
A Novel Approach for Computer Security Education Using
Minix Instructional Operating System ∗

Wenliang Du†, Mingdong Shang, and Haizhi Xu
Department of Electrical Engineering and Computer Science,

3-114 Center for Science and Technology,
Syracuse University, Syracuse, NY 13244

Tel: 315-443-9180 Fax: 315-443-1122
Email: {wedu,mshang,hxu02}@ecs.syr.edu

Abstract

To address national needs for computer security education, many universities have incorporated
computer and security courses into their undergraduate and graduate curricula. In these courses,
students learn how to design, implement, analyze, test, and operate a system or a network to achieve
security. Pedagogical research has shown that effective laboratory exercises are critically important
to the success of these types of courses. However, such effective laboratories do not exist in computer
security education.

Intrigued by the successful practice in operating system and network courses education, we
adopted a similar practice, i.e., building our laboratories based on an instructional operating sys-
tem. We useMinix operating system as the lab basis, and in each lab we require students to add
a different security mechanism to the system. Benefited from the instructional operating system, we
design our lab exercises in a way such that students can focus on one or afew specific security
concepts while doing each exercise. The similar approach has proved tobe effective in teaching
operating system and network courses, but it has not yet been used inteaching computer security
courses.

Keywords: Computer security, education, courseware, laboratory projects, andMinix.

1 Introduction

The high priority that information security education warrants has been recognized since early
1990’s. In 2001, Eugene Spafford, director of the Center for Education and Research in Information
Assurance and Security (CERIAS) at Purdue University, testified before Congress that “to ensure
safe computing, the security (and other desirable properties) must be designed in from the start. To
do that, we need to be sure all of our students understand the many concerns of security, privacy,
integrity, and reliability” [1].

∗The project is supported by Grant DUE-0231122 from the National Science Foundation and by fundings from CASE
center.

†The contact author. Email: wedu@ecs.syr.edu.

1



To address these needs, many universities have incorporated computerand information security
courses into their undergraduate and graduate curricula. In many curricula, computer security and
network security are two core courses. These courses teach studentshow to design, implement,
analyze, test, and operate a system or a network with the goal of making it secure. Pedagogical
research has shown that students’ learning is enhanced if they can engage in a significant amount
of hands-on exercises. Therefore, effective laboratory exercises (or course projects) are critically
important to the success of computer security education.

Traditional courses, such as operating systems, compilers, and networking, have effective labo-
ratory exercises, as the result of twenty years maturation. In contrast, laboratory designs in security
education courses are still embryonic. A variety of approaches are currently used; three of the
most frequently used designs are the followings: (1) thefree-styleapproach, i.e., instructors allow
students to pick any security-related topic they are interested in for the course projects; (2) the
dedicated-computing-environmentapproach, i.e., students conduct security implementation, analy-
sis and testing [2, 3] in a contained environment; (3) thebuild-it-from-scratchapproach, i.e., students
build a secure system from scratch [4].

Free-style design projects are effective for creative students; however, most students become
frustrated with this strategy because of the difficulty in finding an interesting topic. With the
dedicated-environment approach, projects can be very interesting, withthe logistical burdens of
the laboratory–obtaining, setting up, and managing the computing environment.In addition, course
size is constrained by the size of the dedicated environment. The third designapproach requires
students to spend considerable amount of time on activities that are irrelevant to computer security
education but are essential for a meaningful and functional system.

The lack of an effective and efficient laboratory for security courses motivated us to consider
practices adopted by the traditional mature courses, e.g., operating systems(OS) and compilers. In
OS courses, a widely adopted successful practice is using an instructional OS (e.g. MINIX [5],
NACHOS [6], andXINU [7]) as a framework and ask students to write significant portions of each
major piece of a modern OS. The compiler and network courses adopted a similar approach. In-
spired by the success of the instructional OS strategy, we adapt it to our computer security courses.
Specifically, we provide students with a system as the framework, and then ask them to implement
significant portions of each fundamentalsecurity-relevant functionalityfor a system. Although there
are a number of instructional systems for OS courses, to our knowledge,this approach has not yet
been applied to computer and information security courses.

Our goal is to develop a courseware system, serving as an experimental platform and framework
for computer security courses. The courseware is not designed to create new security mechanisms,
but to let students practice existing security work. The courseware contains a set of well defined
and documented projects for helping students focus on (1) grasping security concepts, principles
and technologies; (2) practicing design and implementation of security mechanisms and policies;
and (3) analyzing and testing a system for its security properties.

We choseMinix as our base system, and have designed a number of laboratory assignments
on it. These assignments cover topics ranging from the design and implementation of security
mechanisms to the analysis and testing of a system for security purpose. Each assignment can be
considered as adding/modifying security mechanisms toMinix. To finish each task, students just
need to focus on those security mechanisms, with minimum effort on other partsof the system. For
example, while learning discretionary access control (DAC), we give students a file system without
DAC mechanisms; students only need to design and implement DAC for this existingfile system.
Students can immediately see how their DAC implementation affect the system. This strategy helps
students to stay focus on security concepts.

2



Our course projects consists of two parts. One part focuses on designand implementation. This
part of projects requires students to add new security mechanisms to the underlyingMinix system
to enhance its security. The security mechanisms students need to implement include access control,
capability, sandbox, and encrypted file systems. In the second part of our projects, we gave students
a modifiedMinix system that contains a number of injected vulnerabilities. Students need to use
their skills learned from the lectures to identify, exploit, and fix those vulnerabilities.

Our approach is open-ended, i.e., we can add more laboratory projects tothis framework without
affecting others. The projects presented in this paper are the result of three years’ maturation, with
more components added in each year. We are also planning to design a number of network security
projects forMinix based on theMinix’s existing networking functionality.

The paper is organized as the following: Section 2 briefly describes our computer security course.
Section 3 describes the design of our courseware. Section 4 describeseach of our laboratory
projects. Section 5 presents the experiences and lessons we have gained during our three-year
practice. Finally, Section 6 concludes the paper and describes the futurework.

2 The Computer Security Course

2.1 Scope of the course

Our department offers two graduate courses in security: one is computersecurity, and the other is
network security. The computer security course focuses on the concepts, principles, and techniques
for system security, such asencryption algorithms, authentication, access control, privilege, vul-
nerabilities, system protection, etc. Currently, our proposed approach only targets at the computer
security course, but we plan to extend this approach to the network security course in our future
work.

2.2 Pedagogical Approach

Lecturing on theories, principles and techniques of computer security is not enough for students
to understand system security. Students must be able to put what they havelearned into use. We
use the“learning by doing” approach. It was shown in other studies thatthis type of active learning
approach has a higher chance of having a lasting effect on students than letting students passively
listen to lectures without reinforcement [8].

More specifically, we try to use theMinixOS as our base system to develop assignments that can
give students hands-on experience with those theories taught in class. For example, when teaching
Set-UID concept ofUnix, we developed an assignment for students to play with this security
mechanism, figure out why it is needed, and understand how it is implemented.

We have developed two types of assignments: small assignments and comprehensive assign-
ments. Each small assignment focuses on one specific concept, such asSet-UID and access con-
trol. These assignments are usually small; they do not need much programming,and take only one
week or two; therefore we can have several small projects to cover a variety of concepts in system
security. However, being able to deal with each individual concept is not enough, students need
to learn how to put them together. We have developed comprehensive assignments, which cover a
number of concepts in one assignment. They are ideal candidates for final projects.

3



Security Design & ImplementationSecurity Exploit, Analysis & Testing

(Set−UID)
Sandboxing

Minix Instructional

Operating System

File System 

Encrypted 
PreparationVulnerabilities

Privilege Access

Control
Capabilitypool

Figure 1. Overview of course projects based on Minix.

2.3 Course Prerequisites

Because this course focus on system security, we require students to have appropriate system
background. Students taking the course are expected to have taken the graduate-level operating
systems. They should be proficient in C programming.

3 Design of Course Projects

The goal of our projects is to provide a set of exercises for students to practice theirsecurity
design, implementation, analysis, testing, and operationskills. Using theMinix instructional
operating system, we designed two classes of projects, one focusing on design and implementation
of security mechanisms, and the other focusing on security analysis and testing. The overview of
our projects is depicted in Figure 1.

Design and Implementation. In our computer security class, we aim at covering a number of
important security mechanisms, such asPrivilege, Authentication, Access Control, Capability, and
Sandboxing. We expect students to have first-hand experience on most of them during one semester
period. However, asking students to implement a system with all of these mechanisms from scratch
sounds infeasible. Using an instructional operating system, our goal becomes feasible because of
the following reasons: (1) An instructional OS provides students with a structured framework upon
which they can build various security mechanisms. (2) An instructional OS is functional even if the
students have not implemented the security modules completely. This gives students quick feedback
as to how their implementations work and whether the modules are implemented correctly.

Some of the security mechanisms are already implemented inMinix, such as privilege, and
access control. For some of these mechanisms, our projects are designedin a way that requires
students to study and play with the existing implementation, so they can gain first-hand experience.
For other existing mechanisms, we ask students to extend them and add more functionalities. For
example, we ask students to extend theMinix’s abbreviated access control list mechanism to sup-
port full access control lists. Several security mechanisms that we cover in class do not exist in
Minix, such as capability and encrypted file system. For them, we designed course projects that
ask student to implement these mechanisms inMinix. To make the tasks doable with 2-3 weeks,
the security mechanisms are simplified compared to those implemented in an real operating system.

4



Security analysis and testing. To master the security analysis and testing skills the students have
learned from the class, they need to practice those skills in some systems. Oneway to do this
is to give them a vulnerable system, such as older versions of Windows 2000 or Linux, and ask
them to find security flaws in those systems. Although these systems contain manyvulnerabilities,
identifying and exploiting them is not a trivial task even for seasoned system administrators, much
less students who have just learned the basic skills.

We have created a pool of vulnerable components forMinix, with some in the application layer
and some in the kernel layer. The vulnerabilities we choose reflect vulnerabilities in the real world.
They include buffer-overflow errors, race condition errors, sym-link errors, input validation errors,
authentication errors, domain errors, and design errors [9].

Instructors can choose the vulnerable components they like and inject theminto Minix. The
flawedMinix system is then given to students, who need to find those vulnerabilities and exploit
them. Before starting these exercises, students are equipped with theoretical knowledge of these
vulnerabilities, the methods of detection and exploitation, and the methodologies ofpenetration
testing and standard security testing.

3.1 Why chooseMinix?

Before we decided to useMinix, we have investigated a number of alternatives. We have the
following criteria in mind when choosing an operating system as the base of our courseware:

1. Source code availability.Because the system security course involves implementation of
system security mechanisms, studying the source code is important for the learning process.

2. Complete but not complex.The OS should provide an sufficient infrastructure to students.
Students should be able to immediately see how their implementation behaves without having
to build the security-irrelevant components to make the whole system work. However, the OS
should not be too complex; otherwise students need to spend much time in understanding the
underlying system.

3. Modularized.The security modules in the system should be highly modularized, so that they
can be modified or replaced independently.

4. No need for superuser privilege.It is preferable for students to carry out lab assignments in
a general computing environment using normal user accounts, as opposed to in a dedicated
computing environment using superuser privileges.

A complete featured OS likeLinux seems a good candidate because their completeness. How-
ever, if we choose such an operating system, the students will take considerable amount of time
to understand the functionality of the OS and thus lose focus on security. Toovercome this draw-
back, many operating system courses use simplified operating systems, such asXinu, Nachos and
Minix, for educational purposes. We adopted a similar practice.

Most computer security course projects require the administrator/superuser privilege, which can
jeopardize the security of the security experiment. With the superuser privilege, students can have
complete control over the experimental domain. A malicious students might use it to gain unwanted
access to other people’s accounts. Even if all students are well behaved, they might accidentally
introduce security holes into the system because of the lack of system administrating experience.
Some universities do give students the superuser privilege for this type of projects, but the computers
have to be restricted to an isolated environment. Although this approach has been widely used in

5



Table 1. A comparison of various operating systems.

Source Code Complete Complex Superuser Modularized
Availability Privilege

Instructional OS Minix Yes Yes No No Yes
Nachos Yes Partial No No Yes
Xinu Yes Yes No Yes Yes

Commercial OS Linux Yes Yes Yes Yes Yes
BSD Yes Yes Yes Yes Yes

SunOS No Yes Yes Yes Yes
Windows No Yes Yes Yes Yes

practice, it requires high cost for lab setting up and management. We choose a different approach:
to enable students to build and run the operating system without giving the superuser privilege.

We choseMinix instructional operating system as our base system for three reasons: first,
Minix is complete comparing to other unix-style instructional OS’s; second,Minix can run on
theSolaris systems as a non-privileged process; third,Minix is small and easy to understand.
Table 1 compares the pros and cons for using different OS’s as the base of our courseware.

3.2 Introduction to the Minix operating system

Minix is aUnix operating system, and its name came from “miniUnix”. As an instructional
operating system,Minix system is designed to be small and simple. It only has about 15,000
lines of codes, which are publicly available at [10]. A textbook was also written by Tanenbaum to
explain howMinix works [5]. Students meeting the prerequisites can understand this operating
system within a short period of time.Minix system has a high modular structure, which makes it
not only easy to understand, but also easy for students to extend and modify.
Minix was originally developed as a real operating system, running directly on Intel x86 ma-

chines. Later on, Ashton portedMinix to run on the SUN Solaris systems as a non-privileged
process [11].

4 Course Projects

4.1 Laboratories Setup

We useMinix on Solaris in our course. All of the laboratory exercises will be conducted in
SUN Solaris environment usingC language. Except for giving students more disk space (100
Megabytes) to store the files ofMinix system,Minix poses no special requirements on the general
Solaris computing environment.

TheMinix operating system can also be installed on simulated environments likeVMware[12],
Bochs[13] and so on. Installing the operating system onVMwareis not a difficult process, and no
superuser privilege is needed to runMinix on VMware. Therefore, this could be another installa-
tion option. Both approaches can be used in our laboratory designs. However, we preferred to use
the Solaris approach, so students do not need to buy theVMwarelicense or use free-wares that are
not stabilized yet.

We have designed a variety of course projects onMinix. Depending on the course schedule
and the students’ familiarity withUnix and their proficiency in C programming, instructors might

6



want to choose a subset of the projects we designed. Currently, we arestill developing more assign-
ments, and we will also solicit contributions from other people. Our goal is to create a pool of lab
assignments, such that different instructors can choose the subset to meet the requirements of their
syllabi.

4.2 Preparation

In this warm-up project, students get familiar with theMinix operating system, such as installing
and compiling theMinixOS, conducting simple administration tasks (e.g. adding/removing users),
and learning to use/modify some common utilities. More importantly, we want studentsto under-
stand theMinix kernel. For our system security course, students just need to understand in detail
system calls, file systems, the data structure ofi-node andprocess table. They do not
need to study non-security modules such as process scheduling and memory management. Stu-
dents meeting the prerequisites should be comfortable with theMinix environment in two to three
weeks.

The following is a list of sample tasks we used. In reality, instructor can choose different tasks to
achieve the same goals:

• Compile and installMinix, then add three user accounts to the system.

• Change the password verification procedure, such that a user is blocked for 15 minutes after
three failed trials.

• Implement system calls to enable users to print out attributes ini-node andprocess
table. Appropriate security checking should be implemented to ensure that a usercannot
steal information from other accounts.

Our experiments show that it is better to guide students to conduct the above tasks in one or two
lab sessions, in which a teaching assistant can provide immediate helps. These lab sessions are
extremely necessary when students have significantly different backgrounds.

4.3 Set-UID Programs

Set-UID is an important security concept inUnix operating systems. It is a good example to
show students how privileges are escalated in a system. In this project, students learn theSet-UID
concept and its implementation. Students also learn how an attacker can escalate its privileges via
exploiting a vulnerableSet-UID program.

Students need to finish the following tasks: (1) Figure out whypasswd, chsh, su commands
need to beSet-UID programs, and what will happen if they are not. (2) Students are given the
binary code of thepasswd program, which contains a number of security flaws injected before-
hand. Students need to identify those flaws, and exploit the vulnerable program to gain the root
privileges. (3) ReadMinix source codes, and figure out howSet-UID is implemented in the
system. (4) Modify the kernel source code to disable theSet-UID mechanism.

This project is quite straightforward. On average it takes students one week to finish.

4.4 Access Control List

Access control is an important security mechanism implemented in many systems. It can be
classified as Discretionary Access Control and Mandatory Access Control (MAC). In DAC systems,

7



the owner of an object can decide its security properties (e.g., who can read this file?); while in MAC
systems, the security properties are determined and controlled by only a security manager. Access
permissions can be represented on a per object basis (i.e. who can do what operations on an object);
this is calledAccess Control Lists. Permissions can also be represented on a per subject (principal)
basis (i.e. what operations on what objects the subject can do); this is called Capabilities. This
project focuses on access control lists.

The goal of this project is two-fold: (1) to get first-hand experience withDAC and (2) to be able
to implement DAC.Minix already has an implementation of abbreviated ACL; namely the access
control is based on three classes: owner, group, and others. Students need to extend this abbreviated
ACL to a full ACL, i.e., a user can assign a specific access right to any single user. On average
students need about 2-3 weeks to finish this project. Students need to dealwith the following issues:

• How access control works:Before working on their implementations, students need to un-
derstand the entire process of access control, and they need to trace theprogram execution to
find out how the access control is conducted inMinix. This enhances their understanding of
access control.

• ACL representation:Students need to think about how to represent the full ACL, how to
allow ACL’s to specify access permissions on a per user (principal) basis, rather than the
current owner-group-other protection method. Students also need to make their representation
flexible for adding and removing purposes.

• Storing the ACLs:This is another challenging part of the project. Students need to think
where exactly they should store the access control list. The currentMinix implementation
does not seem to have a place to store the full access control list. Studentsneed to solve this
issue. A hint we give them is to use some unused entries ini-nodes or store the access control
lists in separate files.

• ACL management:In addition to implementing the full ACL in the kernel, students also need
to implement the corresponding utilities, such that users can manage the access control list of
their own files.

4.5 Capability

Capability is another important concept in computer security. The goal of thisproject is to help
students understand the concept of capability. We defined a set of capabilities in this project, with
each capability representing whether a process can invoke a specific system call. Students need to
implement these capabilities inMinix. Specifically, their capability mechanism should be able to
achieve the following functionalities: (1) Permission granting based on capability. (2) Capability
copying: A process should be able to copy its capabilities to another process. (3) Capability reduc-
tion/restoration: A process should be able to amplify or reduce its current capabilities. For example,
a process can temporarily remove its ownSet-UID capability, but later can add it back. Of course,
a process cannot assign a new capability to itself. (4) Capability revocation: Root should be able to
revoke capabilities from processes.

In this project, students need to take care of the following issues:

• Capability List Representation:Students need to think about how to represent the set of
defined capabilities. They also need to think how they can associate capabilities with each

8



process. The final representation should conveniently support the required functionalities
(e.g. copying, removing etc).

• Storing the Capabilities:This is another challenging part of the project where students need
to think where capabilities should be stored. One option is to add an entry to the process table
to store the capabilities. A potential issue is how feasible it is to extend the process table (note
that the process table is a kernel data structure used by many other components).

• Capability Revocation:Students need to think about how to revoke an object’s capability.
They must be careful not to introduce vulnerabilities in this part.

• Capability Management:Students need to take care of two types of users, normal and super
users. They need to consider the following issues: how they manage thesetwo types of users,
and what functionalities are associated with each of them.

This project enhanced the students’ understanding of the capability concept. At the beginning,
most students had trouble mapping the capability concept to the real world. Wedid not tell the
students how the capability should be implemented, but to ask them to design their own capability
mechanisms. This requires them to figure out how the capabilities should be represented in the sys-
tem, where to store the capabilities, how the system can use the capability to conduct access control,
etc. Once students have figured out all of these issues, the implementation becomes relatively easy;
therefore the amount of coding for this project is not significant, and students are able to accomplish
the task within two weeks. Had it not been forMinix, students would need to spend a lot of time
implementing a meaningful system where the effect of the capability can be demonstrated.

We encouraged students to design some other features beyond the basic requirements. Students
were highly motivated, some implemented a more generic capability-based access control mecha-
nism than the required one, and some allow new capabilities to be defined by thesuperuser.

4.6 Sandbox

A sandbox is an environment in which the actions of an untrusted process are restricted according
to a security policy [14]. Such restriction protects the system from untrusted applications. InUnix,
chroot can be used to achieve a simple sandbox.

The instruction “chroot newroot cmd” causescmdto be executed relative tonewroot, i.e., the
root directory is changed tonewrootfor cmdand any of its child processes. Any program running
within this sandbox can only access files within the subdirectory ofnewroot.

SomeUnix systems allow normal user to runchroot sandbox (just makechroot a Set-
UID program). However, this can introduce a serious problem: malicious usersmay create a login
environment with their own shadow file and passwd file undernewroot, which will help them gain
a root shell. Once getting that privilege, they can create aSet-UID shell program which allows
them to use after exiting the sandbox. The attack is described in the following:

test $ mkdir /tmp/etc
test $ echo root::0:0::/:/bin/sh > /tmp/etc/passwd
test $ mkdir /tmp/bin
test $ cp /bin/sh /tmp/bin/sh
test $ cp /bin/chmod /tmp/bin/chmod
test $ chroot /tmp /bin/login (login as root with no password)
root # chmod 4755 /bin/sh (change shell to Set-UID)

9



root # exit
test $ cd /tmp/bin
test $ ./sh
root # (get root shell in real system)

One of the goals of this project is to let students find out this vulnerability with some provided
clues. Students need to implement attack procedures and demonstrate how to take advantage of the
vulnerability to gain root privileges. This is an efficient way for students toenhance their under-
standing on security hole in kernel level.

To fix the above vulnerability, the best way is to disallow normal user from using chroot.
However, normal users will not be able to take advantage of the sandbox. We ask students to extend
the currentchroot such that the program is safe to be used by normal users.

We suggest students to design a security policy for this sandbox. Sandboxsecurity policy defines
a set of permissions and restrictions that a program must obey while running. For example, the
policy can define whether a program is permitted to read files or connect to the Internet. Any
program attempting to violate the security policy will be blocked. Students need toconsider a
number of issues, including how to define policy, where to save policy, when it should be read in,
and how to secure the policy file. Students should be able to finish this projectwithin 2-3 weeks.

4.7 Encrypted File System

Non-encrypted file system stores plain text on disks, so if the disk is stolen,information on
it can be disclosed. An Encrypted File System (EFS) solves this problem byencrypting the file
system, such that only users who knows the encryption keys can accessthe files. The primary
benefit of EFS is to defend against unauthorized access. The encryption/decryption operations
should be transparent to users. Implementing EFS requires students to combine techniques such
as encryption, key management, authentication, access control, and security in OS kernels and file
systems; therefore this project is a comprehensive project. We give this project as a final project.
Minix system has a complete file system, so students can build the EFS on top of it. As we

mentioned before,Minix file system is reasonably easy to understand; students can start building
their own EFS after they understand how the file system works.

This project is a good candidate for the final comprehensive project because it covers a variety of
security-related concepts and properties:

• User Transparency:The main challenge of this project is how to make EFS transparent. If the
transparency is not a issue, then students can easily implement a set of encryption/decryption
utilities, and users need to use those utilities to encrypt/decrypt their filesmanually. The
transparency means that the encryption/decryption should be performedon the fly, while
users are reading/writing their files. To achieve the transparency, students need to modify the
system calls related to the reading and writing. They need to insert the encryption algorithms
into the proper positions in those system calls.

• Key management:Another challenge of this project is the key management, namely how
and where the encryption keys should be stored, how the keys should beprotected, changed,
and revoked. We have seen different designs from students. For example, regarding the key
storage problem, some students store the key (encrypted) in a file, and somestore it in the
i-node of the encrypted file. We also found out that some students mistakenlysave the plain-
text key on the disk, which defeats the whole purpose of the EFS.

10



• Authentication:How to decide whether a user can access the encrypted file system or not?
This part of the project not only teach students the authentication purpose, more importantly, it
teaches students an important lesson about the tradeoff between the usability and the security.
Some students’ projects require users to authenticate themselves each time when they access
a file in EFS; some conduct just one authentication when the users mount the EFS (a good
implementation in our opinion); some conduct the authentication during the login. During
their demos, we point out the advantages and disadvantages of their designs, so they can
evaluate their own designs.

• Using encryption and hashing algorithms:Although students are provided with codes for
encryption and hashing algorithms, they still need to learn how to use it correctly. Because
AES is a block cipher, students need to deal with the issues related the block and padding;
otherwise, their reading/writing system calls might not function correctly.

• Security analysis:After most of the students have finished their designs, we give them several
incorrect designs that we have encountered in the past, and we asked them to find out whether
those designs are secure or not; if not, how to break those EFS.

Project Simplification

For students who do not have sufficient background in operating system kernel programming, we
need to customize our projects for them. We divide the EFS project into three projects:

1. Project 1: Encryption Algorithms. This project gets students familiar with theAES algorithm.
Students need to implement a user-level program to encrypt and decryptfiles.

2. Project 2: Kernel modification. The second project asks students to modify the corresponding
system calls, such that some special files are always read/write using encryption. However,
to simply this project, we ask them to always use a fixed key for the encryption. The key can
be hard-coded in their programs.

3. Project 3: Key Management. This project deals with the key management issue that is inten-
tionally left off in the previous project. Students now need to find a place to store the key;
they need to make decision on whether to use the same key for all the files or one key for each
file; they also need to deal with the authentication issues, etc.

4.8 Vulnerability Analysis

Vulnerability analysisstrengthens the system security by identifying and analyzing security flaws
in computer systems. This project intends to expose students to such an critical approach. We have
two goals in this project: The first goal is to let students gain first-hand experience on software
vulnerabilities, be familiar with a list of common security flaws, and understand how a seemly-not-
so-harmful flaw in a program can become a risk to a system. The second goal is to give students
opportunities to practice their vulnerability analysis and testing skills. Students can learn a number
of methodologies from the class, such as vulnerability hypothesis, penetration testing methodology,
code inspection techniques, and blackbox and whitebox testing [15]. They need to practice these
methodologies in this project.

To achieve our goals, we modify theMinix source codes and intentionally introduce a set of
vulnerabilities. We call these vulnerabilities theinjected vulnerabilities. The revisedMinix system

11



is then given to students. The students are given some hints, such as a list of possible vulnerabilities,
the possible locations of the vulnerable programs, etc. Their task is to find out and verify these
vulnerabilities.

The injected vulnerabilities cover a wide spectrum of vulnerabilities, such asbuffer overflow, race
condition, security holes in the access control mechanisms, security holes inSet-UID programs,
information leakage, and denial of service. These vulnerabilities reflectsystem flaws caused by
incorrect design, implementation, and configuration. All these vulnerabilitiesare collected from real
commercial Unix operating systems, such as SUNOS, HP-UNIX and Linux, and are then ported to
Minix. We have ported nine vulnerabilities so far, with six in the user level and three in the kernel
level. We will port other typical vulnerabilities toMinix in the future.

Students in this project need to accomplish the following tasks:

• Identify vulnerabilities. This is a warm-up practice to help students get familiar with vulner-
ability living environment.

• Exploit vulnerabilities. This is a challenging and interesting part of the project in which
students write attack programs aiming at these vulnerabilities. Demonstration is needed to
show what unauthorized privilege can be obtained.

• Fix vulnerabilities. Students need to design solutions to eliminate or remedy the identified
vulnerabilities.

5 Experiences and Lessons

We did a teaching experiment in the 2002 spring semester when we taught the graduate-level
computer security course at Syracuse University. At that time, we askedstudents to add certain
specific security mechanisms toMinix. We only give students one project for the whole semester
because modifying an OS seems to be a daunting job for most of the students. The students liked
the project very much and were highly motivated. At the end of the semester,the students provided
a number of useful suggestions. For example, many students noted, “mostof our time was spent on
figuring out how such an operating system work, if somebody or some documentation can explain
that to us, we could have done four or five different projects of this typeinstead of doing one during
the whole semester”. This observation shapes the goal of our design: wewant students to implement
a project within two to four weeks using our proposed instructional environment.

When we taught the course again in Spring 2003, we provided students withsufficient informa-
tion on howMinix works, and we added a lecture to introduceMinix. As a result, students had
gotten familiar withMinix within the first three weeks, and were ready for the projects we had
designed for them. The same degree of familiarity took students half of a semester previously due
to the lack of information.

In our first experiment in 2002, the requirements of each project were not tailored to a scope
appropriate for 2-3 weeks. During the last three years’ experiments, we simplified those require-
ments. In 2004 semester, we successfully assigned four projects in one semester, including the
Set-UID project, capability project, access control project, and the comprehensive encrypted file
system project. However, we are still unable to assign the vulnerability project due to the lack of
time. We will further improve our strategy in the coming 2005 Spring semester.

During the last three years, we have also learned the following lessons:

• Preparation: From our experience, the preparation project is crucial to the successof the
subsequent assignments. Some students who overlooked this assignment find themselves in

12



trouble later. In fact, when we used the proposed approach at the firsttime, we did not give
students this assignment because we thought it was not necessary. As aresult, students later
spent a great deal of time in figuring out how to achieve the tasks in this assignment. Most of
the students told us that they spent80% of their time to get familiar with the system. Once
they knew howMinixworks, they can spend short time to finish the required task. Therefore,
when we use the approach again, we used several lectures to inform students the necessary
materials, and ask the TA to devote significant amount of time to help the students finish this
assignment. The preparation part is extremely important. If students fail this part, they will
spend enormously more time on the subsequent projects. This is very clear when we compare
the performance of the students in our 2003 course with that of the studentsin 2002. We plan
to integrate the materials related toMinix into the lecture, so students can be prepared better.

• Background knowledge:We also realized that some students in the class are not familiar with
theUnix environment because they have been using Windows most of the time. This brings
some challenges because these students do not know how to set up thePATH environment
variable, how to search for a file, etc. We plan to develop materials to help students get over
this obstacle.

• Cheating:Cheating did occur, especially on the final encrypted file system project. We now
have a list of questions that we will ask during student’s demonstrations. They not only
help us evaluate students’ projects, but also are quite effective so far inidentifying cheatings.
Example of questions include “where do you save keys and why?”, “canyour implementation
work on large files? and how did you handle that?”, etc. Students who simply copy others’
implementation will be most likely unable to answer these questions.

6 Conclusion and Future Work

We have described a laboratory design for our graduate-level computer security course. Our ap-
proach is intrigued by the successful practice in operating system and network courses education.
In our approach, we useMinix instructional operating system as the basis of our laboratory; in
design-oriented laboratory projects, students add a specific security mechanism to the system; in
analysis-oriented laboratory projects, students identify, exploit, and fix vulnerabilities inMinix.
Because of the desirable properties ofMinix, our laboratory projects can be finished within a rea-
sonable amount of time and in a general computing environment without using superuser privileges.
We have designed a series of laboratory projects based onMinix, and have experimented with our
approach for the last three years. The experience obtained is encouraging, and students in our class
have shown great interest in the course and the projects.

We will continue experimenting and perfecting our approach. More importantly, we will work
on making this laboratory approach easy to be adopted by other people. This requires us to provide
detailed documentations, instructions, and a pool of different projects covering a wide range of
security concepts.

References

[1] E. H. Spafford, “February 1997 testimony before the united states house of representa-
tives’ subcommittee on technology, computer and network security,” 2000,available at
http://www.house.gov/science/hearing.htm.

13



[2] J. M. D. Hill, C. A. C. Jr., J. W. Humphries, and U. W. Pooch, “Using an isolated network
laboratory to teach advanced networks and security,” inProceedings of the 32nd SIGCSE
Technical Symposium on Computer Science Education, Charlotte, NC, USA, February 2001,
pp. 36–40.

[3] J. Mayo and P. Kearns, “A secure unrestricted advanced systemslaboratory,” inProceedings of
the 30th SIGCSE Technical Symposium on Computer Science Education, New Orleans, USA,
March 24-28 1999, pp. 165–169.

[4] W. G. Mitchener and A. Vahdat, “A chat room assignment for teaching network security,”
in Proceedings of the 32nd SIGCSE Technical Symposium on Computer Science Education,
Charlotte, NC, USA, February 2001, pp. 31–35.

[5] A. Tanenbaum,Operating Systems: Design and Implementation, 2nd ed. Prentice Hall, 1996.

[6] W. A. Christopher, S. J. Procter, and T. E. Anderson, “The nachos instruc-
tional operating system,” inProceedings of the Winter 1993 USENIX Confer-
ence, San Diego, CA, USA, January, 25-29 1993, pp. 481–489, availableat
http://http.cs.berkeley.edu/∼tea/nachos.

[7] D. Comer,Operating System Design: the XINU Approach. Prentice Hall, 1984.

[8] C. Meyers and T. B. Jones,Promoting Active Learning: Strategies for the College Classroom.
Jossey-Bass, San Francisco, CA, 1993.

[9] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi, “A taxonomy of computer
program security flaws,”ACM Computing Surveys, vol. 26, no. 3, pp. 211–254, September
1994.

[10] A. Tanenbaum, “http://www.cs.vu.nl/∼ast/minix.html.”

[11] P. Ashton, “Smx–the solaris port of minix,” 1996.

[12] VMWare, “http://www.vmware.com.”

[13] Bochs, “http://bochs.sourceforge.net.”

[14] M. Bishop,Computer Security: Art and Science. Addison-Wesley, 2002.

[15] C. Pfleeger, S. Pfleeger, and M. Theofanos, “A methodology for penetration testing,”Comput-
ers and Security, vol. 8, no. 7, pp. 613–620, 1989.

14


