A Novel Approach for Computer Security Education Using
M ni x Instructional Operating System*

Wenliang DJ Mingdong Shang, and Haizhi Xu
Department of Electrical Engineering and Computer Science,
3-114 Center for Science and Technology,
Syracuse University, Syracuse, NY 13244
Tel: 315-443-9180 Fax: 315-443-1122
Email: {wedu,mshang,hxud®ecs.syr.edu

Abstract

To address national needs for computer security education, manyrsitiee have incorporated
computer and security courses into their undergraduate and graduateala. In these courses,
students learn how to design, implement, analyze, test, and operatera syst@etwork to achieve
security. Pedagogical research has shown that effective laborakergises are critically important
to the success of these types of courses. However, such effectregdales do not exist in computer
security education.

Intrigued by the successful practice in operating system and netwonlseo@ducation, we
adopted a similar practice, i.e., building our laboratories based on an infitroal operating sys-
tem. We usd ni x operating system as the lab basis, and in each lab we require students to add
a different security mechanism to the system. Benefited from the instructpmrating system, we
design our lab exercises in a way such that students can focus on onéwar gpecific security
concepts while doing each exercise. The similar approach has provied édfective in teaching
operating system and network courses, but it has not yet been useaciting computer security
courses.

Keywords: Computer security, education, courseware, laboratory projectsyiamidx .
1 Introduction

The high priority that information security education warrants has beexgnézed since early
1990's. In 2001, Eugene Spafford, director of the Center for Btiloic and Research in Information
Assurance and Security (CERIAS) at Purdue University, testifiedreegfongress that “to ensure
safe computing, the security (and other desirable properties) mustigag# from the start. To
do that, we need to be sure all of our students understand the many meofaecurity, privacy,
integrity, and reliability” [1].

*The project is supported by Grant DUE-0231122 from the NationahSei€oundation and by fundings from CASE
center.
fThe contact author. Email: wedu@ecs.syr.edu.

To address these needs, many universities have incorporated cormpdiieformation security
courses into their undergraduate and graduate curricula. In mangutayrcomputer security and
network security are two core courses. These courses teach sthdents design, implement,
analyze, test, and operate a system or a network with the goal of makingiifeseéeedagogical
research has shown that students’ learning is enhanced if they cageeimga significant amount
of hands-on exercises. Therefore, effective laboratory exar¢isr course projects) are critically
important to the success of computer security education.

Traditional courses, such as operating systems, compilers, and nitgydrkve effective labo-
ratory exercises, as the result of twenty years maturation. In contrastatary designs in security
education courses are still embryonic. A variety of approaches arentlyr used; three of the
most frequently used designs are the followings: (1)fthe-styleapproach, i.e., instructors allow
students to pick any security-related topic they are interested in for theequojects; (2) the
dedicated-computing-environmeagproach, i.e., students conduct security implementation, analy-
sis and testing [2, 3] in a contained environment; (3)thiéd-it-from-scratchapproach, i.e., students
build a secure system from scratch [4].

Free-style design projects are effective for creative students; v@nwmost students become
frustrated with this strategy because of the difficulty in finding an interestipg.toWith the
dedicated-environment approach, projects can be very interestingtheitlogistical burdens of
the laboratory—obtaining, setting up, and managing the computing environimexidition, course
size is constrained by the size of the dedicated environment. The third dasigoach requires
students to spend considerable amount of time on activities that are irfelev@amputer security
education but are essential for a meaningful and functional system.

The lack of an effective and efficient laboratory for security cosimg®tivated us to consider
practices adopted by the traditional mature courses, e.g., operating sySiSjrend compilers. In
OS courses, a widely adopted successful practice is using an instricin@.g. M NI X [5],
NACHQGS [6], and XI NU [7]) as a framework and ask students to write significant portions of each
major piece of a modern OS. The compiler and network courses adopted a sipglaach. In-
spired by the success of the instructional OS strategy, we adapt it t@wyouter security courses.
Specifically, we provide students with a system as the framework, and shehem to implement
significant portions of each fundamensgakurity-relevant functionalitipr a system. Although there
are a number of instructional systems for OS courses, to our knowlddgepproach has not yet
been applied to computer and information security courses.

Our goal is to develop a courseware system, serving as an experimaitfiaim and framework
for computer security courses. The courseware is not designedatie crew security mechanisms,
but to let students practice existing security work. The coursewareinerdaset of well defined
and documented projects for helping students focus on (1) graspingtgemncepts, principles
and technologies; (2) practicing design and implementation of security meofsand policies;
and (3) analyzing and testing a system for its security properties.

We choseM ni x as our base system, and have designed a number of laboratory asggnmen
on it. These assignments cover topics ranging from the design and implemertagecurity
mechanisms to the analysis and testing of a system for security purpodeagsignment can be
considered as adding/modifying security mechanisimd toi x. To finish each task, students just
need to focus on those security mechanisms, with minimum effort on othemgbéntes system. For
example, while learning discretionary access control (DAC), we giwdestis a file system without
DAC mechanisms; students only need to design and implement DAC for this eXitdisgstem.
Students can immediately see how their DAC implementation affect the system. akeggtnelps
students to stay focus on security concepts.

Our course projects consists of two parts. One part focuses on dasigmplementation. This
part of projects requires students to add new security mechanisms to wyingiM ni x system
to enhance its security. The security mechanisms students need to implemetd awzess control,
capability, sandbox, and encrypted file systems. In the second parnt pfaects, we gave students
a modifiedM ni x system that contains a number of injected vulnerabilities. Students need to use
their skills learned from the lectures to identify, exploit, and fix those vulnktiab.

Our approach is open-ended, i.e., we can add more laboratory projéuis firamework without
affecting others. The projects presented in this paper are the resuteefytbars’ maturation, with
more components added in each year. We are also planning to design a ofimdtevork security
projects forM ni x based on th&l ni x’s existing networking functionality.

The paper is organized as the following: Section 2 briefly describesomopater security course.
Section 3 describes the design of our courseware. Section 4 deseablesof our laboratory
projects. Section 5 presents the experiences and lessons we hawt diaiimg our three-year
practice. Finally, Section 6 concludes the paper and describes the fudtke

2 The Computer Security Course

2.1 Scope of the course

Our department offers two graduate courses in security: one is congeatanty, and the other is
network security. The computer security course focuses on the dsnpepciples, and techniques
for system security, such @ncryption algorithms, authentication, access control, privilege, vul-
nerabilities, system protectioetc. Currently, our proposed approach only targets at the computer
security course, but we plan to extend this approach to the networkityeoomrse in our future
work.

2.2 Pedagogical Approach

Lecturing on theories, principles and techniques of computer security enoagh for students
to understand system security. Students must be able to put what thelehewed into use. We
use the“learning by doing” approach. It was shown in other studieshisatype of active learning
approach has a higher chance of having a lasting effect on studentkettiag students passively
listen to lectures without reinforcement [8].

More specifically, we try to use thid ni x OS as our base system to develop assignments that can
give students hands-on experience with those theories taught in ctassxadmple, when teaching
Set - Ul D concept ofUni x, we developed an assignment for students to play with this security
mechanism, figure out why it is needed, and understand how it is implemented.

We have developed two types of assignments: small assignments and cengpretassign-
ments. Each small assignment focuses on one specific concept, seeh-dd D and access con-
trol. These assignments are usually small; they do not need much progranamtingke only one
week or two; therefore we can have several small projects to covaiedyvaf concepts in system
security. However, being able to deal with each individual conceptti€nough, students need
to learn how to put them together. We have developed comprehensigarassts, which cover a
number of concepts in one assignment. They are ideal candidates fqréjects.

Minix Instructional
Operating System

[Security Exploit, Analysis & Testing j [Security Design & Implementation j

Vulnerabilities pool Preparation

Figure 1. Overview of course projects based on M ni Xx.

Encrypted
File System

Privilege
(Set-UID)

Access

Control Capability

Sandboxing

2.3 Course Prerequisites

Because this course focus on system security, we require studenteet@yaropriate system
background. Students taking the course are expected to have takeraduatg-level operating
systems. They should be proficient in C programming.

3 Design of Course Projects

The goal of our projects is to provide a set of exercises for studentsattiqge theirsecurity
design, implementation, analysis, testing, and operaskitls. Using theM ni x instructional
operating system, we designed two classes of projects, one focusirgigm dnd implementation
of security mechanisms, and the other focusing on security analysis dimg)t€Ehe overview of
our projects is depicted in Figure 1.

Design and Implementation. In our computer security class, we aim at covering a number of
important security mechanisms, suchPa&ilege, Authentication, Access Control, Capability, and
SandboxingWe expect students to have first-hand experience on most of theng duérsemester
period. However, asking students to implement a system with all of these mswisafrom scratch
sounds infeasible. Using an instructional operating system, our goairgscfeasible because of
the following reasons: (1) An instructional OS provides students with atsired framework upon
which they can build various security mechanisms. (2) An instructional Q#iibnal even if the
students have not implemented the security modules completely. This giveststgdiek feedback
as to how their implementations work and whether the modules are implementectlgorre

Some of the security mechanisms are already implementddl im x, such as privilege, and
access control. For some of these mechanisms, our projects are designaay that requires
students to study and play with the existing implementation, so they can gain fidekperience.
For other existing mechanisms, we ask students to extend them and add nuirenfalities. For
example, we ask students to extend bhani x’s abbreviated access control list mechanism to sup-
port full access control lists. Several security mechanisms that we cowass do not exist in
M ni x, such as capability and encrypted file system. For them, we designea grojscts that
ask student to implement these mechanismid ini x. To make the tasks doable with 2-3 weeks,
the security mechanisms are simplified compared to those implemented in an resihgpsy/stem.

Security analysis and testing. To master the security analysis and testing skills the students have
learned from the class, they need to practice those skills in some systemswa@rte do this

is to give them a vulnerable system, such as older versions of Windows &00inux, and ask
them to find security flaws in those systems. Although these systems contairnvoiaesabilities,
identifying and exploiting them is not a trivial task even for seasoned syateninistrators, much
less students who have just learned the basic skills.

We have created a pool of vulnerable component$fari x, with some in the application layer
and some in the kernel layer. The vulnerabilities we choose reflect aliifies in the real world.
They include buffer-overflow errors, race condition errors, syrk-dirrors, input validation errors,
authentication errors, domain errors, and design errors [9].

Instructors can choose the vulnerable components they like and injectitb@i ni x. The
flawedM ni x system is then given to students, who need to find those vulnerabilities pluit ex
them. Before starting these exercises, students are equipped with tredaetiwledge of these
vulnerabilities, the methods of detection and exploitation, and the methodologpsnefration
testing and standard security testing.

3.1 Why chooseM ni x?

Before we decided to udd ni x, we have investigated a number of alternatives. We have the
following criteria in mind when choosing an operating system as the base obatseware:

1. Source code availability.Because the system security course involves implementation of
system security mechanisms, studying the source code is important for thiadegjarocess.

2. Complete but not complexthe OS should provide an sufficient infrastructure to students.
Students should be able to immediately see how their implementation behaves wéviogt h
to build the security-irrelevant components to make the whole system workeVo, the OS
should not be too complex; otherwise students need to spend much time istandérg the
underlying system.

3. Modularized.The security modules in the system should be highly modularized, so that they
can be modified or replaced independently.

4. No need for superuser privilegét is preferable for students to carry out lab assignments in
a general computing environment using normal user accounts, asegpfmom a dedicated
computing environment using superuser privileges.

A complete featured OS likei nux seems a good candidate because their completeness. How-
ever, if we choose such an operating system, the students will take catdelamount of time
to understand the functionality of the OS and thus lose focus on securitgveéfoome this draw-
back, many operating system courses use simplified operating systemasXuau, Nachos and
M ni x, for educational purposes. We adopted a similar practice.

Most computer security course projects require the administrator/s@pgniglege, which can
jeopardize the security of the security experiment. With the superusdegéystudents can have
complete control over the experimental domain. A malicious students might usaibhtargvanted
access to other people’s accounts. Even if all students are well lzklthey might accidentally
introduce security holes into the system because of the lack of system adatimgsexperience.
Some universities do give students the superuser privilege for this typejects, but the computers
have to be restricted to an isolated environment. Although this approactebasaidely used in

5

Table 1. A comparison of various operating systems.

Source Code Complete| Complex| Superuser Modularized
Availability Privilege
Instructional OS Minix Yes Yes No No Yes
Nachos Yes Partial No No Yes
Xinu Yes Yes No Yes Yes
Commercial OS Linux Yes Yes Yes Yes Yes
BSD Yes Yes Yes Yes Yes
SunOS No Yes Yes Yes Yes
Windows No Yes Yes Yes Yes

practice, it requires high cost for lab setting up and management. Weechatiferent approach:
to enable students to build and run the operating system without giving teeusap privilege.

We choseM ni x instructional operating system as our base system for three reasmis: fi
M ni x is complete comparing to other unix-style instructional OS’s; seclhdj x can run on
theSol ari s systems as a non-privileged process; thidni x is small and easy to understand.
Table 1 compares the pros and cons for using different OS’s as teebaar courseware.

3.2 Introduction to the Minix operating system

M ni x is aUni x operating system, and its name came from “nni x”. As an instructional
operating systemiM ni x system is designed to be small and simple. It only has about 15,000
lines of codes, which are publicly available at [10]. A textbook was alstiemrby Tanenbaum to
explain howM ni x works [5]. Students meeting the prerequisites can understand this opgeratin
system within a short period of timé& ni x system has a high modular structure, which makes it
not only easy to understand, but also easy for students to extend aiifg. mod

M ni x was originally developed as a real operating system, running directlytehx® ma-
chines. Later on, Ashton portéd ni x to run on the SUN Solaris systems as a non-privileged
process [11].

4 Course Projects
4.1 Laboratories Setup

We useM ni x on Solaris in our course. All of the laboratory exercises will be condlicte
SUN Sol ari s environment using language. Except for giving students more disk space (100
Megabytes) to store the files Bf ni x systemM ni x poses no special requirements on the general
Sol ari s computing environment.

TheM ni x operating system can also be installed on simulated environmenisMisare[12],
Bochs[13] and so on. Installing the operating system\Mwareis not a difficult process, and no
superuser privilege is needed to iMhni x on VMware Therefore, this could be another installa-
tion option. Both approaches can be used in our laboratory designsevdawve preferred to use
the Solaris approach, so students do not need to buyNhearelicense or use free-wares that are
not stabilized yet.

We have designed a variety of course projectdvbni x. Depending on the course schedule
and the students’ familiarity withini x and their proficiency in C programming, instructors might

6

want to choose a subset of the projects we designed. Currently, \s8lldeveloping more assign-
ments, and we will also solicit contributions from other people. Our goal isdate a pool of lab
assignments, such that different instructors can choose the subsetttthmesquirements of their
syllabi.

4.2 Preparation

In this warm-up project, students get familiar with teni x operating system, such as installing
and compiling thé\l ni x OS, conducting simple administration tasks (e.g. adding/removing users),
and learning to use/modify some common utilities. More importantly, we want stutteatsler-
stand theM ni x kernel. For our system security course, students just need to umiknstdetail
system calls, file systems, the data structure -ofiode andpr ocess tabl e. They do not
need to study non-security modules such as process scheduling andymearagement. Stu-
dents meeting the prerequisites should be comfortable withtiné x environment in two to three
weeks.

The following is a list of sample tasks we used. In reality, instructor cansghdifferent tasks to
achieve the same goals:

e Compile and instalM ni x, then add three user accounts to the system.

e Change the password verification procedure, such that a user ietlémkl5 minutes after
three failed trials.

e Implement system calls to enable users to print out attributés mode and pr ocess
t abl e. Appropriate security checking should be implemented to ensure that aarssot
steal information from other accounts.

Our experiments show that it is better to guide students to conduct the als&sertane or two
lab sessions, in which a teaching assistant can provide immediate helps [@besessions are
extremely necessary when students have significantly different baohkds.

4.3 Set - Ul DPrograms

Set - Ul Dis an important security concept ini x operating systems. It is a good example to
show students how privileges are escalated in a system. In this projeentstlearn th&et - Ul D
concept and its implementation. Students also learn how an attacker carieegsalavileges via
exploiting a vulnerabl&et - Ul D program.

Students need to finish the following tasks: (1) Figure out wagswd, chsh, su commands
need to beSet - Ul D programs, and what will happen if they are not. (2) Students are gieen th
binary code of thgpasswd program, which contains a number of security flaws injected before-
hand. Students need to identify those flaws, and exploit the vulneralgeapnao gain the root
privileges. (3) ReadM ni x source codes, and figure out h@&et - Ul D is implemented in the
system. (4) Modify the kernel source code to disableSbe- Ul D mechanism.

This project is quite straightforward. On average it takes students ogle tavdinish.

4.4 Access Control List

Access control is an important security mechanism implemented in many systecen be
classified as Discretionary Access Control and Mandatory AccessdCMAC). In DAC systems,

7

the owner of an object can decide its security properties (e.g., who adhis file?); while in MAC
systems, the security properties are determined and controlled by onlyritysetanager. Access
permissions can be represented on a per object basis (i.e. who camtopghations on an object);
this is calledAccess Control ListsPermissions can also be represented on a per subject (principal)
basis (i.e. what operations on what objects the subject can do); this id Cafmbilities This
project focuses on access control lists.

The goal of this project is two-fold: (1) to get first-hand experience WHC and (2) to be able
to implement DACM ni x already has an implementation of abbreviated ACL; namely the access
control is based on three classes: owner, group, and others. &uéed to extend this abbreviated
ACL to a full ACL, i.e., a user can assign a specific access right to anyesusgr. On average
students need about 2-3 weeks to finish this project. Students need twatthetale following issues:

e How access control worksBefore working on their implementations, students need to un-
derstand the entire process of access control, and they need to trgcegham execution to
find out how the access control is conducted/imi x. This enhances their understanding of
access control.

e ACL representation:Students need to think about how to represent the full ACL, how to
allow ACL's to specify access permissions on a per user (principal) ,betser than the
current owner-group-other protection method. Students also need &theakrepresentation
flexible for adding and removing purposes.

e Storing the ACLs:This is another challenging part of the project. Students need to think
where exactly they should store the access control list. The cuvteritx implementation
does not seem to have a place to store the full access control list. Stndedtso solve this
issue. A hint we give them is to use some unused entrieaades or store the access control
lists in separate files.

¢ ACL managementin addition to implementing the full ACL in the kernel, students also need
to implement the corresponding utilities, such that users can manage the eaatsl list of
their own files.

4.5 Capability

Capability is another important concept in computer security. The goal optbject is to help
students understand the concept of capability. We defined a set difiliiggmin this project, with
each capability representing whether a process can invoke a spestiosgall. Students need to
implement these capabilities M ni x. Specifically, their capability mechanism should be able to
achieve the following functionalities: (1) Permission granting based orbddpa (2) Capability
copying: A process should be able to copy its capabilities to another gra@<Capability reduc-
tion/restoration: A process should be able to amplify or reduce its curapabdlities. For example,
a process can temporarily remove its o8&t - Ul D capability, but later can add it back. Of course,
a process cannot assign a new capability to itself. (4) Capability revoc&tmot should be able to
revoke capabilities from processes.

In this project, students need to take care of the following issues:

e Capability List RepresentationStudents need to think about how to represent the set of
defined capabilities. They also need to think how they can associate capaiiifieeach

process. The final representation should conveniently support thuired functionalities
(e.g. copying, removing etc).

e Storing the CapabilitiesThis is another challenging part of the project where students need
to think where capabilities should be stored. One option is to add an entry tooitesp table
to store the capabilities. A potential issue is how feasible it is to extend thegsrtadge (note
that the process table is a kernel data structure used by many other cantgjon

e Capability Revocation:Students need to think about how to revoke an object’s capability.
They must be careful not to introduce vulnerabilities in this part.

e Capability ManagementStudents need to take care of two types of users, normal and super
users. They need to consider the following issues: how they managewetsgpes of users,
and what functionalities are associated with each of them.

This project enhanced the students’ understanding of the capabilitggbnét the beginning,
most students had trouble mapping the capability concept to the real worlddid/Vet tell the
students how the capability should be implemented, but to ask them to designvthaiapability
mechanisms. This requires them to figure out how the capabilities shoulgieseated in the sys-
tem, where to store the capabilities, how the system can use the capability tactaodess control,
etc. Once students have figured out all of these issues, the implementaitndserelatively easy;
therefore the amount of coding for this project is not significant, ancesitgdare able to accomplish
the task within two weeks. Had it not been fdrni x, students would need to spend a lot of time
implementing a meaningful system where the effect of the capability can bendénaied.

We encouraged students to design some other features beyond theejagiements. Students
were highly motivated, some implemented a more generic capability-based aorel mecha-
nism than the required one, and some allow new capabilities to be defined syypibriser.

4.6 Sandbox

A sandbox is an environment in which the actions of an untrusted proeessséricted according
to a security policy [14]. Such restriction protects the system from untfagiplications. Iruni x,
chr oot can be used to achieve a simple sandbox.

The instruction thr oot newroot cmtl causescmdto be executed relative tewroot i.e., the
root directory is changed teewrootfor cmdand any of its child processes. Any program running
within this sandbox can only access files within the subdirectoneafroot

SomeUni x systems allow normal user to rurhr oot sandbox (just makehr oot a Set -
Ul D program). However, this can introduce a serious problem: malicious osgrereate a login
environment with their own shadow file and passwd file ungsvroot which will help them gain
a root shell. Once getting that privilege, they can crea$eta- Ul D shell program which allows
them to use after exiting the sandbox. The attack is described in the following:

test $ nkdir /tnp/etc

test $ echo root::0:0::/:/bin/fsh > /tnp/etc/passwd

test $ nkdir /tnp/bin

test $ cp /bin/sh /tnp/bin/sh

test $ cp /bin/chnmod /tnp/bin/chnod

test $ chroot /tnp /bin/login (login as root with no password)
root # chnod 4755 /bin/sh (change shell to Set-U D)

9

root # exit

test $ cd /tnp/bin

test $./sh

root # (get root shell in real systen)

One of the goals of this project is to let students find out this vulnerability withesprovided
clues. Students need to implement attack procedures and demonstrate h@avatdvantage of the
vulnerability to gain root privileges. This is an efficient way for studentsribance their under-
standing on security hole in kernel level.

To fix the above vulnerability, the best way is to disallow normal user fromgushr oot .
However, normal users will not be able to take advantage of the santask students to extend
the currenthr oot such that the program is safe to be used by normal users.

We suggest students to design a security policy for this sandbox. Sasebarity policy defines
a set of permissions and restrictions that a program must obey while gunkior example, the
policy can define whether a program is permitted to read files or connece tmtiernet. Any
program attempting to violate the security policy will be blocked. Students neednsider a
number of issues, including how to define policy, where to save policynvttehould be read in,
and how to secure the policy file. Students should be able to finish this pwajbaot 2-3 weeks.

4.7 Encrypted File System

Non-encrypted file system stores plain text on disks, so if the disk is stwifarmation on
it can be disclosed. An Encrypted File System (EFS) solves this probleemtypting the file
system, such that only users who knows the encryption keys can abeefiles. The primary
benefit of EFS is to defend against unauthorized access. The &nofgpcryption operations
should be transparent to users. Implementing EFS requires students tmedsdhniques such
as encryption, key management, authentication, access control, amiysecOS kernels and file
systems; therefore this project is a comprehensive project. We giverthigspas a final project.

M ni x system has a complete file system, so students can build the EFS on top of it. As we
mentioned beforeyl ni x file system is reasonably easy to understand; students can start building
their own EFS after they understand how the file system works.

This project is a good candidate for the final comprehensive projeatise it covers a variety of
security-related concepts and properties:

e User TransparencyThe main challenge of this project is how to make EFS transparent. If the
transparency is not a issue, then students can easily implement a setyptienédecryption
utilities, and users need to use those utilities to encrypt/decrypt theimfiéerially The
transparency means that the encryption/decryption should be perfamétk fly, while
users are reading/writing their files. To achieve the transparencygsutkeed to modify the
system calls related to the reading and writing. They need to insert thepéinorglgorithms
into the proper positions in those system calls.

e Key managementAnother challenge of this project is the key management, namely how
and where the encryption keys should be stored, how the keys shoptdteeted, changed,
and revoked. We have seen different designs from students. Borpdg, regarding the key
storage problem, some students store the key (encrypted) in a file, ancsgmend in the
i-node of the encrypted file. We also found out that some students mistadaamythe plain-
text key on the disk, which defeats the whole purpose of the EFS.

10

e Authentication:How to decide whether a user can access the encrypted file system or not?
This part of the project not only teach students the authentication pyrmpose importantly, it
teaches students an important lesson about the tradeoff between thigaeadhthe security.
Some students’ projects require users to authenticate themselves each timeyhaccess
a file in EFS; some conduct just one authentication when the users mount&hékood
implementation in our opinion); some conduct the authentication during the loginnd
their demos, we point out the advantages and disadvantages of theingjesigthey can
evaluate their own designs.

e Using encryption and hashing algorithmglthough students are provided with codes for
encryption and hashing algorithms, they still need to learn how to use itctigrr&ecause
AES is a block cipher, students need to deal with the issues related the biogadding;
otherwise, their reading/writing system calls might not function correctly.

e Security analysisAfter most of the students have finished their designs, we give thenesever
incorrect designs that we have encountered in the past, and we asketbtfind out whether
those designs are secure or not; if not, how to break those EFS.

Project Simplification

For students who do not have sufficient background in operatingrsyigtenel programming, we
need to customize our projects for them. We divide the EFS project into thoge(s:

1. Project 1: Encryption Algorithms. This project gets students familiar witi&® algorithm.
Students need to implement a user-level program to encrypt and détagpt

2. Project 2: Kernel maodification. The second project asks studentsdifyntioe corresponding
system calls, such that some special files are always read/write usingtoma. However,
to simply this project, we ask them to always use a fixed key for the encrypitemkey can
be hard-coded in their programs.

3. Project 3: Key Management. This project deals with the key managermsasttisat is inten-
tionally left off in the previous project. Students now need to find a place te $he key;
they need to make decision on whether to use the same key for all the files keyfor each
file; they also need to deal with the authentication issues, etc.

4.8 \Vulnerability Analysis

Vulnerability analysistrengthens the system security by identifying and analyzing security flaws
in computer systems. This project intends to expose students to such at apiivaach. We have
two goals in this project: The first goal is to let students gain first-handrexpe on software
vulnerabilities, be familiar with a list of common security flaws, and understamdahseemly-not-
so-harmful flaw in a program can become a risk to a system. The secahdo give students
opportunities to practice their vulnerability analysis and testing skills. Studantkearn a number
of methodologies from the class, such as vulnerability hypothesis, ptoetiesting methodology,
code inspection techniques, and blackbox and whitebox testing [15) fiéwd to practice these
methodologies in this project.

To achieve our goals, we modify tiM ni x source codes and intentionally introduce a set of
vulnerabilities. We call these vulnerabilities tingected vulnerabilitiesThe revisedM ni x system

11

is then given to students. The students are given some hints, such ag pdissible vulnerabilities,
the possible locations of the vulnerable programs, etc. Their task is to finanouverify these
vulnerabilities.

The injected vulnerabilities cover a wide spectrum of vulnerabilities, subbféexr overflow, race
condition, security holes in the access control mechanisms, security h@es iJl D programs,
information leakage, and denial of service. These vulnerabilities reflestem flaws caused by
incorrect design, implementation, and configuration. All these vulnerab#iteesollected from real
commercial Unix operating systems, such as SUNOS, HP-UNIX and Limakagee then ported to
M ni x. We have ported nine vulnerabilities so far, with six in the user level and thrihe kernel
level. We will port other typical vulnerabilities #dl ni x in the future.

Students in this project need to accomplish the following tasks:

¢ |dentify vulnerabilities This is a warm-up practice to help students get familiar with vulner-
ability living environment.

e Exploit vulnerabilities This is a challenging and interesting part of the project in which
students write attack programs aiming at these vulnerabilities. Demonstratioadechto
show what unauthorized privilege can be obtained.

e Fix vulnerabilities Students need to design solutions to eliminate or remedy the identified
vulnerabilities.

5 Experiences and Lessons

We did a teaching experiment in the 2002 spring semester when we taughrathetp-level
computer security course at Syracuse University. At that time, we astke@nts to add certain
specific security mechanismsib ni x. We only give students one project for the whole semester
because modifying an OS seems to be a daunting job for most of the studbatstu@ients liked
the project very much and were highly motivated. At the end of the sem#stestudents provided
a number of useful suggestions. For example, many students noted,dhoosttime was spent on
figuring out how such an operating system work, if somebody or somengemtation can explain
that to us, we could have done four or five different projects of this iygptead of doing one during
the whole semester”. This observation shapes the goal of our desigrantstudents to implement
a project within two to four weeks using our proposed instructional enxrient.

When we taught the course again in Spring 2003, we provided studentsuffitient informa-
tion on howM ni x works, and we added a lecture to introdddeni x. As a result, students had
gotten familiar withM ni x within the first three weeks, and were ready for the projects we had
designed for them. The same degree of familiarity took students half of a sgrpesviously due
to the lack of information.

In our first experiment in 2002, the requirements of each project wetr¢ailored to a scope
appropriate for 2-3 weeks. During the last three years’ experimemtsimplified those require-
ments. In 2004 semester, we successfully assigned four projects ireorester, including the
Set - Ul D project, capability project, access control project, and the comprefeesscrypted file
system project. However, we are still unable to assign the vulnerabilityqirdje to the lack of
time. We will further improve our strategy in the coming 2005 Spring semester.

During the last three years, we have also learned the following lessons:

e Preparation: From our experience, the preparation project is crucial to the suotdbe
subsequent assignments. Some students who overlooked this assignohémerfiselves in

12

trouble later. In fact, when we used the proposed approach at thérfiestwe did not give
students this assignment because we thought it was not necessaryeAdt astudents later
spent a great deal of time in figuring out how to achieve the tasks in thisyassig. Most of

the students told us that they sp&ats of their time to get familiar with the system. Once
they knew howM ni x works, they can spend short time to finish the required task. Therefore,
when we use the approach again, we used several lectures to infatemtstuhe necessary
materials, and ask the TA to devote significant amount of time to help the studesitstfiis
assignment. The preparation part is extremely important. If students faildHistipey will
spend enormously more time on the subsequent projects. This is very tieavve compare
the performance of the students in our 2003 course with that of the stud@®82. We plan

to integrate the materials related\bni x into the lecture, so students can be prepared better.

Background knowledgéAe also realized that some students in the class are not familiar with
theUni x environment because they have been using Windows most of the time. Tgs br
some challenges because these students do not know how to setRATiHe&nvironment
variable, how to search for a file, etc. We plan to develop materials to helpragiget over

this obstacle.

Cheating: Cheating did occur, especially on the final encrypted file system projezthdn

have a list of questions that we will ask during student’s demonstrationsy fdteonly

help us evaluate students’ projects, but also are quite effective soitimtifying cheatings.
Example of questions include “where do you save keys and why?” yoanimplementation
work on large files? and how did you handle that?”, etc. Students who siraplyathers’
implementation will be most likely unable to answer these questions.

6 Conclusion and Future Work

We have described a laboratory design for our graduate-level congmderity course. Our ap-
proach is intrigued by the successful practice in operating system awdrkecourses education.
In our approach, we usé ni x instructional operating system as the basis of our laboratory; in
design-oriented laboratory projects, students add a specific securibamsa to the system; in
analysis-oriented laboratory projects, students identify, exploit, andufixevabilities inM ni x.
Because of the desirable propertiesvbhi x, our laboratory projects can be finished within a rea-
sonable amount of time and in a general computing environment without ugieguser privileges.
We have designed a series of laboratory projects basddl onx, and have experimented with our
approach for the last three years. The experience obtained is agomyirand students in our class
have shown great interest in the course and the projects.

We will continue experimenting and perfecting our approach. More impibytame will work
on making this laboratory approach easy to be adopted by other peomeaethires us to provide
detailed documentations, instructions, and a pool of different projeetsriog a wide range of
security concepts.

References

[1] E. H. Spafford, “February 1997 testimony before the united statassén of representa-

tives’ subcommittee on technology, computer and network security,” 2@08ilable at
http://www.house.gov/science/hearing.htm.

13

[2] J. M. D. Hill, C. A. C. Jr., J. W. Humphries, and U. W. Pooch, “Usingiaolated network
laboratory to teach advanced networks and securityPrioceedings of the 32nd SIGCSE
Technical Symposium on Computer Science Educafibarlotte, NC, USA, February 2001,
pp. 36—40.

[3] J. Mayo and P. Kearns, “A secure unrestricted advanced sysdmstory,” inProceedings of
the 30th SIGCSE Technical Symposium on Computer Science EdydieOrieans, USA,
March 24-28 1999, pp. 165-169.

[4] W. G. Mitchener and A. Vahdat, “A chat room assignment for teagmetwork security,”
in Proceedings of the 32nd SIGCSE Technical Symposium on Compigrcé&Education
Charlotte, NC, USA, February 2001, pp. 31-35.

[5] A. TanenbaumQperating Systems: Design and Implementgtind ed. Prentice Hall, 1996.

[6] W. A. Christopher, S. J. Procter, and T. E. Anderson, “The hoac instruc-
tional operating system,” inProceedings of the Winter 1993 USENIX Confer-
ence San Diego, CA, USA, January, 25-29 1993, pp. 481-489, availaile
http://http.cs. berkel ey. edu/ ~t ea/ nachos.

[7] D. Comer,Operating System Design: the XINU ApproactPrentice Hall, 1984.

[8] C. Meyers and T. B. JoneBromoting Active Learning: Strategies for the College Classroom
Jossey-Bass, San Francisco, CA, 1993.

[9] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi, “A tamory of computer
program security flaws, ACM Computing Surveysol. 26, no. 3, pp. 211-254, September
1994,

[10] A. Tanenbaum, “http://www.cs.vu.rlbast/minix.html.”

[11] P. Ashton, “Smx—the solaris port of minix,” 1996.

[12] VMWare, “http://www.vmware.com.”

[13] Bochs, “http://bochs.sourceforge.net.”

[14] M. Bishop,Computer Security: Art and ScienceAddison-Wesley, 2002.

[15] C. Pfleeger, S. Pfleeger, and M. Theofanos, “A methodologpdaetration testingComput-
ers and Securityvol. 8, no. 7, pp. 613-620, 1989.

14

