
Mediums: Visual Integrity Preserving Framework∗

Tongbo Luo, Xing Jin, and Wenliang Du
Dept. of Electrical Engineering & Computer Science, Syracuse University

Syracuse, New York, USA

ABSTRACT

The UI redressing attack and its variations have spread
across several platforms, from web browsers to mobile sys-
tems. We study the fundamental problem underneath such
attacks, and formulate a generic model called the container
threat model. We believe that the attacks are caused by the
system’s failure to preserve visual integrity. From this angle,
we study the existing countermeasures and propose a generic
approach, Mediums framework, to develop a Trusted Display
Base (TDB) to address this type of problems. We use the
side channel to convey the lost visual information to users.
From the access control perspective, we use the dynamic
binding policy model to allow the server to enforce different
restrictions based on different client-side scenarios.

Categories and Subject Descriptors

Security and Privacy [Systems security]: [Browser Secu-
rity]

Keywords

Visual Integrity, Touchjacking, Web Container Model

1. INTRODUCTION
On May 31 2010, hundreds of thousands of Facebook users

have fallen for a social-engineering trick which allowed a
clickjacking worm to spread quickly over Facebook during
that holiday weekend. The trick, which uses a clickjacking
exploit, means that visiting users are tricked into “LIKING”
a page without necessarily realizing that they are recom-
mending it to all of their Facebook friends.

The phenomenon of such a proliferation of attacks without
proper protections is hard to understand. Since the first bug
report on the negative usage of iframe by [16], Clickjacking
attacks with various forms have been proposed. They take

∗The project was supported by the Google Research Award
and the NSF Award No. 1017771.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODASPY’13, February 18–20, 2013, San Antonio, Texas, USA.
Copyright 2013 ACM 978-1-4503-1890-7/13/02 ...$15.00.

advantage of transparent iframes. The similar technique has
also been extended to the mobile platforms [11]. Although
many countermeasures have been proposed to deal with this
type of problems [1, 4, 8], we are more interested in know-
ing what fundamental flaw has caused such attacks, so we
can develop countermeasures that directly address the fun-
damental flaw.

We believe that all the attacks discussed above are caused
by the system’s failure to preserve visual integrity, i.e., to
ensure what users perceive is the same as what the system
“see”, so users’ actions are based on the correct interpreta-
tion of the information presented to them. Based on this
understanding, we further believe that an ideal solution is
to preserve the visual integrity. This can be done using the
techniques related to visualization. We will discuss this ap-
proach in the paper. However, we also point out that this
ideal solution is not completely feasible, due to the limi-
tation of the current technologies related to visualization.
Therefore, it is essential for the system to identify whether
the visual integrity is in danger; if it is, the system should
restrict the access.

This is basically an access control problem. Namely, a sys-
tem should adopt a good access control model to deal with
the visual integrity problem. Much of the existing work se-
lects an ad hoc access control to address a particular attack,
making them inapplicable to the other variations. We be-
lieve that a generic approach should be adopted, so we can
develop access control systems that can address the attacks
at the fundamental level. Although we may not be able to
develop one access control system that fits all the protection
needs, the approach that we take should be applicable to all
the variations of the visual integrity attacks.

The contribution of our work is the following:

1. Our paper is the first work to fomulate the container
threat model, and try to deal with this attack vector
on mobile device.

2. Our work is the first to use side channels to convey
the lost visual information to users on mobile device.
We have also developed a novel dynamic binding pol-
icy model to defeat the attacks on visual integrity on
mobile device.

3. We have implemented our solutions in Android on We-
bView container, and our evaluation results are quite
encouraging.

1

2. MOTIVATION
In this section, we briefly review an attack vector called

Visual-hijacking which is caused by the compromise of visual
integrity. Visual-hijacking is a set of attacks that uses var-
ious visual techniques to trick users into unwittingly click-
ing on disguised user-interface (UI) elements on the screen,
usually resulting in damage to the victim. We formulate the
visual integrity problem into a common attack model named
Container-based Visual Attack Model. We treat all the vari-
ations of the visual-hijacking attacks equally in this paper
when we explain our solutions.

2.1 Existing Attacks Using Iframe
The most famous attack caused by the compromise of vi-

sual integrity was introduced by Robert Hansen and Jeremiah
Grossman in 2008. The technique is calledClickjacking [3],
which takes advantage of the CSS design specification “opac-
ity”. The attack uses multiple transparent or opaque layers
to trick a user into clicking on a button or link in a page,
while the user’s actual intention is to click on a different
page. Using a similar technique, keystrokes can also be hi-
jacked. With a carefully crafted combination of stylesheets,
iframes, and text boxes, a user can be led to believe that
they are typing in the password field on the pages associ-
ated with their email or bank accounts, but instead, they
are typing in an invisible frame controlled by the attacker.

However, it is not always necessary to make elements in-
visible to compromise the visual integrity of a page. The
UI redressing [15] attack is an example. The main idea
of the UI redressing attack is to seamlessly merge two or
more webpages, making them look like one, tricking users
into perform an action that is different from the users’ in-
tentions. This user interface (UI) redressing method is es-
pecially useful when there are buttons with nonspecific text
like “Download”, “Click here” or “Exit”. Another variant of
clickjacking is to use JavaScript to make a small transpar-
ent iframe to follow the mouse cursor. For this attack, it is
not important where a user moves his mouse, the click will
always occur in the invisible iframe.

Many proof-of-concept attacks based on the clickjacking
techniques have also been published. Facebook Likejack-
ing [19] uses visible Facebook Like buttons to redress the
contents, and thus tricks users of a website into posting a
Facebook status update for a site that they did not neces-
sarily like. Twitter Tweetbomb [12] uses the same technique
to attack the Twitter network. Combining the invisible ele-
ment technique with HTML5 File API, Filejacking [7] uses
the invisible technique to get the user’s uploaded private
files. Flash Settings are also another victim to Clickjacking.

2.2 Existing Attacks on WebView
Similar attacks have been extended to the mobile plat-

forms. Using iframes, the attacks on the mobile platforms
are similar to those on the desktop platforms. However, on
the mobile platform, similar attacks can be launched with-
out iframes. TapJacking [18] is an example, and it occurs
when a malicious application displays a fake user interface
(via an Android component called Toast), to hide the real
interface underneath. When users interact with this inter-
face, the interaction events actually go to the real interface
underneath (e.g. a phone dialer). Using this technique, an
attacker can potentially trick a user into making purchases,

making expensive phone calls, clicking on ads, granting per-
missions, or even deleting data from the phone.

Confused deputy attacks can also be applied to another
type of web container, the WebView. The WebView tech-
nology packages the basic functionalities of browsers into a
class. Similar to iframe, which allows one web application
to be embeded in another potentially untrusted web appli-
cation, WebView allows a web application to be embedded
in a potentially untrusted Android application. For most
cases, the owner of the Android application is not the same
as the owner of the web application inside WebView. Tech-
nologies similar to WebView are adopted by various mobile
platforms, including iOS and Windows Phone, although the
corresponding classes are called different names. For the
sake of simplicity, we only use the term WebView through-
out this paper.

Attack the Touchjacking [11], which can be launched
successfully to redirect user’s touch-screen event to the tar-
get WebView, triggering actions on the web page inside the
targeted WebView. Similar to clickjacking attacks, the at-
tacker can develop a malicious Android application with
multiple WebView instances embedded. The attacker puts a
visible or invisible WebView instance above another instance
to redress the webpage inside WebView, and redirects user’s
touch screen events. The attack works on all popular mobile
platforms, including iOS, Android, and Windows Phone.

2.3 Miscellaneous Attacks
According to the security blogger [6], a new technique

called Cursorjacking was demonstrated. It deceives users
by using a custom cursor image, where the pointer was dis-
played with an offset, so the displayed cursor was shifted to
the right from the actual mouse position. With clever po-
sitioning of page elements, attackers can direct user’s clicks
to the desired elements. Since our work only focuses on the
mobile devices, Cursorjacking is not in our scope.

3. CONTAINER THREAT MODEL
We use a generic model called the web container threat

model to model the attacks on visual integrity across dif-
ferent platforms. All the attacks described in the previous
section take place under a similar scenario: The victim ap-
plication is embedded in another application via the com-
ponents provided by the system. These components are the
essential part that makes the attack successful. We use the
term Container to refer to these components in this pa-
per. The application that holds the container is called host
application, and the application loaded into the container is
called guest application. For example, in the iframe con-
tainer case, the main page is the host, and the pages loaded
into the iframes are the guest. In the Android WebView con-
tainer case, the Android application is the host, and the web
page inside WebView is the guest.

It should be noted that for the iframe and WebView con-
tainers, even though the attacker has all the privileges of the
host app [5], the integrity of the data in the containers is
still preserved, because of the sandbox access control mech-
anisms provided by these system components. The users’
credentials of the guest webpage will be stored inside the
container, which is a part of the system (browser or mo-
bile system). Namely, the host application cannot directly
tamper with the contents in their containers. Although We-
bView does provide mechanisms in its current design to al-

2

low the host to tamper with the data in the container [10],
those channels will soon be secured in future versions. The
attacker only has the access to the UI-based APIs of the
container for the layout purpose. Those APIs are designed
for the general view-based UI objects in the system.

3.1 Weaken of Trusted Display Base
As we all know, security in any system must be built upon

a solid Trusted Computing Base (TCB), and web security is
no exception. Web applications rely on several TCB compo-
nents to achieve security. In the container threat model, a
secure container must serve as the TCB to allow web pages
to be embedded in a untrusted host without compromising
the data integrity. To achieve this goal, a well-designed con-
tainer needs to enforce access control on exposed APIs that
allow the host to interact with the container.

However, there is no access control enforced on the UI-
based APIs exposed by the container. Through these APIs,
the malicious host app can manipulate the display proper-
ties of the container and its inside contents. For example,
the host application can set the position and size of the con-
tainer; the alpha value of the contents in the container can
also be decided by the host. Without access control on these
UI-based APIs, there is no trusted computing base to ensure
visual security. We call this kind of trusted computing base
the Trusted Display Base(TDB). We will discuss why
the weaken of TDB can lead to the compromise of visual
integrity, and eventually lead to security breaches. We will
explain how our Midiums framework rebuild solid TDB on
container as well.

4. REBUILD TRUSTED DISPLAY BASE
As we discussed in the previous section, the weaken of

Trusted Display Base (TDB) is due to the lack of access
control on the UI-based APIs exposed by the container. As
the result, visual information is lost and the visual integrity
is compromised.

4.1 The Mediums Framework
In order to rebuild TDB, we propose a generic solution,

the Mediums framework, to defend against the attacks on
visual integrity. The Mediums framework consists of two so-
lutions. In the first solution, we use side channels to convey
the lost visual information to users. In the second solu-
tion, we know that sometimes the lost visual information
cannot be completely conveyed to users, so we developed
an enhanced access control model to complement the side
channel solution.

Three key components in the design of Mediums frame-
work are: Environment Monitor, Side-Channel Notifier and
Dynamic Binding Engine. Environment Monitor is the mod-
ule to intercept each UI event performed by the user before it
reaches the rendering engine. This monitor analyzes the po-
tential visual information lost at the place the UI event hap-
pened and returns the level of dangerous to the framework.
Once Mediums framework receives the signal from Environ-
ment Monitor, it triggers Side-Channel Notifier and Dy-

namic Binding Engine to minimize the impact by notifying
user the dangerous of visual integrity compromise through
side-channels or dynamically binding the access control pol-
icy defined by the server. We will explain why these two
approaches can successfully rebuild TDB later.

It is important to notice that Mediums focues on attacks

under Web Container Threat Model. Mediums does not tar-
get on any specific container but is a more generic solution to
deal with how to rebuild TDB to preserve the visual integrity
of the webpage in the container. Only EnvironmentMonitor

depends on the UI architecture of the platform (i.e. Android
UI module in WebView case and browser rendering engine in
iframe case). However, the design of Side-ChannelNotifier
and DynamicBindingEngine is platform independent. There-
fore, although we only implement and evaluate Medium frame-
work for WebView case, it can also be applied to iframe case
without changing the design.

4.2 Visualization Enhancement
As we just said, the fundamental problem that causes the

compromise of visual integrity is the loss of visual informa-
tion when the system conveys its information to the user.
Therefore, the best solution is to enhance the communica-
tion channel to reduce the information loss, so what users
learn is identical to what the system knows and Mediums
framework builds the TDB.

Several solutions were proposed to permanently or tem-
porarily disable the visualization features to prevent the in-
formation loss. For example, the X-Frame-Option HTTP
header allows the guest web app to prevent the container
from being invisible. However, those solutions solve the
problem at the cost of user experience. Instead of banning
these features, we propose to use side channels to make up
for the lost information. We will describe some of the side
channels that are suitable for this goal.

4.2.1 Mobile Device Sensors

Some side channels used by desktops/laptops may not be
available for mobile devices. For example, there is no cursor
on the screen for most mobile systems. However, most mo-
bile devices have embedded sensors, such as accelerometer
or vibrator; they can be used as side channels. In our im-
plementation, we have chosen the vibrator, speaker and
flashlight as our side changes. For example, when the user
touches a display area that has overlapping WebViews, the
system will vibrate the device; if the user touches on a trans-
parent overlaid area, the device will beep. Those three types
of sensors are only for the proof-of-concept purposes, and
they can be extended to other types of sensors.

4.2.2 System UI

We can use the unique display features of mobile system
as side channels. Toast mechanism in Android can be used:
a toast notification is a message that pops up on the surface
of the window; it only fills the amount of space required for
the message and the user’s current activity remains visible
and interactive. The notification automatically fades in and
out, and does not accept interaction events. If the Medi-
ums framework detects that the user’s current touch event
is in an area with potential information loss, a toast mes-
sage shown in Figure 1(a) will pop up. The status bar is
another choice for side channels. An application can add an
icon (with an optional message) to the system’s status bar,
which is normally located at the top of the screen. The color
and content of the icon will alert users about a potential vi-
sual information lost. Users can read more details about
the lost visual information by clicking on the status bar.
Compared to the toast and sensor approach, the notifica-
tion message is more persistent and stays there much longer

3

(see Figure 1(b)). It is also important to notice that those
system UIs are triggered by the Mediums framework so that
it is impossible for the attackers to block this side-channel.

(a) Toast Channel (b) Status Bar Channel

Figure 1: Side Channel on Mobile Devices

4.2.3 Security Concerns

There are several attacks that can be launched against
our Mediums framework. First, attacker can intercept user’s
events before the Mediums framework gets the event. Mali-
cious host applications can intercept the user events through
the hook APIs exposed by the container. For example, by in-
voking the method setOnKeyListener of WebView, Android
applications can register an event handler callback function,
which will be triggered when a key is pressed in this Web-
View. To defeat this attack, we enforce the access control
before the event hits the hook, guaranteeing that the moni-
tor cannot be bypassed.

Moreover, to minimize the impact of unintended UI event,
Mediums framework records whether users have performed
click on each WebView instance or not. If framework detects
that it is the first time for the user to click on the WebView
instance with potential visual information lost, Mediums will
discard this UI event and trigger the side-channel notifier to
alert user. Users do not have to confirm that they indeed
want to complete the action. If user believes the visual in-
formation lost is by design and wants to perform click on it,
they just need to repeat the same action on the WebView
isntance again. Mediums framework would not trigger the
side-channel notifier since it has already saved user’s choice
on this WebView instance.

Second, attackers can attempt to block our side chan-
nels. Mediums framework will detect whether current side-
channel is disabled by user or attacker, and automatically
switch to other side-channel to notify user. For example,
if the users turn off the speaker or ringtone, the framework
needs to switch to the toast or status bar as the side channel
which cannot be blocked by the attacker.

4.3 Dynamic Binding Framework
Even if we can use side channels to convey the lost dimen-

sion, users may still ignore them, as they are indeed differ-
ent from an actual dimension. In these cases, a good system
should be more intelligent in deciding whether it should al-
low users to conduct certain actions or not. Although a
number of solutions have been proposed [8, 13], they seem
to depend on ad hoc policies that can solve one type of
problems, but it is difficult to be applied to other similar

problems. The reason is that these solutions were not devel-
oped from the access control angle. Our framework allows
us to treat the visual integrity problem as an access control
problem, and can thus lead to a more generic solution.

Policy models decide when a click or touch action should
be allowed or denied. Ideally, if the visual integrity is more
likely to be compromised, the control on the access should
be more restricted. There are two types of policy models:
static binding model and dynamic binding model.

4.3.1 Static Binding Policy Model

In the static binding policy model, the access control pol-
icy is set when server constructs the webpage. The policy
can be set and enforced by the client side or the server side,
but they both suffer from the reliability and accuracy issues.

In the client only model, the client side sets and en-
forces the access control policy. Several work took this ap-
proach [13]. From the policy’s reliability perspective, since
the enforcer is at the client side, which is the place where all
the access actions take place, by gathering all the environ-
ment information at the moment when the action happens,
the enforcer can effectively enforce the access control policy.
However, from the accuracy perspective, when the client sets
the policy without the support from the server, they cannot
take the contents in the container into consideration. This
may lead to the granularity problem and affect the accuracy
of the policies.

In the server only model, the policy is set and enforced
by the web server. The widely adopted solution Frame-
buster [8] took this approach. Two major barriers make this
access control policy either inaccurate or unreliable. Due to
the lack of real-time environment information at the client
side, when the server sets the policy, it is hard to predict
the visualization environment when the user’s action takes
place. For the reliability issue, since the action happens at
the client side, without the support from the specifically de-
signed client framework, the servers do not have sufficient
information to set the correct policy; this will reduce the
reliability [17].

4.3.2 Dynamic Binding Policy Model

We propose to use a dynamic binding policy framework
to solve the above problems. In this model, the server sets
different access control policies for different client-side condi-
tions. Although none of the existing works formally defined
this policy model, some of the existing solutions, such as X-
Frame-Options [14], take this approach. With the support
of the browser that recognizes this new HTTP header, the
web server can decide whether its pages can be loaded into
the iframe or not. The recent project [4] proposed to allow
the web application to use Sensitive-UI to mark the objects
that do not want to be overlapped.

The limitations of those solutions are the following: The
X-Frame-Options solution only deals with one situation, i.e.,
whether the page is loaded in the container or not. The
Sensitive-UI solution only supports one action no matter
what the client-side situation was. Moreover, the client-side
environment can be dynamically changed. It is highly pos-
sible that the container does not overlap with others when
the page was first loaded, but it overlaps with others when
user performs click actions later. Since the server cannot
predict the client-side situation when the access takes place,
this framework should allow the web developers to define

4

policies that depend on the runtime conditions on the client
side. Therefore, to support more accurate finer-grained ac-
cess control policy in this model, we propose to use the dy-
namic binding framework.

Dynamic binding framework pre-defined several client-side
scenarios that may cause visual information loss, and for
each scenario, it sets actions to alleviate the loss. The web
developers can associate the policy to the whole webpage
or certain DOM objects based on the contents of the web-
page. For example we can integrate the Contego [9] model to
Mediums framework to enable the web developers to assign
subset of privileges to specific DOM element of the webpage.

if (Senarios #1) Allow Privilege Subset 1

else if (Senarios #2) Allow Privilege Subset 2
else if (Senarios #3) Allow no Privilege

if (Senarios #4) Deny Privilege Subset 4

In WebView case, a concrete sample case is given in the
following:

if (not in a WebView)
Allow {Clickable, Attach-Cookie}

else if (embedded in a overlapping WebView)

Allow {Clickable}
else if (embedded in an invisible WebView)

Allow {}

5. IMPLEMENTATION
We have implementd the visualization enhancement using

the side channel solution and the dynamic binding solution
for the Android system (version 4.0.3). Figure 2 demon-
strates the high-level architecture of our implementation.

Figure 2: Mediums Framework Overview

The UI-Event Monitor located in the RootView object
of each application intercepts every touch action performed
by users, and invokes the Environment Monitor, which tra-
verses the view tree of the application to detect whether
there is a potential visual information loss or not. If there
is a potential danger at the place where the touch action
occurs, and the user has not been notified enough times, the
framework will discard the event and trigger the protection
mechanism to notify the users through side channels. Oth-
erwise, the event will be dispatched to the target UI object.

5.1 UI-Event Monitor
The primary goal of the UI-event monitor is to intercept

each UI event in the system and check the potential visual
information loss before the event affects the application. To
achieve this goal, The UI-event monitor needs to be placed
in the event dispatching path, before the event reaches the
application. Due to the page limitation, details of how the
Android event handling mechanism works are not included
in this paper; they can be found in the extended version of
the paper.

5.2 Environment Monitor
The Environment Monitor is a module in the ViewRoot

class to measure the danger level for the possible visual infor-
mation loss. The module needs to extract the coordinate of
the touch event from the event object, and traverses the view
tree to find out all the views that contain this coordinate.
Based on the predefined danger standard, the Environment
Monitor will return the alert level. In our current imple-
mentation, we define the safe situation as the alert level 0;
when a visible WebView instance overlaps with another UI
object, the alert level is 1; when an invisible WebView in-
stance is present but without overlapping with others, the
alert level is 2; when an invisible WebView instance overlaps
with others, the alert level is 3. The higher the alert level
is, the more dangerous it is when the visual information is
lost.

5.3 Side Channel Notifier
Once the UI-event monitor detects the potential visual

information loss, it will check whether the user has been
notified for a pre-defined number of times. If so, i.e., the
user has been informed enough times, the notifier will not
be triggered and the event will be dispatched. This means
that the user has decided to accept the potential risk, and
there is no need to continue “anonying” the user. Otherwise,
side channel notification will be triggered. In our prototype,
the alert level 1 will trigger the Vibrator; the alert level
2 will trigger the Vibrator and a Toast message; and the
alert level 3 will trigger the Vibrator, a Toast message, and
System Alert Bar.

5.4 Dynamic Binding Engine
The Dynamic Binding Engine will be triggered to dynami-

cally bind the access control policy defined by the web appli-
cation inside WebView. To use the Mediums prototype, web
developers embed the dynamic policy in the HTTP head-
ers and send to the WebView along with the webpage con-
tents. In order to recognize the new dynamic binding pol-
icy header (i.e. the DBPolicy field), we need to modify the
parser module to extract the value of DBPolicy field, and re-
turn the policy information to the WebView instance. Web-
View uses the WebKit rendering engine to parse and display
web pages, and it is implemented as a native C++ library
(WebCore.so). The class WebUrlLoaderClient in the We-
bKit library will fetch the response from the network driver;
it then invokes the hook didReceiveResponse, and the code
registered to the hook will begin parse the whole response.
The Dynamic Binding Engine implements the code in this
hook to retrieve the policy in the DBPolicy field.

Since policies are retrieved by WebKit, we need to find a
way to return it to the WebView which is a Java class. The
WebView Java package uses BrowserFrame class to repre-
sent a frame of a page, and WebKit library uses WebFrame
class to represent the same concept. These two classes are
binded togather through the JNI mechanism in Android.
Therefore, the WebKit library can invoke the callback func-
tions implemented in the C++ class WebCoreFrameBridge
to return values from the native library to the Java frame-
work. We add a new callback function called jniSetPolicy for
the WebKit library to return the policy to the BrowserFrame
instance. BrowserFrame will invoke the setPolicy function
exposed by WebView class through the WebViewCore or
CallbackProxy. Figure 3 shows the process.

5

Figure 3: Dynamic Binding Engine

The dynamic policy should be stored at a secure place
where cannot be tampered by malicious apps. We add a pri-
vate field policy in the WebView class to store the dynamic
policy set by the webpage. We also add a new protected
methods setPolicy to allow the WebKit to set the dynamic
policy. It is important to note that the setPolicy method
is only accessible from the code within the android.webkit
package in the Java framework. Therefore, malicious An-
droid applications cannot invoke this method or directly
change the value of private field policy in WebView class.

6. EVALUATION
We evaluated the Mediums framwork on the Android plat-

form to demonstrate how our solution can effectively alle-
viate the visual hijacking attacks without sacrificing much
user experience. The evaluation environment is Samsung
Nexus S phone with Samsung Exynos 3110 processor, 512
MB Mobile DDR RAM and 4.0-inch screen.

6.1 Attack Scenarios
For our evaluation purpose, we wrote an Android appli-

cation with various kinds of Touchjacking in it. To users,
the main purpose of this application is to to conduct sur-
veys, but behind the scene, the application tries to attack
the user’s online web account. We use two particular at-
tacks, Keystroke Hijacking attack and Invisible WebView
Touchjacking attack in our experiments.

(a) What User Sees (b) UI on top

Figure 4: WebView overlapped with UI component

Figure 4 shows how was Keystroke Hijacking attack set
up. In our app, we use a WebView to load the WordPress
login page, and on top of it, we put two text input fields
(native Android UI objects), each covering one text field
on the web page. Therefore, the users see what is shown in
Figure 4(a), but when they type the username and password,
they actually type the information in those native UI objects
(Figure 4(b)), which belong to the host Android application.

Figure 5 demonstrates how the Invisible WebView Touch-
jacking attack works. The WebView (Figure 5(a)) that loads

a survey webpage is put underneath another transparent
WebView. Figure 5(b) shows the transparent WebView (we
intentionally make the picture non-transparant so readers
can see it). What the users sees on the screen is a sur-
vey (Figure 5(a)), but when they select their choices, they
actually click the “Write a Post” link on the transparent
WordPress webpage.

(a) Visable WebView (b) Transparent WebView

Figure 5: Transparent WebView Overlapping

6.2 Evaluation of Visual Enhancement

6.2.1 Experiment Setup

We used two Samsung Nexus S phones to do user ex-
perience study. We installed the original system (Android
4.0.3) on one phone, and on the other phone, we installed
the modified Android that has our Mediums framework. We
designed two similar Android apps and both of them used
the WebView component to load a survey web app in the
WebView component. The topics and questions in the sur-
vey are different but share the similar layout. At certain
pages in both survey apps, we overlapped both transparent
WebView and visible native UI component to achieve the
Touchjacking attack scenarios described above.

We randomly choose the 86 participants in different places
such as library, street, restaurant and etc. The age of the
participants ranges from 19 to 30. We also asked how much
they knew about mobile security before the test and the re-
sults shows in the following subsections. We used survey app
to distract participants’ attention from our goal to test the
side channel visualization. Before the test, we told partici-
pants that when they found something abnormal they can
ask us, we would give some suggestions, since we did not
want them to behave in a more (or less) trusting manner.
Every participant was asked to finish the survey on both
smartphones, and we collected participants’ basic informa-
tion such as sex, age, education level and major, etc. Even
if the attacks were launched successfully during the evalua-
tion, they would not cause real damage to the participant’s
account. We observe whether our framework can help users
prevent the attacks or not.

Three major aspects can directly reflect the effectiveness
of the side channel visualization solution, and we will design
experiments to evaluate them. These aspects are formulated
as the following questions:

• Can participants get the side channel signals generated
by the Mediums Framework?

• Do participants have proper reactions to side channel
signals?

6

Side Channel
Usage

Receive
Signal

Get
Meaning

Perform
Click

Attack
Succeed

- 0 0 78 90.7%
T only 64 62 24 27.9%
V only 70 49 37 57.0%
V + T 77 75 11 12.8%

V + T + N 81 80 6 6.97%
V = Vibration Side Channel; T = Toast Side Channel;
N = Notification Bar Side Channel

Table 1: Survey Results Among 86 Participants

• Does the solution affect user experience?

6.2.2 User’s Information Acquistion

In our evaluation, we used three side channels to convey
the lost visual information: Vibration, Toast and Notifica-
tion Bar. Among the 86 participants(Table 1), 81% par-
ticipants noticed the vibration and 74% were aware of the
toast. When we combined them together, 90% got the side
channel signal. When we used the vibration, toast and alert
bar together, the number becomes 94%. We also records
the the reason why more participants miss the side-channel
signals. This is because the viberation and toast only last
for short period of time.

6.2.3 User’s Reaction to Information

Another important factor that directly affects the success
of our solution is whether the users is aware of the danger
after they receive the side channel signals. The users’ reac-
tions to the signals may vary depending on their knowledge
about the mobile security. After finishing two survey apps,
we asked how much they knew about mobile security, such
as the clickjacking and touchjacking attacks. On a scale of 1
to 5, 1 means knowing nothing and 5 means knowing much.
Our results showed that the average rating was 1.76, which
means most of participants know nothing or little about the
clickjacking and touchjacking attacks. This way, we can
test the effectiveness of our secure mechanism for people
even without any knowledge. Table 1 shows the results we
obtained. In the normal WebView without any Mediums
framework, 8 participants chose not to click, because most
of them know a lot about clickjacking and touchjacking, they
thought it was not secure to perform actions on these apps,
so they gave up on the survey. Among the 70 participants
who noticed the vibration, only 49 (70%) chose not to click.
Participants didn’t connect the vibration to the potential
danger because normal apps can vibrate too. Similarly, the
toast approach has a lower success rate 27.9%, which is bet-
ter than vibration, but some participants said that without
vibration they did not notice the toast message. However,
using vibration, toast and alert bar together is the most
reliable way to alert users, which significantly dropped the
touchjacking attack’s success rate to 6.97%.

6.2.4 Usability of Solution

We also need to evaluate how the side channel signals af-
fect user experience We also collected feedback on how an-
noyed the participants were when using apps in our frame-
work. On a scale of 1 to 5, being 1 means “not at all” and

being 5 means“very annoying”. The average rating was 1.65,
which is the acceptable level.

The overhead introduced by our framework to monitor
each UI event and check environment is another factor that
may affect user experience. We measured the overhead using
100 applications from the Android Market, the range of the
overhead per touch event was from 0 to 6 milliseconds. The
time basically comes from the view tree transversal, more
precisely, it depends on the number of nodes in the view
tree. The number of view objects in the applications that
we tested ranges from 10 to 89.

6.3 Evaluation of Dynamic Binding
We tested the performance on the smartphones for four

web applications (phpBB3, Collabtive, WordPress, and ph-
pCalander) and shows the overhead introduced by Mediums
in Figure 6. In this section, we evaluate the defense to the
attacks mentioned in 6.1 by enforcing dynamic binding.

Place Client-side Scenarios Action
Index

Actions

1st not in WebView 0 Do Nothing
2nd loaded in WebView 1 Remove From

Screen
3rd loaded in an overlapping

WebView
2 Unclickable

WebView
4th loaded in an invisible

WebView
3 Visible

WebView
5th loaded in an overlapping

invisible WebView
4 Visible &

Unclickable

Table 2: Mediums Scenarios and Action Definations

In order to prevent the Touchjacking, web developers set
the policy header as header(“DBPolicy: 00124”) in the
php file (Only 1 line of code need to be added). Each number
of the DBPolicy value corresponds to one client-side situa-
tion defined by the Mediums framework. The value of each
digit represents the action that needs to be taken if the client
side satisfies the scenario. We use the definition in Table 2
to convert the policy to the following readable form:

if (not in a WebView)

Do Nothing --> Take Action 0
else if (loaded in a WebView)

Do Nothing --> Take Action 0

else if (loaded in an overlapping WebView)
Set WebView Visibility to ’Gone’ --> Take Action 1

else if (loaded in an invisible WebView)
Set WebView as Unclickable --> Take Action 2

else if (loaded in an overlapping invisible WebView)
Set WebView as Unclickable and Visible --> Take Action 4

To defend against the keystroke hijacking attack (see Fig-
ure 4), WordPress developers can take the action to remove
the WebView instance from the screen. Therefore, the 3rd
digit of the DBPolicy value is set to 1. As results, if the
webpage is subject to the keystroke hijacking attack, the
dynamic binding engine detects the situation and enforces
the dynamic policy. The WebView instance is removed from
the screen, leaving only the overlapped UI objects depicted
in Figure 4(b). Therefore, user can clearly know that they
are under the attack and can stop.

To defend against the Invisible WebView Touchjacking at-
tack depicted in Figure 5, developers set the 5th number of

7

the DBPolicy value to 4. This policy defines that if the We-
bView is transparent and is overlapping with other objects,
WebView instance should be made unclickable and visible.
Therefore, when the attack is launched, the screen will look
like that in Figure 5(b), clearly showing the attack intent.

Figure 6: Dynamic Binding Performance Overhead

7. RELATED WORK
Section 2 has already described the work that is related to

the attacks on visual integrity. We will not repeat them. We
focus on discussing the existing solutions. We divide them
into three categories.

Client-Side Solution: Some solutions purely depend on
the client-side framework such as web browser. For example,
by banning some particular features of the container, such
as the transparent feature, web browser can alleviate the
risk of the attacks. Some well-known projects include the
ClearClick component in the NoScript [13] Firefox plug-in
and Anti-Clickjacking component in the GuardedID project.
All these solutions enhance the security by either temporar-
ily or permanently banning features of container.

Server-Side Solution: Several solutions were proposed
to modify the server-side code to defeat the attacks on vi-
sual integrity. No change to the client side is needed. One
solution is to prevent web pages from being loaded into the
container, and thus thwart the attacks. By embedding a
piece of javascript code at the very beginning of the web-
page, the webpage using Framebuster [8] can bust out from
the iframe. However, this approach is not very reliable [17].
Another solution is to add unguessable secret to the URL
of each web page, so the navigation can only start from cer-
tain trusted pages [2]. A third solution is to ask users to
take additional actions, such as requiring the user to mark
a checkbox, type in password, or solve a CAPTCHA, be-
fore clicking on the important button. These actions make
it harder for clickjackers, as they now have to trick users
into taking those actions. The last two solutions require
significant changes on the server-side code.

Hybrid Solution: A hybrid solution is to let the server
side set the policy on visual integrity, and depend on the
browser to enforce the policy. Our dynamic binding ap-
proach takes a similar approach, but provides a finer gran-
ularity. We have already distinguished our work with some
well-known projects in section 4.3.2.

8. SUMMARY
In this paper, we systematically study a class of UI re-

dressing attacks, and we point out that the fundamental flaw
of these attacks are the system’s failure to preserve visual
integrity. Based on this observation, we propose two solu-
tions, a visualization method and a dynamic binding model.

We implement our solutions in Android 4.0.3 system and
our evaluation demonstrates encouraging results.

9. REFERENCES
[1] A. Chaitrali, S. Kapil, V. Arunabh, and P. Traynor.

On the disparity of display security in mobile and
traditional web browsers. In SCS Technical Report.

[2] T. Close. The confused deputy rides again!
http://waterken.sourceforge.net/clickjacking/.

[3] R. Hansen. Clickjacking. http:
//ha.ckers.org/blog/20080915/clickjacking/.

[4] L. Huang, A., H. Wang, S. Schechter, and C. Jackson.
Clickjacking: Attacks and defenses. In USENIX
Security Symposium, 2012.

[5] C. Jackson. Improving browser security policies. PhD
thesis, Stanford, CA, USA, 2009. AAI3382749.

[6] K. Kotowicz. Cursorjacking. http://blog.kotowicz.
net/2012/01/cursorjacking-again.html.

[7] K. Kotowicz. Filejacking: How to make a file server
from your browser (with html5 of course), 2011.

[8] E. Lawrence. Ie8 security part vii: Clickjacking
defenses. http:
//blogs.msdn.com/b/ie/archive/2009/01/27/ie8-

security-part-vii-clickjacking-defenses.aspx.

[9] T. Luo and W. Du. Contego: capability-based access
control for web browsers. In Proceedings of the 4th
international conference on Trust and trustworthy
computing (TRUST 2011).

[10] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin.
Attacks on webview in the android system. In
Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC 11.

[11] T. Luo, X. Jin, A. Ajai, and W. Du. Touchjacking
attacks on web in android, ios, and windows phone. In
Proceedings of 5TH International Symposium on
Foundations & Practice of Security (FPS 2012).

[12] M. Mahemoff. Explaining the “don’t click” clickjacking
tweetbomb. 2009.

[13] G. Maone. Hello clearclick, goodbye clickjacking!
http://hackademix.net/2008/10/08/hello-

clearclick-goodbye-clickjacking/.

[14] Mozilla Developer Network. The x-frame-options
response header.

[15] M. Niemietz. Ui redressing: Attacks and
countermeasures revisited. In in CONFidence 2011.

[16] J. Ruderman. Bug 154957 - iframe content
background defaults to transparent., 2002.

[17] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson.
Busting frame busting: a study of clickjacking
vulnerabilities at popular sites. In in IEEE Oakland
Web 2.0 Security and Privacy (W2SP 2010).

[18] G. Rydstedt, E.e Bursztein, and D. Boneh. Framing
attacks on smart phones and dumb routers:
Tap-jacking and geo-localization. In in Usenix
Workshop on Offensive Technologies (wOOt 2010).

[19] SophosLabs. Facebook worm - likejacking. 2010.

8

