone?

Reusing existing APIs can be achieved by moving the sensitive
UI interaction into the secure world, while still maintaining the
UI’s functionality related to its corresponding code in the normal-
world app. Taking the example of Android dialog box for action
confirmation, using a dialog box in an app involves two parts:
a UI component and a code component. As shown in Figure 2
(path A), the OS provides a binding between the UI and code to be
triggered. Moving the sensitive UI interaction into the secure world
breaks the existing binding support provided by the OS, as shown
in path B. To maintain the same API interface, we should allow the
developer to leverage TEE support while using the existing dialog
box component and should preserve the UI functionality of the
dialog box. The UI’s binding to its corresponding code in the app
needs to be maintained. When the dialog button is clicked in the
secure world, the code for the dialog button in the normal-world
app should still be triggered.

Sending protected data to a server. The secret data typed inside
the secure world need to be used by applications. If the data are to
be processed on the client side (i.e., by apps), it will be difficult not to
reveal the data to the normal world. However, in most applications,
these secret data, such as passwords and credit card numbers, are
only processed on the server side, so they need not be revealed to
the normal world, as long as they can be sent from the secure world
to the server securely. Given that the normal-world OS is untrusted,
we need a way to allow apps to reuse existing HTTP interfaces to
send TEE-protected data to the authorized server without leaking the
content to the normal world.

The research problem can be further broken down into three
main challenges: First, our solution needs to be transparent to the
existing network protocols and should require minimal modifi-
cation to the client and server. Second, for performance reasons,
our solution should only be used for the communication involving
TEE-protected data; other data should simply be transmitted by
the normal channel between the app and its server. This requires
changes at multiple layers, including HTTP and SSL. Developers
know whether TEE-protected data is involved or not, but since they

can only tell their intention to the highest layer (the HTTP layer),
we need to find ways to convey the developer’s intention through
multiple layers inside the OS. Moreover, based on the server specific
logic, the attacker can trick the server to return a protected secret
back to the normal world or post the secret to a website’s public
field like a Twitter post or a Facebook post. We need to find a way
to extend the TEE protection to servers without being intercepted
by the normal world. Third, we need to keep the secure-world TCB
small. The code inside the secure world is considered as part of
the TCB, leading us to keep the entire TCP/IP stack in the normal
world for a smaller TCB. We need to send the secret data through
the untrusted normal world without leaking the actual content.

2.3 Our Main Ideas
Our main idea to solve the problem is to provide TrustZone support
at the OS level, so apps can reuse existing Android components
to integrate with TrustZone support with minimal changes. To
reduce the risk to the secure world caused by the app-specific logic,
we provide generic TAs. We further divide the TrustZone support
to protect user’s interaction and to protect secret sending to the
server.

How to protect user’s interaction. Our approach to achieve the
required protection is to move the sensitive UI interaction into the
secureworld and tomaintain the binding between the UI interaction
and normal-world app code across OSes. This cross-OS binding
allows the apps to leverage the UI in TEE by using existing APIs.
In normal cases, an app developer requests a UI and provides the
associated code to be triggered from the UI. Using our approach,
the developer will instead request a secure version of the UI and
provide the code to be bound to this UI. To the developer, the way
to request a secure UI is the same as other UIs, but to the system,
when the secure UI needs to be displayed, the corresponding UI
is displayed in the secure world. When the UI in the secure world
finishes collecting inputs from users, the bound code in the normal-
world app is triggered. We refer to this binding support as TruZ-UI.
To have no app-specific code in the secure world, we provide generic
TAs for keyboard and confirmation UIs.

In order to protect the user’s interaction in the secure world,
the hardware input (touch digitizer) and display (screen content)
need to be protected. To protect the user’s interaction when the
device switches to the secure world, these peripherals should only
be accessible from the secure world. Users also need an indicator
to identify whether they are interacting with the normal world or
secure world. The indicator should be exclusively controlled by
the secure world. We leverage the TrustZone Protection Controller
(TZPC) to allow the secure world to have exclusive control of I/O
and the indicator. When the device is in the secure world, the
indicator (we use LED light) is turned on and we show the secure
UI on the screen, and accept input from the screen without leaking
data to the normal world.

How to send protected data to the server. We work on the
network protocol layers, including HTTP and SSL, while leaving
the interaction APIs between the application and these underlying
layers the same. We split the logic in the network stack in a way
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that apps can reuse the same HTTP interfaces to send TrustZone-
protected data without leaking to the normal world. Because the
data in the secure world cannot be revealed to the normal world,
existing solutions [29, 45, 55] require moving some of the data-
sending logic into the secure world if the data being sent to the
server contains TEE-protected information. They perform the split-
ting at the application layer, this forces the app developers to rewrite
their app logic to run on the TEE OS. To be transparent to exist-
ing network protocols, we do not modify the protocols but move
only the security sensitive logic in these two layers into the secure
world. The secure world will encrypt the secret using a one-time
key and SSL session key before giving it back to the normal world
for sending. The server will decrypt the secret using the one-time
key only when the server expects to use the secret in the HTTP
request.

Roadmap. Our solution has two main components. We present
our detailed design on how to protect the user’s interaction and
device I/O in Section 3 and our detailed design on how to send
protected data to a server in Section 4.

3 TRUZ-UI DESIGN
TruZ-UI allows an app to protect text input and action confirmation
using TrustZone by providing cross-OS binding support between
the secure-world UI interaction and the normal-world app code.
It allows the developer to use existing Android components to
leverage secure UI support without adding app-specific logic into
the secure world. We next discuss our access control model and
how the TruZ-UI design provides protection for user’s interactions.

3.1 User Involved Access Control
The OS depends on the user’s action to decide how to provide
confidentiality and integrity protection for user intended activities.
For instance, when a user types a password, he/she depends on
the OS (based on the app picked) to provide confidentiality, i.e.,
the password should go to the right app and its corresponding
server. When a user confirms an action in an app, he/she expects
the OS to maintain the integrity of the action, i.e., the action that the
user confirmed is sent to the server, without being modified. The
OS provides confidentiality and integrity guarantees by enforcing
access control based on a policy. Part of this policy is decided by the
OS, but the other half comes from the user and is derived from the
user action. When the user types a password, the OS depends on the
user’s app selection to decide which app gets the password. When
a user confirms an action for a server, the OS can only guarantee
that the context of the action will not be modified after the user’s
approval; the main job of the user is to proofread and ensure that
the context of the action indeed matches the user’s intention. In our
threat model, the normal-world OS fails to provide such security
guarantees for users when it is compromised. The only solution for
users to protect their security sensitive activities is to convey their
intentions to TrustZone to leverage its confidentiality and integrity
guarantees.

Figure 3: Seamless Keyboard Binding Across OS

3.2 Securing Text Input
In this section, we describe how the user’s interaction for text input
is protected by seamlessly integrating with the secure-world key-
board UI. Android apps get user’s text inputs using a UI element
called EditText. When users interact with an EditText, the OS in-
vokes a keyboard. The OS sets up a binding between the app and
keyboard. The binding allows the keyboard to send user’s typed
characters to the app’s EditText.

To protect user’s interaction with the keyboard, we move the
keyboard UI into the secure world and provide a binding between
the keyboard UI and app’s EditText across OSes. Android allows
developers to specify a keyboard type when using EditText. To
allow the developer to use the existing EditText component to
leverage the keyboard UI in the secure world, our design adds a
special type called secure. The effect of requesting a secure keyboard
type is shown in Figure 3. The app’s secure keyboard request is
relayed via the modified Android framework service (InputMethod
ManagerService or IMMS) to a new proxy IME system app (Key-
board apps are called IME). The OS sets up a binding between the
proxy IME and requesting app. This proxy IME app communicates
with a generic Keyboard Input TA, resulting in a secure keyboard
UI being displayed on the screen with the secure LED turned on.
While the secure keyboard is displayed, the normal world does
not have access to the screen display or input. In addition to the
keyboard keys, the secure UI also displays a hostname (specified
with the secure EditText configuration) that represents the destina-
tion server for the typed secret. The importance of the hostname is
discussed in Section 5.3.

The Keyboard Input TA communicates with the Keyboard UI to
get the user’s input. Once the input capture has finished, the secret
is saved in the secure-world memory, which the normal world
cannot access, and a reference (corresponding to the saved input)
is returned back to the proxy IME app. The proxy IME app uses
its binding with the app’s EditText to return the reference, made
accessible via EditText’s standard API getText() (normally used
to get the text typed by the user). A visual feedback is shown in the
normal-world EditText by displaying a set of stars. The reference
returned from the secure world can support different formats for
different scenarios such as passwords, credit card numbers, etc. The
design added 1114 LOC in Android (including 634 LOC for a native
bridge component to invoke the secure world) and 710 LOC in the
TA. The design is easy to migrate (took 50 minutes from android
7.0.0_r1 to 7.0.0_r34).

When an app wants to send TEE-protected data corresponding
to reference(s) to the server, it will use the existing HTTP/SSL
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API to leverage TrustZone to get an encrypted packet containing
the user’s secret(s). The reference acts as glue among application,
HTTP, and SSL layers. Using TruZ-HTTP and Split SSL (explained
in Section 4), secure world will be leveraged to construct the packet
containing the user’s secrets. The packet will be sent to the server
via the normal-world TCP/IP stack.

3.3 Securing and Attesting User’s Confirmation
In this section, we describe how we protect and attest user’s interac-
tion to confirm an action via dialog box and activity, by seamlessly
integrating with a confirmation UI in the secure world. For app
developers, asking users for confirmation involves showing a confir-
mation message to the user and providing code to be executed based
on whether users approve or deny the message. The OS provides
a binding between the confirmation UI and the code provided by
the app. Such user’s interactions face risk in case the normal-world
OS is compromised, as the OS can confirm a request on behalf of
the user or change the message confirmed before it is sent to the
server.

To allow the developer to leverage TEE support for user’s con-
firmation while using existing components, we provide cross-OS
binding along the existing paths for dialog and activity compo-
nents. The developer requests a dialog using the show() API by
providing the message to be confirmed. The app gets back the re-
sult via Android input event handling framework which triggers
the onClick() callback for the dialog button. Similarly, the devel-
oper requests an activity using startActivityForResult() API
by providing the message to be confirmed in an Intent and get
back the result via the Intent IPC framework. This triggers the
onActivityResult() callback. Figure 4 shows the TruZ-UI design
to allow secure confirmation UI integration for apps. The design
allows the developer to request a secure confirmation UI via dialog
using the existing API by adding a secure configuration. In case of
activity, the developer can configure the Intent as secure while
using the existing Activity API. The system handles a secure con-
firmation UI request by invoking a generic confirmation TA via a
TEEBridge service. In case of dialog, the request is relayed via
the modified AlertDialog class, while in case of activity, the request
is relayed by a proxy activity, which we provide as part of a system
app. Invocation of the confirmation TA results in the switching of
the screen to show the secure confirmation UI. The normal-world
OS cannot access the display or input at this stage.

Figure 4: Seamless Confirmation UI Integration

The secure confirmation UI allows the user to approve a mes-
sage and get it signed by the secure world. As part of the secure
configuration, the developer also specifies a hostname, which re-
flects the server for which the message is being attested, and is
displayed in the confirmation UI along with the message. The host-
name provides the user a context of the requested confirmation.
The hostname serves as a reference to lookup the attestation key in
the secure world. The key is setup using our modified HTTP/SSL
layer (Section 4). Upon user’s confirmation, the message is attested
(HMAC signed). In order to improve the user’s readability of the
message, we allow the developer to add additional formatting in
the message to highlight sensitive fields (e.g., a destination account
and amount in case of money transfer).

On user’s approval, the attestation is returned to the normal-
world app. To ensure the confirmation attestation can be returned to
existing components, we return the result via existing callbacks for
dialog (onClick()) and activity (onActivityResult()). To return
the attestation to the dialog button code, the binding uses the ex-
isting event handling framework via the InputManagerService’s
API injectInputEvent(), to send a modified MotionEvent carry-
ing an attestation. The event triggers the app button’s onClick()
callback where the attestation can be retrieved. In case of Activity,
the attestation is returned to the caller app via the ProxyActivity,
which returns the result to the caller by wrapping the attestation
in an Intent, which triggers the onActivityResult() callback
where the attestation can be retrieved. Since the attestation ob-
tained by the app does not contain any user’s secret, it can be sent
to the server using normal-world HTTP/SSL flow. The server can
use the attestation to verify the integrity of the request before tak-
ing action. Our attestation scheme currently only applies to user
understandable message and cannot work for app-specific semantic
like GUID, which users cannot understand. The design added 820
LOC in Android and 680 LOC in the TA. The design used the native
bridge mentioned in Section 3.2 and can be easily migrated (took
1.5 hours from android 7.0.0_r1 to 7.0.0_r34).

3.4 Hardware Implementation
All the commercial Android phones with the TrustZone feature
have TrustZone locked down by the manufacturers, so we decided
to build a TrustZone-enabled prototype platform that can run An-
droid in the normal world and run OPTEE [52] in the secure world.
We chose to build our prototype using the HiKey board as our base
platform [4] and run the Android 7.0 on it. We used a TFT LCD
panel as the screen. The screen uses the HDMI interface for display
and the USB interface for touch control.

Figure 5: Hardware Implementation
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Our hardware implementation provides isolation for the user’s
input and display. Even though both worlds share the same screen,
when the secure world controls it, the normal world cannot ac-
cess the I/O of the screen. We achieve the isolation at the circuit
level. As shown in Figure 5, the I/O of the screen is connected to
the multiplexer/demultiplexer. The multiplexer takes the HDMI
signal from both the worlds and outputs one of the signals to the
screen. The demultiplexer takes the touch input from the screen
and gives it to one of the worlds. We use a switch to control the
multiplexer/demultiplexer. Each world has separate I/O ports that
connect to multiplexer/demultiplexer. The control of the switch
is accessible to secure-world I/O ports only. To indicate to users
which world they are interacting with, the secure world will turn
on a LED when the device is in the secure world. We configure
the TrustZone Protection Controller (TZPC) to allow the secure
world to have exclusive control of the switch, LED indicator, and
secure-world I/O ports.

4 TRUSTZONE-ENABLED INTERACTION
WITH SERVER

Normal-world apps can leverage TruZ-UI to allow users to enter
sensitive information. The secret data are not revealed to the normal
world, but they need to be sent to servers. Given that the normal-
world OS is untrusted, we need a way for apps to send the TEE-
protected data to the authorized server without disclosing to the
normal world.

4.1 TruZ-HTTP
Most apps interact with their servers through HTTPS [7], espe-
cially when the data being sent contains secret information, such
as passwords and credit card numbers. HTTPS is basically HTTP
running on top of the SSL protocol. When an app uses HTTPS, six
primary steps are involved: (1) the app provides the URL of the web
server to HTTP; (2) the app provides HTTP headers (if needed);
(3) the app provides data to HTTP; (4) based on the URL, HTTP
invokes SSL to establish a secure channel with the server; (5) HTTP
constructs an HTTP request based on the data provided by the app;
(6) HTTP gives the completed HTTP request to the SSL layer for
sending.

As shown in Figure 6, Steps 1 to 3 involve the app, so changes in
these steps should not be at the interface level to maintain the same
interface. Since not every HTTP request contains TEE-protected
data, for those that do, the secure world should be involved in the
sending process; other non-secret-bearing requests should be sent
out entirely from the normal world, to avoid the overhead intro-
duced by TrustZone. HTTP does not know whether the payload
involves TEE-protected data or not; only apps know that. The ques-
tion is how to enable apps to inform HTTP about this without
changing the way in which they interact with HTTP. We use HTTP
headers to solve this problem. We create a new HTTP header field
that allows developers to tell HTTP whether the payload contains
a reference to the TEE-protected data or not, and if so, where the
reference is in the payload. In case of exchanging attestation key
with the server (Section 3.3), the app creates an HTTP header with
an empty value. The app developers can decide the keep-alive time
(for a login session or always alive) for the attestation key. The

Figure 6: TruZ-HTTP Plugin Design

secure world will fill in the attestation key value for the app in our
modified SSL layer (Section 4.2). This solution does not change how
apps interact with HTTP and it only adds an extra task in Step 2.
We introduce a plugin called TruZ-HTTP for the HTTP engine to
parse the new HTTP header.

To convey the TrustZone information to the SSL layer, TruZ-
HTTP adds additional TrustZone logic to Steps 4,5,6. If an HTTP
request involves TEE-protected data, the SSL channel used to send
the request must be established by the secure world, so that the
encryption keys used by the SSL channel are not revealed to the
normal world. Therefore, in Step 4, HTTP will invoke our modified
SSL library, so that the secure world is involved in establishing the
SSL connection. We provide a detailed discussion on this part in
Section 4.2, where we discuss our split SSL design.

After the SSL connection is established, HTTP can give a com-
pletely constructed HTTP request to SSL. However, at this point,
the secret data inside the request are still represented by their refer-
ences, not by the actual content. SSL needs to replace the references
with the actual content, requiring SSL to knowwhere the references
are in the request. This information is known to the HTTP engine
after it parses the additional HTTP header provided by the app (the
header will be removed after the parsing). Therefore, the HTTP
engine has to convey the reference information to SSL. However,
SSL is not supposed to understand the logic in the layers above it
(e.g., HTTP format). TruZ-HTTP parses the additional header in
Step 5 and generates offset and length for each reference. TruZ-
HTTP converts the HTTP format specific information into generic
string offset and length so that SSL can replace all the references
in the request with their actual content without parsing the HTTP
request. The additional reference offset and length information is
handed over along with the HTTP request to the SSL layer in Step
6. The TruZ-HTTP design assumes that there is no app specific
integrity check (e.g., hash) in the HTTP payload. Based on our
randomly collected app sample in Section 6.2, most apps meet our
assumption.

4.2 Splitting SSL
When apps send sensitive data to their servers, they either go
through HTTPS, which is built on top of SSL, or they directly go
through SSL. If the sensitive data is in the secure world, part of SSL
has to be carried out in the secure world as well.
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The main challenge to run SSL in the secure world is to maintain
the SSL state information between the two worlds because SSL is a
stateful protocol and the TCP/IP stack is still in the normal world.
Simply running the entire SSL implementation in the secure world
requires conducting the entire SSL Read in the secure world. How-
ever, our current design only focuses on protecting a secret being
sent to the server, while the data returning from the server will
be given to the normal world in its entirety. The entire SSL Read
should be conducted in the normal world to avoid overhead. Simply
running two copies of SSL in both worlds and synchronizing the
SSL states between them is also not a viable solution. The data types
of many SSL states are dynamically cast during runtime. Without
knowing the actual data types, the states are not serializable be-
tween worlds. Our first design moved part of the SSL steps into
the secure world and updated the states that have static data type
between the worlds. This design was extremely complex because
of the complexity of the SSL states and required significant modifi-
cation of the SSL implementation. We discarded this approach for
a cleaner design. A clean splitting SSL design should be stateless
across the two worlds and should only run security sensitive logic
that deals with the secret in the secure world.

We decided to split SSL between the normal world and secure
world to keep all the SSL states in the normal world. SSL can be
further divided into SSL session layer and crypto layer. All SSL
states are maintained in the SSL session layer. The crypto layer
conducts all the crypto operations for SSL and no SSL states are
updated in this layer. As shown in Figure 7, we decided to split
under the interface of the crypto layer and moved the crypto layer
into the secure world. Using our splitting approach, the normal
world transfers only essential SSL states to the secure world. Upon
exiting from the SSL TA, the crypto return value will be sent back
to the normal world. It should be noted that a subset of the crypto
return value contains sensitive information that should only be
known to the secure world (i.e., the keys used to encrypt the data to
be sent to the server). For these crypto return values, the references
of keys are returned back to the normal world. The SSL TA stores
the actual keys in the secure-world memory.

SSL contains two sub-protocols: the handshake protocol and
record protocol [27]. Our design involves splitting these two pro-
tocols. For the handshake protocol, if an app needs to use SSL to
send data to its server (when part of the data is stored in the secure
world), the app, either directly or via HTTP, must go through our
split SSL to conduct the handshake with the server. To keep all the
handshake SSL states in the normal world, we keep most of the
handshake logic in the normal world, except the crypto logic of
certificate verification and key exchange. As shown in Figure 7, we
further divide the handshake protocol into five main stages (marked
as H1 - H5). For each stage, the actual crypto operation is done in
the secure world; either the crypto result or the reference of the key
is returned back to the normal world. The actual SSL keys are saved
in the secure-world memory. Each SSL session is bound with the
hostname extracted from the server certificate; the importance of
doing so will be discussed later in our security analysis (Section 5.3).

For record protocol, the SSL TA replaces the reference with the
real secret. The SSL TAwill XOR the secret using a one-time session
key that is generated using TEE random device and encodes the
XOR result using base64 encoding. The one-time key is inserted in

Figure 7: Splitting SSL Design

the HTTP header. The server can extract the one-time key from
HTTP header, decode the secret value and XOR the secret data
with the one-time key only when the server needs to treat the data
as secret. We will discuss the importance of one-time key in our
security analysis (Section 5.3). In case an attestation key is needed
to attest user’s confirmation (Section 3.3), the SSL TA generates
an attestation key with random value and inserts into the HTTP
header. The SSL TA saves the key and binds it with the hostname as
an index. The SSL TA encrypts the record using the write session
key. The plaintext key for SSL Read is given to the normal world so
that SSL Read can be conducted entirely in the normal world.

TruZ-HTTP adds 595 LOC to the HTTP engine. The size is quite
small compared to the total code size of the HTTP engine, which has
74,290 LOC. It is easy to incorporate split SSL design in both worlds.
For the normal world, our prototype adds 1012 LOC in 10 functions
in Android’s SSL library (boringssl); for the secure world, our SSL
TA consists of 1093 LOC. The crypto part of the boringssl library
is also ported to OPTEE, but only minimal changes are made. It is
also easy to migrate our design for a system update. We migrated
our design from android 7.0.0_r1 to 7.0.0_r34. It took 5 hours for
TruZ-HTTP plugin migration and 6.5 hours for split SSL migration.

5 SECURITY ANALYSIS
In this section, we present the security analysis of TruZ-Droid. Our
design can enforce users’ intentions in the presence of either a
malicious app or a malicious OS. We pick the stronger attack model
and consider a malicious OS as the attacker. Our analysis assumes
that the TrustZone hardware platform is trusted and the secure boot
process has initialized the integrity-verified OPTEE OS. Hardware
attacks, crypto attacks, side channel attacks, and DOS attacks are
considered out of scope.

5.1 TruZ-UI Keyboard Security Analysis
As discussed in Section 3.2, normal-world apps can leverage the
TruZ-UI Keyboard to capture user’s secrets in the secure world. The
adversary’s goals include monitoring the secret typed, accessing
the content displayed, and reading the secret saved in the secure
world.

As mentioned in the hardware setup in Section 3.4, the secure
world shows the secure UI and gets the screen input through the
multiplexer/demultiplexer. The switch controls the USB demulti-
plexer and HDMI multiplexer. The switch is only controlled by
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the secure-world I/O ports. We configured the TrustZone Protec-
tion Controller (TZPC) to allow the secure world to have exclusive
control over the switch and secure-world I/O ports.

The security analysis of TruZ-UI Keyboard involves three prop-
erties. The first security property is that the secret typed in the
secure world cannot be monitored by the normal-world OS. Since
the normal world can neither switch the screen USB input nor
read the screen input via the secure-world I/O port, the normal
world cannot monitor the user’s input in the secure world. This pre-
vents keylogging attacks. The second property is that the content
displayed from the secure world is not accessible to the normal-
world OS. The normal world can neither switch HDMI output of
the screen nor observe the screen content over the secure-world
I/O port, preventing it from observing content displayed in the
secure world. This helps prevent screen capture attacks. The third
security property is that the secret typed in the secure world is
never disclosed to the normal world. When a normal-world app
uses a secure EditText, the secret typed in the secure world is saved
in the secure-world memory. Only the reference of the secret is
returned to the normal world.

5.2 TruZ-UI Attestation Security Analysis
As discussed in Section 3.3, normal-world apps can request a secure
confirmation UI that provides an attestation for user’s approved
message. The adversary’s goals include forging the approval of
the message on behalf of the user and forging or replaying the
attestation sent to the server.

The security analysis involves three properties. The first security
property is that the attestation generated is always tied to the
message displayed in the secure world. The attestation is computed
based on the message that the user approves in the secure world
when the content matches with the user’s intention. The second
security property is that the normal world cannot forge user’s
approval of the message that is displayed in the secure world by
performing any type of key injection. This is because the normal
world cannot access the touch input when the device is in the
secure mode (explained in section 5.1). The message is attested in
the secure world only when the user approves it. The third security
property is that the attestation generated in the secure world cannot
be forged by the normal-world OS. The attestation key is generated
inside the secure world and only saved in the secure-world memory.
The normal world cannot forge an attestation without the keys.
Furthermore, we append a nonce when computing the attestation
to avoid replayability.
5.3 TruZ-HTTP and Split SSL Security Analysis
In Section 4, we discussed how TruZ-HTTP and split SSL enable
apps to send TEE-protected data to the server, without the normal
world knowing the actual content. To defeat this protection, adver-
saries can attempt two types of attacks: (1) stealing the encryption
keys from the secure world, and (2) launching man-in-the-middle
(MITM) attacks. The normal world with a compromised OS can
trick the secure world into sending the secret data to a malicious
server owned by the adversary or trick the TA to send the secret
to a website’s public field. The normal world can modify the plain-
text handshake message to use a weak cipher or a vulnerable SSL
version. All attempts are defeated by our security properties.

The first security property is that the key used to encrypt TEE-
protected data is never visible to the normal-world OS. We use
the key lifecycle to analyze the security of our key management.
We can divide the key lifecycle into 1) generation 2) exchange 3)
storage 4) usage 5) destruction.

In the key generation, the SSL master secret (MS) is generated
from the pre-master secret (PMS), client random number and server
random number. Although the normal world can know the client
random and server random numbers in plaintext, the PMS is gen-
erated in the secure world using TEE-random device and is stored
in the secure-world memory only. The normal world cannot infer
the MS without knowing the PMS. The SSL key material is derived
from MS. Without knowing the MS, the attacker cannot know the
key material. Half of the key material is used for SSL Read key
and another half of the key material is used for SSL Write key. Al-
though we return the Read key back to the normal world, there
is no correlation between the Write and Read keys because the
key material randomness is based on the PMS randomness. Our
TEE-random device ensures the enough entropy before generating
the PMS. The PMS is generated right after the server certificate
verification. We bind the PMS with the server hostname to prevent
the normal world from misbinding the PMS with other servers.

During the key exchange, the secure world encrypts the PMS
using the server public key before giving to the normal world for
sending. The normal world cannot know the plaintext PMS because
the normal world does not know the server’s private key that is
protected by the server. The normal world cannot send the PMS to
the wrong server because the PMS is bound to the server hostname
and the SSL TA refuses to encrypt the PMS using the wrong public
key extracted from the certificate.

When the secure world stores the key, we store the PMS, MS,
key material, SSL Write key in the secure-world memory only. So
the normal world cannot access the keys stored in the secure-world
memory.

The normal world can provide the SSL session id that the SSL TA
returns after certificate verification to use SSLWrite key for encryp-
tion. The encryption key is never returned to the normal world. The
key is bound to the hostname. To prevent the normal world from
using the wrong encryption key (known to the malicious server and
stored in the secure world) to encrypt the TEE-protected data and
sending to the malicious server, the SSL TA ensures the hostname
of the TEE-protected data matches with the key’s hostname before
doing the replacement and encryption. Each key is also bound with
a counter. The counter is used to limit the time that the key can be
used to encrypt the data.

We destruct the SSL Write key in the secure world after the
secure world encrypts the packet that contains the secret. To avoid
the normal world using the plaintext to brute force the key, we
will also set the key value to zero when the key’s counter reaches
its limit. So we limit the footprint of the key in the secure-world
memory.

The second security property of our design is that the TEE-
protected data is only sent to the authorized server. An adversary
in the normal world with a compromised OS can steal the refer-
ence for a TEE-protected data, such as the password for Facebook,
and ask the secure world to send the password to the adversary’s
server, which has a valid certificate. This attack is defeated by three
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critical decisions in our design. First, when getting a secret data
item from the user inside the secure world, the user is presented
with a message that clearly states the hostname of the server, to
which the secret belongs. Once the user approves it and types in the
secret data, the data item is bound to the hostname. TrustZone will
ensure that the data will only be sent to the server with that host-
name. Second, during the SSL handshake protocol, after verifying
the server certificate, the SSL TA extracts the common name from
the certificate and binds the name to the current SSL session. This
binding is saved in the secure-world memory, so the normal world
cannot change this binding. Third, when the SSL TA sends out a
protected data item to the server, it checks whether the hostname
bound to the data item matches with the common name bound to
the SSL session. If not, the secret data will not be sent out. The
password for Facebook will never be sent to another server because
of our protection.

Our design prevents the user’s secret from leaking within the
authorized server. For example, the attacker can trick the SSL TA
to send out the Twitter password as a Twitter post. So the user’s
secret becomes a public visible message on the Twitter website. The
attacker can also append the secret reference to a redirect URL. In
a redirect URL, the secret will be sent to the authorized server first.
The authorized server will echo the redirect URL that contains the
TEE-protected data back to the normal world. Because the split
SSL design returns the SSL Read key back to the normal world, the
compromised normal world can get the secret data that gets echoed
back from the authorized server. To prevent such data leak from
the authorized server, the SSL TA encrypts the user’s secret twice.
The secret value is first XOR with a one-time key generated from
the TEE random device. Because SSL TA encrypts the one-time
key using SSL Write key that is protected by the secure world (1st
security property), so the normal world cannot know the one-time
key. The server will XOR the secret with the one-time key only
when the server treats the data as secret. The website will post
the one-time key encrypted secret value to any public field when
the server only treats the secret as data and the server will not
decrypt the value. The server can decide not to echo the HTTP
header back to prevent the normal world from getting the one-time
key. It prevents the one-time key from leaking out of the server.

To prevent the normal world from using downgrade attacks [12,
16, 19, 23] for MITM, the SSL TA disables weak cipher suites and
vulnerable SSL versions. The SSL handshake will fail if the normal
world rollbacks the cipher suites or the SSL version because the
SSL encryption is done in the secure world. The SSL TA rejects the
use of a weak cipher suite or a vulnerable SSL version to establish
the SSL connection.

5.4 User Decision Security Analysis
In our design, users make the final access control decision when
interacting with TruZ-Droid. The only choice for attackers to break
TruZ-Droid is to trick users into making the wrong decisions. For
instance, attackers can provide a fake hostname or spoof a fake
secure-UI window in the normal world when the user types a
password. Attackers can provide a fake confirmation message and
ask users to confirm the wrong message. We consider all these
possible attacks and conduct a usability evaluation in Section 6.3.

6 EVALUATION
In this section, we evaluate our design from four aspects, namely,
effectiveness, ease of adoption, usability, and performance. We
tested a variety of use cases using real-world applications and
measured the ease of adoption for the developers.We testedwhether
the users can make right decisions when interacting with TruZ-
Droid. We also measured overhead imposed by our design and
suggested future improvements.

6.1 Effectiveness: Applications
To demonstrate the effectiveness, we added new security features to
open-source applications by making changes on the client side and
server side (if needed). Wemodified seven open-source applications,
including Elgg [10] and Drupal [9]. To measure the effectiveness
in the case of closed-source apps, we modified the OS only for
evaluation purpose.

Sensitive file upload. In this case study, we demonstrated how
our work can enable normal-world apps to transparently upload
a TEE-protected file (e.g., a tax file, a medical record that is only
needed by the server, not the client) to the authorized server with-
out adding any app-specific code in the secure world. In contrast,
DroidVault [45] requires the app-specific code in the secure world.
We use an open-source app called Seafile to act as the tax e-file
server. The Seafile client allows a user to enter a secret (e.g., tax
account) via EditText and save it in a file. The app can then upload
the tax file to its server using HTTP/SSL. We modify the Seafile
app to allow the user to enter the secret file content using a se-
cure EditText. The user types the file content using the TruZ-UI
keyboard, and the file content is saved in the secure world. The
normal world gets a reference, which is saved in a file. When the
user asks for the file to be uploaded to the server, the app issues an
HTTP request using the normal-world file content (containing the
reference). This triggers our modified HTTP engine, which traps
into the secure world, where the content of the actual protected
file replaces the file content in the HTTP request. The file upload
request is then sent to the server. Our TruZ-HTTP and split SSL
allow the file to be uploaded successfully to the Seafile server.

In this case study, we assume that the file content will not be
sent back from the server to the normal world. Our design does not
solve the sharing of the file once it reaches the server. Due to the
HTTP header from TrustZone, the server will be able to identify
that the file is uploaded from TrustZone. The server could deny
download of this file until the request comes from TrustZone.

TrustZone-enabled Android authenticator. To demonstrate
that our design can support the Account Manager framework (used
to manage Android passwords), we wrote an authenticator app for
Elgg. When a third-party app needs to login to our Elgg server,
it will ask the Account Manager, which invokes the authenticator
app’s login activity. This activity uses a secure EditText to trigger
our TruZ-UI keyboard in the secure world. Once the user types the
password, a reference is given back to the Elgg authenticator. The
Elgg authenticator then sends the reference to the server through
our modified HTTP and SSL. The password reference is saved by
the Account Manager, which is not even aware that what it stores
is not the actual password. TruZ-Droid allows Account Manager
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to manage the authentication requests for third-party apps with-
out storing the actual passwords in the normal world. Our design
requires no change to the Account Manager framework.

Attested post. We installed Drupal on an Ubuntu server and
modified the handling of the post content type to verify attestation.
We used the Drupal Editor app [8] as a client. We modified the
app to have an attested post functionality, which allows the user to
confirm the post in the secure world before it is sent to the server.
We utilized the proxy Activity (refer Section 3.3) for this test to
integrate with the confirmation TA. The app sends the secure world
attestation along with the post message to the server. The Drupal
server verifies the attestation before it publishes the post.

Protecting secrets.Appswritten today need to protect different
types of user’s secrets. TruZ-Droid allows developers to protect any
text-based secret that can be typed in apps. We evaluated this by
using seven different open-source apps and made minimal changes
to the apps corresponding to the secrets that needed protection.
This involved modifying the layout file containing the EditText
corresponding to those secrets and configuring them as secure. The
types of secrets protected in apps during the tests included login
credentials and payment information.

6.2 Ease of Adoption
We evaluate the ease of adoption of our design by measuring how
much effort developers need to make to add TrustZone support to
their apps.We conducted the evaluation using both open and closed-
source apps. For open-source, we downloaded both the client and
server code from public Github repositories [11]. For closed-source,
we downloaded apps from Google Play. To ensure their diversity,
we downloaded apps from different categories, including shopping,
traveling, productivity, finance, medical, business, food, etc.

We totally modified 7 open-source apps, by either adding new
features to them (e.g., attestation) or leveraging TrustZone to pro-
tect their existing features (e.g., login). We recorded the time spent
on the modification and the number of lines of code (LOC) modified
for each app. Table 1 shows the result. 1 LOC for TruZ-HTTP, 2
LOC for secure EditText, 4 LOC for secure confirmation.

As shown in Table 1, for apps to leverage TruZ-Droid to protect
their login credentials, only 3 lines of code are modified on the
client side and the time spent on making the changes is within an
hour. For server-side changes, we need 4 lines of code to extract
the secret data from the HTTP request. In case of attestation, the
attestation logic may vary depending on what to attest. The overall
change on the server side is less than 20 lines of code.

To evaluate whether TruZ-Droid works for apps from the market,
we enabled closed-source apps to leverage our TruZ-Droid features.
To protect users’ secret in the secure world, we modify the apps to
protect user’s sensitive data, including passwords, credit card num-
bers, and files containing a secret. We repackaged the closed-source
apps by configuring some selected EditText in their layout files, so
when sensitive data needs to be provided by users, our TruZ-UI
keyboard is invoked and the data are typed inside the secure world.
To protect users’ confirmation in the secure world, we hardcoded
the confirmation UI name (activity or activity containing dialog)
and the corresponding message in a configuration file. The system
uses the file to get a message (corresponding to a confirmation UI

Table 1: Evaluation Results for Open-Source Apps

Test Case Client Server Time Spent
Drupal Attested Post 4 LOC 20 LOC 1 hour
Elgg Attested Payment 4 LOC 12 LOC 30 mins
Elgg Authenticator 3 LOC 4 LOC 30 mins
Drupal Login 3 LOC 4 LOC 30 mins
GNUSocial Login 3 LOC 4 LOC 40 mins
Kandroid Login 3 LOC 4 LOC 30 mins
Redmine Login 3 LOC 4 LOC 30 mins
Owncloud Login 3 LOC 4 LOC 40 mins
Seafile Upload 3 LOC 4 LOC 50 mins

request) attested by the user in the secure world. To verify on the
server side, we set up a proxy server to verify the attestation. The
secure world shares the SSL keys with the proxy server, so it can
intercept all the SSL traffic.

In our design, apps need to tell the underlying HTTP and SSL
layers that the data to be sent to the server contains the TEE-
protected secret, attestation message or attestation keys. Since it
is difficult to modify the code of these apps, we hardcoded the
information in a configuration file, and let our modified HTTP
engine obtain the needed information from this file rather than
from the app. All configuration files and the proxy server are only
for demonstration purpose. If we can modify the app, such files are
not needed.

We collected 31 apps, including Chase, Github, Southwest Airline,
Piazza, Priceline, Box, Poshmark, Listonic, Dropbox, MediaFire,
Applebee’s, Discover, Secure Cloud Storage, etc. We use 15 apps
for TEE-protected login, 5 for TEE-protected payment, 2 for TEE-
protected file upload, and 9 for attestation. Our results are shown
in Table 2. All the experiments were successful, except two cases in
the login category. The reason for the failures is not representative;
they calculate HMAC of the HTTP request inside the payload. If
we have the source code for these failed cases, we can easily make
them work with TruZ-Droid.

Table 2: Evaluation Result for Closed-Source Apps

Test Case Login Payment Upload Attestation
Success/Total 13/15 5/5 2/2 9/9

6.3 Usability
To study whether users can make the right decision when using
our system, we conducted an online survey to study the usability
of TruZ-Droid. We wanted to test three concepts that TruZ-Droid
introduced: (1) using LED to identify different worlds, (2) identifying
correct hostname before typing the secret in the secure world,
(3) confirming the intended message in the secure world before
approval.

Methodology. We recruited survey respondents from Amazon
Mechanical Turk (MTurk) where workers had at least 90% task
acceptance rate. We conducted a survey in November 2017 and
received a total of 161 valid responses. Due to the page limit, the
complete survey can be found online [20–22].
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Figure 8: Usability Survey Result

Result. The difficulty of survey tasks can be divided into three
categories (1) essential tasks that test whether users can use TruZ-
Droid correctly, (2) medium-level tasks that test whether users can
identify simple attacks, and (3) hard tasks that test whether users
can pinpoint phishing attacks. Respondents made the right decision
for all the essential tasks. For instance, 87.58% of respondents cor-
rectly identified which mode the device is in by identifying the LED
light; 83.95% of respondents chose not to type the bank password
when the LED light is off; 87.50% of respondents can confirm the
right transaction when the LED light is on. When we increased the
task difficulty to medium level, respondents made the right decision
in the secure world. For example, 88.46% of respondents chose not
to type the bank password for an obvious wrong hostname when
the LED light is on, and 92.86% of respondents refused to confirm
the transaction with a wrong amount when the LED light is on.
When we increased the task difficulty to hard level, the respon-
dents still performed well for typing password but performed in a
less promising way for payment confirmation. For instance, 75%
of respondents refused to type the bank password for a phishing
hostname that is similar to the original hostname, and 31.82% of
respondents refused to confirm the transaction with a wrong email
address that is similar to the receiver’s email address.

Conclusion.When users interact with TruZ-UI, they know how
to make the right decision to protect their intended activities in the
secure world. Users can correctly identify different worlds using
the LED. Users can also make the right decision to only type the
password for the right server in the secure world. In case of the
payment transaction in the secure world, users can understand
how to confirm a message in the secure world and identify obvi-
ously wrong confirmation message in the secure world. However,
enabling users to make informed and appropriate choices is a hard
research problem. We acknowledge that there is an entire research
community of usable security researchers working on this challeng-
ing problem [28, 36, 42]. In our usability study, although only 32% of
respondents correctly refused a confirmation with a spoofed email
address, we believe that we can further improve the usability of
TruZ-Droid by leveraging these usable research studies [28, 36, 42].

6.4 Performance Evaluation
In this section, we present the performance evaluation result for
each major component in the TruZ-Droid design.

We designed experiments to measure the round-trip time for
code to secure UI invocation and back. The overhead (average over
20 trials) of our implementation adds over the normal case by not
counting the drawing time or the user’s input time. The TruZ-UI
keyboard integration adds 123 ms overhead. The confirmation UI
integration adds 53 ms overhead. Overall, the delay caused by the
overhead for the TruZ-UI is barely noticeable when users interact
with TruZ-UI.

We also designed an experiment to evaluate the overhead of
TruZ-HTTP plugin and split SSL design. We measure the overhead
(average of 20 trials) caused by our design. Our evaluation was
conducted based on Google, Amazon, and Facebook web servers.
The average overhead of TruZ-HTTP plugin is 6.3 ms. The split SSL
adds 304.3ms to each HTTPS request. Although this seems to be
high, we need to keep in mind that the overhead is only incurred
if an HTTPS request contains TEE-protected data (e.g. passwords,
credit card number). If not, then there is no overhead. Therefore,
this cost is more of a one-time cost.

7 RELATEDWORK
In this section, we further discuss the existing works related to
TruZ-Droid in the areas of TEE research and Android privacy en-
hancement research.

TEE-protected UI. Several existing works [44, 45, 53, 64, 66, 70]
protect user’s interactions by leveraging TEE. All of them move
the UI interaction into the secure world, and overcome the broken
binding between the UI and corresponding code by moving the
code into the secure world as well (binding is maintained within
the secure world). These works require the developer to provide the
TA code to be executed, resulting in an app-specific TA. VeriUI [47]
protects the login web page by porting the WebKit engine and GUI
library into TrustZone. VeriUI is designed to protect the entire web
page. However, TruZ-UI targets the granularity of UI view elements
that build the entire activity. We identify unique design challenges
related to view protection in Section 3.2 and 3.3. The existing works
require the developer to write TA code and change the app for the
TA code invocation. This changes how developers write normal-
world apps, preventing them from leveraging TEE support by using
existing Android components with minimal change to their apps.

TEE-protected network communication. We compare our
design with the related work [29, 45, 47, 53, 55]. The first type of
work [47, 53] moves all the layers of communication, including
the TCP/IP stack, into the secure world. Although this approach
creates a completely isolated communication channel for sending
the TEE-protected data to servers, it significantly increases the TCB
size. To lower the size, the second type of work [29, 45, 55] keeps
the TCP/IP stack in the normal world but ensures that the payload
is encrypted in the secure world, and the normal world cannot
know the actual content.

Our solution falls into the second type but has several advantages
compared to the existing works, including DroidVault [45], TruWal-
letM [29], and Samsung KNOX [55]. TruWalletM [29] proposes to
use two logical SSL subchannels to protect user’s login credentials.
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They simulated the design completely in the normal world. We have
developed a practical solution on the real hardware instead of using
simulations, and have identified significant challenges in our split
SSL design (Section 4.2) that would not be discoverable only via sim-
ulations. DroidVault [45] requires app-specific logic in the secure
world to manage the sensitive data from the server and requires the
server to adopt the mutual authentication protocol to communicate
with the secure world. Our design requires no app-specific logic in
the secure world and is transparent to existing network protocols.
Furthermore, neither DroidVault nor TruWalletM considers the
ease of adoption to apps; they both require significant modifica-
tions to the app logic. KNOX [55] requires apps to use new KNOX
APIs, which link the normal-world application logic with TrustZone
components directly in the application layer. KNOX integration
requires introducing new TrustZone components in the application
layer and cannot reuse any existing Android components to lever-
age TrustZone. Unlike KNOX, our solution allows developers to use
the standard Android APIs because our modifications are done in-
side the existing Android components. Since the data in the secure
world cannot be revealed to the normal world, all solutions require
moving some of the data-sending logic into the secure world if the
data being sent to the server contains TEE-protected information.
However, whether we can maintain the same APIs for the devel-
opers is decided by where the logic is split. All the existing works
perform the splitting at the application layer [29, 45, 55]. We work
on the underlying layers, including HTTP and SSL, while leaving
the interaction APIs between the application and these underlying
layers the same.

Trusted execution environment. TruZ-Droid requires no app
logic in the secure world and has generic support for common ap-
plication requirements. These features distinguish us from the most
closely related works. Rubinov et al. [53] automatically partitions
the app sensitive logic into the TEE. DroidVault [45] establishes
a secure channel for uploading and downloading sensitive data
to/from the server by leveraging TrustZone. LightSPD [70] emu-
lates a secure portable device in TrustZone to protect the users’
privacy. TrustUI [44] enables secure user’s interaction by leverag-
ing TrustZone while maintaining a small TCB. TrustICE [64] and
PrivateZone [40] load verified normal-world code into the TEE-
protected memory and execute them in containers. Liu et al. [49]
preserves the integrity of sensor readings by applying TrustZone
peripheral protection. Keystore [3] and Fingerprint [5] are part of
Android’s built-in TrustZone support but their threat model is dif-
ferent from ours. Keystore [3] only protects the keys in the secure
world but the compromised normal world can still ask the secure
world to decrypt the content using the key. Fingerprint [5] only
protects the users’ biometrics data but the compromised normal
world can still spoof the fingerprint approval without the users’ con-
sent. All these works [40, 44, 45, 49, 53, 64, 70] require application
logic in the secure world. TrustOTP [63] integrates hardware-based
one-time password solution with TrustZone. AdAttester [43] uses
TrustZone to provide attested click and display for android adver-
tisements. TruZ-Droid also integrates TrustZone with Android, but
our design has generic supports compared to these works [43, 63].
SchrondinText [56] protects the text output of the applications
while we focus on text input.

TEE researchers also cover a variety of research directions. Trust-
Zone has an attack surface when using shared memory [50] during
the communication between the two worlds, or via side channel like
cache [37, 73]. TrustZone also suffers from physical memory foren-
sics [31, 54]. CaSE [72] and CacheKit [71] enhance TrustZone’s
memory privacy against physical attack. One category of Trust-
Zone research focuses on monitoring the integrity of normal-world
memory [25, 41]. VTZ [38] virtualizes TrustZone in the VM. SGX
cannot protect user’s typed secret like TrustZone, because SGX does
not have a separate OS to control the I/O peripherals. SGX is mainly
applied in cloud-based applications. SGX studies [24, 26, 58, 60]
propose to protect the user’s code and data in the enclave even
when they are running in a hostile environment. OpenSGX [39]
provides Intel SGX emulation platform to develop enclave programs
in the emulator. SGX platform suffers from side-channel vulnera-
bilities [67, 69]. Various solutions [51, 59] have been proposed to
solve the side-channel vulnerabilities in SGX.

Android privacy enhancement. Researchers have proposed
various solutions [30, 32–35, 46, 48, 61, 62, 65, 74, 75] to prevent pri-
vacy leakage in Android. MalloDroid [33] detects potential vulnera-
bilities against MITM attacks for Android apps. Zhang et al. [74] pre-
vents sensitive runtime information gathering by monitoring suspi-
cious background processes. TISSA [75] proposes fine-grained user
privacy access control during runtime. Screenpass [48], TIVO [34],
Secure Input Overlay [61] and Guardroid [65] protect the user’s
password bymodifying the Android framework. Unlike these works
that fail when the Android OS is compromised, TruZ-Droid can
preserve the user privacy even when the OS is compromised.

Split SSL related works. TinMan [68] offloads the confidential
data in mobile apps into a trusted node. TinMan synchronizes the
SSL states between the client and trusted node. TruWallet [68] and
TruWalletM [29] protect the confidential data in the wallet. Both
works create SSL proxy and use two SSL connections to isolate the
untrusted connection from the trusted connection.

8 SUMMARY
In this paper, we proposed a design to integrate TrustZone with
Android that allows apps to leverage TrustZone to protect user’s
interactions and protect sending the user’s secret to the authorized
server. We implemented TruZ-UI and split HTTPS/SSL components
by modifying Android and OPTEE OS. We tested TruZ-Droid on
the HiKey board. Through real-world evaluation, we have shown
the effectiveness and ease of adoption of our design.
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