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Abstract

In wireless sensor networks (WSNs), sensors’ locations
play a critical role in many applications. Having a GPS re-
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personnel can perform their tasks only if the location of the
hazardous event (reported by sensors) is known. Location
information is also important for geographic routing proto
cols, in which such information (in the form of coordinates)

ceiver on every sensor node is costly. In the past, a numberis used to select the next forwarding host among the sender’s

of location discovery (localization) schemes have been pro

neighbors [2,3,14,18,21,42]. Because of the constramts o

posed. Most of these schemes share a common feature: thegensors, finding locations for sensors is a challenging-prob
use some special nodes, called beacon nodes, which are adem. The location discovery problem is referred tdasal-

sumed to know their own locations (e.g., through GPS re-
ceivers or manual configuration). Other sensors discover
their locations based on the reference information progide
by these beacon nodes.

izationproblem in the literature.

The Global Positioning System (GPS) [13] solves the
problem of localization in outdoor environments for PC-
class nodes. However, due to the cost reason, it is highly un-

Most of the beacon-based localization schemes assume @esirable to have a GPS receiver on every sensor node. This
benign environment, where all beacon nodes are supposettreates a demand for efficient and cost-effective localiza-

to provide correct reference information. However, when
the sensor networks are deployed in a hostile environment,

tion algorithms in sensor networks. In the past severalgyear
a number of localization protocols have been proposed to

where beacon nodes can be compromised, such an assumpeduce or completely remove the dependence on GPS in

tion does not hold anymore.
In this paper, we propose a general scheme to detect lo-
calization anomalies that are caused by adversaries. Our

wireless sensor networks [4, 6,12, 29-32, 35, 36]. Most of
these schemes share a common feature: they use some spe-
cial nodes, called beacon nodes, which are assumed to know

scheme is independent from the localization schemes. Wenheir own locations (e.g., through GPS receivers or manual

formulate the problem as an anomaly intrusion detection

problem, and we propose a number of ways to detect local-
ization anomalies. We have conducted simulations to evalu-
ate the performance of our scheme, including the false pos-
itive rates, the detection rates, and the resilience to node
compromises.

1. Introduction

Sensor networks have been proposed for various appli-
cations. In many of these applications, nodes need to find
their locations. For example, in rescue applications,uesc
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configuration). Other sensors discover their locationgthas
on thebeacongrovided by these beacon nodes.

Sensor networks may be deployed in hostile environ-
ments, where sensor nodes can be compromised, beacon
nodes can be compromised, communication can be redi-
rected, etc. Most of the proposed localization schemes are
designed to work in environments where all the beacon
nodes behave correctly; when those nodes can be compro-
mised and act maliciously, sensors using the existingdocal
ization schemes might be misled to believe that they are
in locations far away from their actual locations. This can
cause severe consequence. For example, when sensor net-

works are used for battle fields surveillance, if sensors are

misled by enemies, such that their derived locations are far
off, then when sensors report that their regions are sdte, th

wrong information can cause significant damage. There-
fore, it will be of great importance if sensors can discover
whether their derived location is correct or not.



In this paper we propose a novel scheme to detect ma-2. Related Work
licious attacks in localizations. Our scheme takes advan-
tage of the deployment knowledge that is available in many 2.1. Localization Problems and Schemes
sensor network applications. For example, let us look at a
deployment method that uses an airplane to deploy sensor |n the past several years, a number of localization pro-
nodes. The sensors are first pre-arranged in a sequence @jcols have been proposed to reduce or completely remove
smaller groups. These groups are dropped out of the airthe dependence on GPS in wireless sensor networks [1, 4—
plane sequentially as the plane flies forward. This is analo-g 11,12, 29-33, 35, 36].
gous to parachuting troops or dropping cargo in a sequence. \ost |ocalization solutions in sensor networks require
The positions where the sensor groups are dropped out of ey nodes called beacons (which are also called anchors
the airplane are referred to deployment pointgheir coor- o reference points), which already know their absolute lo-
dinates can be easily determined (e.g. using GPS) and storeglations via GPS or manual configuration. The density of
in sensors’ memories prior to sensors’ deployment. During he anchors depends on the characteristics and probably the
the deployment, sensors can land on random locations, they qget of the network since GPS is a costly solution. An-

di_strit_)ution of_which usually follows some pro_bability €is  chors are typically equipped with high-power transmitters
tribution function (pdf) that can be modeled prior to the de- 1 proadcast their location beacons. The remainders of the

ployment. Although not all sensor network are deployed poges then compute their own locations from the knowl-
like this, deployment knowledge can be modeled more or g4ge of the known locations and the communication links.
less for many sensor network deployments. Based on the type of knowledge used in localization, local-
We show that, equipped with deployment knowledge, ization schemes are divided into two classes: range-based
sensors can efficiently detect localization anomalies. OurSchemes and range-free schemes.
strategy is let sensors verify whether their derived loca- Range-based protocols use absolute point-to-point dis-
tions are consistent with the deployment knowledge. Thetance or angle information to calculate the location be-
level of inconsistency that is above certain thresholdis us tween neighboring sensors. Common techniques for dis-
ally an indicator of malicious attacks. We formulate this tance/angle estimation include Time of Arrival (TOA) [13],
inconsistency as an anomaly and study this problem in Time Difference of Arrival (TDOA) [1,11,33], Angle of Ar-
the framework of anomaly intrusion detection by leverag- rival (AOA) [31], and Received Signal Strength (RSS) [1].
ing the methodologies from the intrusion detection field. While producing fine-grained locations, range-based proto-
We call our problem thé.ocalization Anomaly Detection ~ cols remain cost-ineffective due to the cost of hardware for
(LAD) problem. We study the effectiveness of our proposed radio, sound, or video signals, as well as the strict require
scheme in this paper. ments on time synchronization and energy consumption.
Alternatively, coarse-grained range-free protocols
are cost-effective because no distance/angle measure-
ment among nodes is involved. In such schemes, errors
%an be masked by fault tolerance of the network, redun-
dancy computation, and aggregation [12]. A simple algo-
rithm proposed in [4] and [5] computes the location as the

In addition to being effective in detection attacks against
the localization, a localization anomaly detection scheme
must also resist against attacks on the detection schem
itself. As much as adversaries like to attack localization
schemes, they will attack the detection scheme if they know

such a scheme is deployed. There are a number of attaCkﬁentroid of its proximate anchor nodes. It induces low over-

thet.ad}/(;:rsarles le ? Iaundchl. t;]Ne hallte dkevelozet(rjfa maéh?ﬁead, but high inaccuracy as compared to others. An alter-
matical framework 1o model those attacks, and this Modet , o solution, DV-Hop [32], extends the single-hop broad-

is used in our simulation-based evaluation to generate at-., multiple-hop flooding, so that sensors can find their
tacks. Our results show that the proposed detection schem

is highl flient inst attacks that | d Bistance from the anchors in terms of hop counts. Us-
Iasgelg y restlient against attacks that can cause large aming the information about the average distance per hop,

sensors can estimate their distance from the anchors. Amor-
The rest of the paper is organized as follows: the next phous positioning scheme [29] adopts a similar strategy
section describes the related work. Section 3 presents thé&s DV-Hop; the major difference is that Amorphous im-
modeling of deployment knowledge. Section 4 formally de- proves location estimates using offline hop-distance esti-
fines the Localization Anomaly Detection problem. Sec- mations through neighbor information exchange.
tion 5 describes our proposed LAD detection scheme. Another existing range-free scheme is APIT algo-
Section 6 describes the potential attacks on our detec-ithm [12]. APIT resolves the localization problem by iso-
tion scheme. Section 7 then presents the evaluation resultdating the environment into triangular regions between
Finally we conclude and lay out some future work in Sec- anchor nodes. A node uses the point-in-triangle test to de-
tion 8. termine its relative location with triangles formed by



anchors and thus narrows down the area in which it prob-nodes that are close to the victim, SeRLoc will still have
ably resides. APIT defines the center of gravity of the hard time deriving the correct locations.
intersection of all triangles that a node resides in as the es
timated node location.
Localization can also be achieved without using bea- 2.3. Intrusion Detection
cons. A beaconless localization scheme is described in [8].
Instead of using the beacon information, the beaconless The proposed approaches fall into the general field of in-
scheme uses the deployment knowledge to derive the lotrusion detection. Intrusion detection has been studied fo

cation. more than twenty years. Intrusion detection techniques hav
been traditionally classified inenomaly detectioandmis-
2.2 Localization in Hostile Environments use detectionAnomaly detection models the normal be-

haviors of the subjects being monitored and identifies any-

Most of the current localization schemes become vul- thing that significantly deviates from the normal behav-
nerable when there are malicious attacks. Although authenOrs as attacks. Many techniques have been proposed for
tication can be used to protect the integrity of the messagestnomaly detection, including statistical approaches.,(e.g
sent by beacon nodes, it will not help if beacon nodes them-Haystack [38], NIDES/STAT [17]), machine learning ap-
selves are compromised, because a compromised beacoproaches (e.g., TIM [39], IBL [22]), computer immuno-
node may provide incorrect location references. If a sen-logical approaches [9, 10, 41], and specification based ap-
sor uses these incorrect references, it may derive a false loProaches [19, 20, 37, 40]. Misuse detection models the pat-
cation. terns of known attacks or vulnerabilities, and identifies ac

One way to find out whether a beacon node is provid- tions that (_:onform to such patterns as attacks. Existing ap-
ing correct information or not is to verify the location of Proaches include rule-based methods (e.g., ASAX [28], P-
the beacon nodes, but no effective solution has been proBEST [27]), state transition based methods [7, 16], and data
posed to solve the location verification problem. Sastry et Mining approaches [24, 25]. Most of these techniques can-
al. made the first attempt towards solving this problem [34]. ot be directly applied to sensor networks due to the re-
They proposed a protocol named Echo to verify a node’s SOUrce constraints on sensor nodes. The techm_que proposed
location claims using both radio frequency and ultrasound. IN this paper are specifically targeted at detecting loaaliz

However, the Echo protocol only verifies whether a node ti0n anomalies in sensor networks; it differs from the tra-
is inside a region or not, it does not verify whether a sen- ditional intrusion detection techniques in that it speeific
sor node is at certain specific location. exploits the semantics of localization to identify the amem

Our proposed technique differs from the Echo proto- lies.

col in the following ways. First, the proposed technique is

aimed at a broader problem than the Echo protocol. While .

the Echo protocol is to verify whether a sensor node is 3- Modeling of the Deployment Knowledge

inside a region to facilitate location-based access chntro

our scheme is aimed at detectingy location estimation In this section, we present a model for a specific type of

anomaly atanysensor node. Second, the Echo protocol re- deployment. However, the general approach that we use in

lies on the existence of a very fast (e.g., radio frequency) this paper can be applied to other deployment models. Fo-

and a relatively slow (e.g., ultrasound) signals to derige d  cusing on a specific deployment model in this paper allows

tance from time delay; our approach does not need thoseus to evaluate the effectiveness of our detection scheme in

special signals. a concrete scenario. Evaluation for other deployment mod-
Although the beaconless localization scheme does notels will also be pursued in the future.

use beacons, it does have a similar problem in hostile envi- We assume that sensor nodes are static once they are de-

ronments. Because a sensor using this scheme relies on itgloyed. We define thdeployment poinbf a sensor as the

neighbors to find out the location, if the neighbors are com- point location where the sensor is to be deployed. This is

promised, the estimated location will be incorrect. Thekvor not the location where this sensor finally resides. The senso

described in [8] assumes that the localization scheme is pernode can reside at points around this deployment point ac-

formed in a benign environment, and it does not show how cording to a certain probability distribution. As an exampl

to deal with the hostile environment. let us consider the case where sensors are deployed from a
Recently, Lazos and Poovendran propose a new rangehelicopter. The deployment point of such a sensor is the lo-

independent localization scheme, SeRLoc, which can toler-cation where the sensor is thrown out of the helicopter. We

ate malicious attacks to certain degree [23]. However, whenalso define theesident pointof a sensor as the point loca-

beacon nodes can be compromised, especially those beacdion where the sensor finally resides.
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Figure 1. A deployment example (each solid
dot represents a deployment point). Figure 2. Deployment distribution for one
group.

3.1. Group-based Deployment Model
o ) bution). Gaussian distribution is widely studied and used i

~ In practice, it is quite common that nodes are deployed practice. Although we only employ the Gaussian distribu-

in groups, i.e., a group of sensors are deployed at a singlejon in this paper, our methodology can also be applied to

deployment point, and the probability distribution fuiocts other distributions.

of the final resident points of all the sensors from the same  \\e assume that the deployment distribution for any node

group are the same. k in group G; follows a two-dimensional Gaussian distri-
In this work, we assume such a group-based deploymenty, ;tion. which is centered at the deployment pdint, y; ).

and we model the deployment knowledge in the following Namely, the mean of the Gaussian distributjorequals

(we call this model thgroup-based deployment moyel (2,:), and the pdf for nodé in groupG; is the follow-
1. N sensor nodes to be deployed are divided into  ing [26]:
equal-size groups so that each grodp, for i = ; L w2t (121 /202
1,...,n is deployed from the deployment point with ~ Jx(z:y [k € Gi) = 972 e lmua Y
index <. To simplify the notion, we also usé; to = fle—x5y—vi),

represent the corresponding deployment point, and let

(2, 1) represent its coordinates. where ¢ is the standard deviation, and(z,y) =

. : . e (/207

2. The deployment points are arranged in a grid (see Fig- 2m:AIthough the distribution function for each single group
ure 1). Note that the scheme we developed for grid- j5 ot yniform, we still want the sensor nodes to be evenly
based deployment can be easily extended to other deyepioyed throughout the entire region. By choosing a proper
ployment strategies, such as deployments where theyistance between the neighboring deployment points with
deployment points form hexagon shapes, or deploy- regpect to the value of in the pdf, the probability of find-
ments where the deployment points are random (asjq 3 node in each small region can be made approximately
long as their locations are given to all sensors). equal.

3. During deployment, the resident point of a ndde
group G follows a probability distribution function 3.3, Computingg(z)
filz,y | k € Gi) = f(x — x5,y — yi). An exam-
ple of the pdff(z,y) is a two-dimensional Gaussian We derive a number of formulae that will be used later in
distribution. Figure 2 shows an example of the two- our detection scheme. We assume that the probability that a
dimensional Gaussian distribution at the deployment node from groug’; can land at a locatiof distance from

point (150, 150). the deployment point af7; follows a Gaussian distribution.
That is:
3.2. Deployment Distribution Fr(t]ni € Gi) = ! 26—2‘%,
To

In this paper, we model the sensor deployment distribu- whereR is the wireless transmission range anid the stan-
tion as a Gaussian distribution (also called Normal distri- dard deviation of the Gaussian distribution.



Theorem 1 We defineg(z | n; € G;) as the probabil-  scheme proposed in the literature. We focus only on the de-

ity that the sensor node; from group: resides within the  tection phase, namely, to detect whether the derived loca-

neighborhood of a sensor thatiglistance from the deploy-  tion is consistent with this node’s actual neighborhood in-

ment point of group~,;. Based on geometry knowledge, we formation.

can derive the following formula: In what follows, we uséL; — Ls| to represent the dis-
tance between two locatiods and L.

, ) Definition 1 (Localization Error) LetL, = (z4,y.) rep-
g(z | n; € Gy) '
(B2 resent the actual location of a sensarLet L, = (z., y.)
= {z< R} {1 —e 27 ] represent the location that the sensor derives via ceri@in |
4R calization scheme (note that the localization scheme might
+/ fr( ] n; € GY) be under attacks). We call the distance betwégmand L,,
|=—R| thelocalization error
L (C+ 22 -R? .
-20 cos STy de, Q) Most of the sensor networks applications can and should
z

be able to tolerate certain degree of localization errors be
wherel{-} is the set indicator function: the value bf-} is cause, unlike the GPS scheme, all the localization schemes
1 when the evaluated condition is true, ahdtherwise. in sensor networks cannot produce very accurate results. We
call the error that a sensor network can tolerateNfai-
Proof. Due to the page limitation, the proof is omitted from  mum Tolerable Error (MTE)the value of which is applica-

this paper. B tion dependent. We define the anomaly baseM3iE.
Thereforeg; (), the probability that a node from the de-

ployment groupG; can land within the neighborhood of
pointd = (z,y), can be computed in the following (where
(z4,y,;) represents the deployment point of graslp:

Definition 2 (Anomaly) Ananomalyis defined as a phe-
nomenon in which the localization error is greater than the
Maximum Tolerable Error (MTE)i.e.,|L. — L,| > MTE.

To attack a sensor network’s localization, attackers need
9i(0) = g(V/(z — )2 + (y — v:)? | s € G). to cause the localization to generate an error that is beyond
the network’s maximum tolerable error; otherwise, the at-
tacks are not considered as effective. The greater such er-
ror is, the more successful the attacks are. An attack caus-
ing | L. — L,| = 120 leads to more severe damage than an
attack that causdd.. — L,| = 60. We quantify the sever-

ity of an attack using the error that the attack can achieve,
and we use this quantification to further define the anomaly
with different degrees of damage.

For simplicity, we usey(z) to represeny(z | n; € G;)
in the rest of this paper, when it is obvious to see from the
context that we are referring to the nodes in grégp

The formula forg(z) is quite complicated, and we can-
not afford to compute it using Equation (1) in sensor net-
works. We can solve the performance problem using the
table-lookup approach, i.e., we precompute), and store
the values in a table. More specifically, we divide the range
of z into w equal-size sub-ranges, and store giie) val-  Definition 3 (D-Anomaly) An anomaly is calledD-
ues for theses + 1 dividing points into a table. When a sen- anomaly if the localization error is greater thanD,
sor needs to computg z), it looks up the table, and finds i.€., [Le — Lo| > D. D is called theDegree of Dam-
the sub-range that containg; then it uses the interpola- age D is chosen by attackers based on their targeted
tion to computey(zo). The computation takes only constant €rrors.
time. Our results also show that to gain satisfactory lefel 0 |t ihe error|L. — L,| is observable, we can easily de-

accuracysw does not need to be very large. cide whether a phenomenon i%-anomaly by comparing
|L. — L,| with D; however, the actual locatioh, is not
4. The Localization Anomaly Detection Prob-  observable, so we need to turn to other observable met-
lem rics to find out whethefL. — L,| is beyondD or not. The
goal of this paper is to develop such a metdiand its cor-
We introduce a localization anomaly detection phase af- responding threshold (called tletection threshold such
ter the localization phase. In the localization phase, sen-that whenA is larger than the detection threshold, we can
sors derive their locations. Then in the detection phase,say that the localization is abnormal. Ideally, a metdic
sensors verify whether the derived locations are correct orshould satisfy the following propertthe metricA is larger
not. A failure of the verification indicates an anomaly. In than the detection threshold if and only . — L,| > D.
this paper, we assume that the localization phase has alUnfortunately, such a metric, if exists at all, is difficudt t
ready ended, and each sensor has already derived a locdind. In this paper, we turn to heuristic metrics, and we want
tion. This phase can be performed using any localization the above property to be satisfied as much as possible.



Because the above ideal property cannot always be sat5.1. The Detection Scheme
isfied for the metricA we select, there will be situations
when A is larger than the detection threshold, but the dis- ~ After sensors are deployed, each sensor broadcasts its
tance metridL. — L,| is still below D. In this case, a false ~ group id to its neighbors, and each sensor can count the
alarm will be raised, so we call this situatiofedse positive ~ number of neighbors fronts;, fori = 1,...,n. Assume
Similarly, there will be situations wher is smaller than  that a sensor finds out that it has . . ., 0,, neighbors from
the detection threshold, but the distance méitfic — L, | groupGh, ..., Gy, respectively. We calb = (o1, ..., 05)
is larger thanD. In this case, our metric will fail to raise the observation of the sensor. Because the observations at
an alarm, and we call this situatiorfalse negativeA good different locations can be very different, especially when
metric A should be able to minimize both false positive and two locations are far away from each other, we can use the
false negative rates. observation to verify whether the localization result is-co

sistent with the observation.

Based on the estimated locatidn = (z.,y.) and the
deployment knowledge, a sensor can derive the expected
observations and the likelihood of its actual observations

5. Detecting Localization Anomalies Us- If the expected observations are too different from its ac-

ing Deployment Knowledge tua'l observgtlons, or if the likelihood of Fhe actugl pbser-
vation atL, is too low, a sensor can claim that is in-

consistent with the actual observations, which indicates a

Based on deployment knowledge, we illustrate the key anomaly.
idea of our localization anomaly detection scheme using the ~ We propose three metrics for anomaly detection. The ob-
following example: Assume that the deployment follows the j€ctive of this study is to investigate how effective thesetm
pattern described in Figure 1. Also assume that a senisor ~ [1CS are.
actually at the locatio®, but due to the attacks, its derived
localization result say®. According to its actual location, 5.2. The Difference Metric
v is supposed to observe many neighbors from groups,

C, andD. That is, groupd is deployed at point A, group Let L. = (z.,y.) represent a sensor nods estimated

is deployed at poinB, etc. On the other hand,is not sup- location derived using certain localization scheme.d.et
posed to see many neighbors from groupsF, G, or H. (_ol, e On) repr.esen’o’s actual ob.ser\./ation. Thi_s observa-
However, if P is v's actual locationy should see the oppo-  tion might be tainted by adversaries if some neighbors of
site. Therefore, the observations at the locatiGnand P are compromised by the adversaries. Assume there are no
are different. The farther apaft and P are, the more dif- adversaries, and thatis indeed at the locatioh., then we
ferent their observations are. Sings actual observation at ~ ¢an computey’s expected observation = (u1, ..., fin),

the locationO is already known and its expected observa- Wherey; represents the expected number of neighbors that
tion at the locationP can be calculated using the deploy- come from group. If the expected observatign is close
ment knowledge, we can compare these two observationst0 the actual observatiom, our no-adversary assumption is

If they deviate substantially from each other, we can deter- Probably true; however, ifs ando are very different, the

mine thatv's localization resultP is inconsistent with its ~ NO-adversary assumption might be false.
actual observation. Because the probability that a sensor from grouye-

) ) comesv’s neighbor isy; (L. ), v is expected to see - g; (L.)
We propose three metrics to measure the degree of INCONRKeighbors from group, wherem is the total number of sen-

sistency between a node’s derived location and its observasors in group. Therefore; can be computed using the fol-
tion. For each metric, we obtain a threshold through train- |\ying equation:

ing. If the level of inconsistency exceeds such a threshold,
we claim that the localization results are inconsistenhwit wi = m-gi(Le)

the observation,_ thus an alarm will be raised. We hqve ev_al- = m-g(\/(®e — )2+ (Y — 11)?). 2)
uated the effectiveness of our proposed scheme, including

its tolerance to malicious attacks, false positive rates, d We use the difference between the expected observa-
tection rates, etc. A nice property of our proposed schemetion 1 and the actual observatianto measure how close

is that even if the anomaly detection thresholds are not op-these two observations are. The differedeg/ is defined
timally selected, our method still has a high detection rate as the following:

and low false alarm rate for large localization errors. This n

makes the proposec_i method an ideal candidate for localiza- DM — Z 05 — i | -

tion anomaly detection.

i=1



We useD M as one of our anomaly indicators. We call
this metric theDifference Metric(or the Diff Metric in
short). When the value abM is greater than a threshold

is too small, it indicates a potential anomaly. Therefore,
we can use this probability as another anomaly indicator.
Since there are deployment groups, we can compute the

value (as we will explain later, such a threshold is derived probability value for each group, and choose the smallest

via training), we say that the locatidn. is abnormal.

5.3. The Add-all Metric

probability value. We then compare this smallest probabil-
ity value with a threshold (also explained later in Sectipn 7
If the probability value is smaller than the threshold, we sa
that there is an anomaly with the localization result. Wé cal

We use an example to illustrate the motivations underly- such a metric th@robability Metric

ing this metric. We will use Figure 1 again. Assume that a

nodev’s actual location i), but due to the attacks on the
localization phasey finds out that its estimated location is

Assume a sensor has estimated its locatiofi, =
(ze,ye) Using a localization scheme. Given the numbey (
of nodes deployed in each group and the pdf function of the

at P. Therefore, we have two sets of observations: one isdeployment, we can compute the probability that exastly

nodev’s actual observation atO, the other is the expected
observatiorp at P. The observatiom = (i1, ..., py,) €an
be computed using Equation (2).

We define thainionof the observations andu: lett =
(t1,...,t,) be the union of the observatignando, where
t; is defined as the following:

®)

There is an important fact about the observatioremnd
p: From Figure 1, we can see that in the observatipthe
number of neighbors from group$, B, C, andD is high,
but the number of neighbors from groups F', G, and H
is low. In the observatiop, the situation is the opposite. If

t; = max{o;,u;}, fori=1,... n.

nodes from groug; (for eachi = 1,...,n) can be ob-
served byv. Let X; represent the number ofs neighbors
that come from groug;. The probability that the nodeat
the locationZ. has exactly; neighbors from group can
be computed using the following formula:

PM

Pr(X; =o0; | L)
(?) (9:(Le))" (1= gi(Le)) ")

(2

If any of the Pr(X; = o; | L), fori 1,...,n,is
less than a threshold, our detection will raise an alarm-to in
dicate that the location is abnormal. Obviously, the choice

of the threshold is important, if the threshold is too large,

we union these two observations together, in the resultant we will have a lot of false positives; if the threshold is too

observatiort, the the number of neighbors fromy, B, C,
D, E, F, G, and H will be high. Therefore, compared to
o and p, the total number of neighbors inis higher (we
use|t| to represent the total number of neighborg)inand
the more differenO and P are, the higher the value ¢f]
is. On the other hand, i and P are close to each other,
the observations andu should be similar; thugt| will not
gain much from the union ab and .

small, the false negative rate might be too large.

5.5. Obtaining the Thresholds Using Training

Ideally, to obtain the training data, we need to conduct an
actual sensor network deployment. After the deployment,
each sensor obtains the list of its neighbors, and then uses
a selected localization scheme to estimate its own location

With the above discussion, we propose to use the totalHowever, collecting the training data in this way is beyond

number of neighbors in the union observation as anotherour capability; we turn to simulation. We describe our data
anomaly indicator. Therefore, we define the following met- collection and training process in the following:

rc:
n
AM = Z max{o;, u; }.
i=1

We call the metricA M the Add-all Metric We compare
the result of this metric with a threshold derived from the
training to decide whether the estimated locatignis ab-
normal.

5.4. The Probability Metric

When a sensor node segssensors from group based
on its estimated location, the sensor can calculate holylike
it can haveo; neighbors from group. If the probability

1. Collecting data from simulatiarBased on our model
of deployment knowledge, we generate a number of
sensor networks. We randomly selé¢tsensor nodes
from these sensor networks. For each sensor, we col-
lect the following data:

(a) We obtain the node’s observatiorand its actual
location(x,, y,)-

(b) We use a localization scheme to compute the lo-
cation(z., y.) for the node.

2. Training: we compute the proposed metrics for all the
data in the training data sets, usifg,, ¥a), (e, Ye),
and the observations The metric results form a sam-
ple distribution.



3. Deriving the Detection Threshaltve user percentile
to decide a threshold from the metrics computation
results. Namely, the percent of the training results
should be within this selected threshold. The value of
7 is a configurable parameter and is application depen-
dent. The value of1 — 7) is the false positive rate.

For example, for th®iff metric, if through the simula-
tion, we find that- = 99.99% of the metric results is within
30 in the non-compromised network, we will ude as the
detection threshold.

Obtaining thresholds for anomaly detection is in general
a challenging task, because it is usually difficult to obeserv
all possible “normal” behaviors during the training prazes
However, we are targeting at a specific localization appli-
cation in sensor networks, in which the only inputs are the
estimated locations and the observed neighbor information
Thus, it is likely to observe most (if not all) of the normal
behaviors during the training process.

I am from group 9

o S

I am actually from group 5, O

but I am not telling anybody. I am actually from group 5

(a) Silence Attack (b) Impersonation Attack

T am from group 1

I am from group 8/

I am from group 2
O

—
I am from group 28
I'am from group 5

(c) Multi-Impersonation Attack (d) Range—Change Attack

Figure 3. Various Attacking Scenarios.

Since the anomaly detection thresholds are obtained
through the simulated deployments, the quality of the sim-

Once adversaries have compromised a sensor node, they

ulations has a potential impact on the quality of anomaly can launch a number of attacks in order to corrupt detec-
detection. However, as we will show through our exper- tion. Their goal is to change the victim’s observation, so
iments in Section 7, our anomaly detection method has athey can affect the victim’s detection results. There ate fo
nice property, i.e., our method has a high detection rate andypes of attacks that an adversary can launch against local-

low false positive rate for large localization errors intro

ization (we useo = (o1, ..

., 0,) to represent the victim's

duced by attacks, even if the anomaly detection thresholdsobservation if none of its neighbors is compromised):

are not optimally selected. In other words, the detec-
tion performance of the LAD scheme is not sensitive to

the quality of the detection thresholds for high-impact lo-

calization anomalies. This property makes the LAD

scheme an ideal candidate for localization anomaly detec-
tion.

6. Attacks on Our Detection Scheme

Just like the localization phase, which might be con-
ducted in a hostile environment, the detection phase is con-
ducted in the same environment. This means, if adversaries
have already attacked the localization phase, very likely
they will attack the detection phase to prevent their agack
on the localization from being detected. Therefore, bezaus
a sensor’s detection is based on the information provided
by its neighbors, we must consider the situations where a
subset of this sensor’s neighbors are compromised. A com-
promised neighbor can send out false information or refuse
to send out correct information. A good detection scheme
should be able to achieve decent detection rate and low false
positive rate even when a non-trivial portion of the neigh-
bors are compromised.

1 This false positive rate is for the training data set only; the ac-
tual false positive rate should be close to this value if @pldyment
knowledge is modeled correctly.

¢ Silence attackA compromised sensor can keep silent.

If this sensor comes from groupthe victim’s obser-
vationo; on groupi can be decreased by one.

Impersonation attackinstead of reporting its actual
group membership a compromised sensor can claim
that it comes from another group, e.g. groguf here-
fore, 0; can be increase by one.

Multi-Impersonation attacklf no pair-wise authenti-
cation mechanism is used, a compromised sensor can
send out many messages, each of which can appear to
come from any group. Therefore, (fork = 1,...,n)

can beincreasedy a arbitrary number.

Range-Change attackn this attack, the adversaries
cause the range of a compromised node to be changed.
When the compromised node’s range increases, a vic-
tim far away from this compromised node will now
consider this node as a neighbor. If this compromised
node comes from group, the victim’s observation

o; can be increased by one. The range-change at-
tack can be achieved via three different ways: (1)
The compromised sensor can change its transmission
power. (2) The compromised sensor can use worm-
hole attacks [15]. In the wormhole attack, an attacker
records packets at one location in the network, tunnels
them to another location, and retransmits them there



into the network. This essentially achieves the range- attacks to the silence attack only Therefore, the attackers
change attack. (3) The range-change attack can alsaan only decrease the victim’s observations via the silence
be achieved if adversaries can physically move a com-attack, and they cannot increase the observations. We call
promised node that is outside of the victim’s neighbor- this type of attack th®ecrease-Onlwttack (in shorDec-
hood into the victim’s neighborhood. Only). It is formally defined in the following:

The above attacks can be combined to form a variety Definition 5 (Dec-Only Attack) We say that an attack is a
of new attacks. Regardless of how they are combined, twoDec-Onlyattack if any observation resulting from this at-
key observations can be made for any compromised nodeack satisfies the following condition:

(assume that this compromised node comes from group

1). First, the number of observations on groups other than 0; <a; fori=1,...,n,
. . . n

group: can only be increased. This is because a compro- Z(a o) <

mised node cannot stop the non-compromised nodes from v

broadcasting their group memberships. However, a com- =

promised node can broadcast multiple messages claiming The Dec-Onlyattacks are less powerful than tbec-
it comes from other groups, thus increasing the observa-Boundedbecause of the assumptions and constraints made
tions on those groups. Second, the number of observatioron the attackers’ behaviors; some of the assumptions might
on groupi can be decreased by only one for each compro- not be realistic in sensor network applications. Therefore
mised neighbors from grouf this is achieved via the si- the Dec-Onlyattacks only have theoretic value; in our eval-
lence attack. uation, we mainly focus on the powerflec-Boundedht-

We have generalized the various attacks into two classestacks.
and have defined them in a unified framework. In our defi-
nitions, we letz represent the total number of compromised 6.3. Impacts of the Attacks

nodes in a sensor’s neighborhood. ket (aq,...,a,) be
what a node can observe when none of its neighbors is com-  An adversary may launch the above attacks to decrease
promised. Leb = (o4, .. .,0,) be what anode has actually  the detection rate of the LAD scheme, so that it has a greater

observed when up te of its neighbors are compromised.  chance to convince sensor nodes to take false locations
without noticing the localization anomalies. Similarly) a
6.1. Dec-Bounded Attacks adversary may also increase the false alarm rate by launch-
ing the above attacks (without compromising the localiza-
When all the attacks described in Figure 3 are possible,tion scheme). As a result, a sensor node may raise an alarm
adversaries can make each observatioarbitrarily larger  and stop using the estimated location even if there is no lo-
thana;, i.e.0; — a; can be as large as posstlélowever,  calization anomaly. This will certainly lead to a denial of
adversaries cannot make arbitrarily smaller tham;, be-  service (DOS) attack against the localization service. Ob-
cause the adversaries cannot prevent the non-compromisediously, the more sensor nodes the adversary can compro-
neighbors from broadcasting their membership. This meansmise and the less constraints on the adversary’s capasiliti
thata; — o; has an upper bound. We call this type of at- the more the adversary can decrease the detection rate or
tack theDecrease-Bounded (Dec-Boundedfpck. Itis for-  increase the false alarm rate. We will investigate how well
mally defined in the following: LAD can tolerate these attacks through simulations in the

Definition 4 (Dec-Bounded Attack) We say that an attack next section.

is aDec-Boundedttack if any observation resulting from Because of the above attacks, it is possible that an ad-
this attack satisfies the following condition: versary will simply launch DOS attacks against LAD rather

than compromising the localization scheme. We make two

Z (ai —0;) < . observations about this threat. First, by launching sucsDO
Viai>o0i attacks, an adversary can only render the localization ser-
vice unusable, but cannot convince a sensor node to ac-
6.2. Dec-Only Attacks cept a false location. In other words, if the LAD scheme

maintains an acceptable detection rate, it will narrow the
If we use authentication mechanisms along with the adversary’s choices down to DOS attacks. Second, such at-
wormhole detection mechanism [15], and also assume thatacks are only sensible when they are less expensive than
attackers cannot physically move sensors, we can limit theattacking the localization scheme itself. Otherwise, an ad
versary can already achieve the DOS attacks at the local-
2 Of coursep; must be bounded by the total number of nodes coming ization phase; launching DOS attacks during the detection
from Groupi. phase cannot achieve extra benefit.




Based on the above discussion, it is necessary to compare
the difficulty to compromise LAD and the difficulty to com-
promise a localization scheme. Indeed, as discussedrearlie

D-anomaly attack). We compute the expected obser-
vation u at the locatior’..

3. To simulate theDec-Boundedor Dec-Only at-

all the current localization schemes are vulnerable, since
they were not developed to handle malicious attacks. Al-
most all of the range-based localization schemes and some
range-free schemes (e.g., [6,30-32, 35, 36]) eventually re
duce localization to a Minimum Mean Square Estimation
(MMSE) problem. Though this is effective to reduce the im-
pact of measurement errors that occur during localization,
an adversary can still introduce arbitrarily large locatés- There are many ways to generatdrom a. We use a
rors by compromising a single anchor node and having thegreedy procedure to minimize the selected detection metric
compromised anchor node declaring a false location. The underlying motivation is that if an attacker can reduce
Some other range-free localization schemes (e.g., APITthe detection metric result to below the detection thresshol
[12]) are more resistant to malicious attacks. However, theits attacks on the localization will escape from being de-
correctness of location estimation is still dependent @n th tected. The greedy procedure depends on both the metrics
anchor nodes, whose quantity is usually limited due to costand the types of attacks. There &e 3 combinations of
reasons. These beacon nodes will become obvious targetgttacks and detection metrics; the procedure for each com-
An adversary can either compromise selected anchor nodegpination is different. We will only describe how to simu-
or simply replay beacons intercepted in other areas (withou late theDec-Boundedttack to minimize th®iff metric; the
compromising those anchor nodes) to launch attacks. Thussimulation of the other combinations can be achieved simi-

we believe attacking these localization schemes is not subdarly. The idea of the procedure is to makeas close tqu;
stantially more difficult than attacking LAD. as possible, so thBiff metric can be minimized. There are

It is possible to enhance the security of existing local- two cases in our procedure (we Jgtbe the number of com-
ization schemes or develop new attack-resistant ones. HowPromised nodes within the sensor’s neighborhood):
ever well these schemes work, they will still be vulnerable i
the adversaries are able to compromise sensor nodes. Thus,
having LAD as a second line of defense will still be valu-
able.

tacks against the LAD detection scheme, we gen-
erate a new observation from a. The relationship

of o and a should comply with the constraints de-
fined for those attacks. The generated (tainted)
observationo becomes nodev’s actual observa-
tion.

1. If u; > a;, attackers can immediately increaseby
(1; — a;), thus gettingp; = 1, because in th®ec-
Boundedattack, attackers can arbitrarily increase the
observations of any deployment group.

. If u; < a;, attackers have to decreasgto get closer
to u;. They can achieve this only via the silence at-
tacks. However, each time the attackers decreabyg
one, it must consume a compromised node. For each
a; > u;, We leto; = a;, and then we repeat decreas-
ing botho; and X by one, until eithe; = pu; or X
reaches zeraX = 0 means there is no more compro-
mised node to consume, so we cannot decrease the ob-
servation anymore.

7. Evaluation

This section provides a detailed quantitative analysis
evaluating the performance of our LAD scheme.

7.1. Experiments Setup and Methodologies

In our experiments, the deployment area is a square plane
of 1000 meters byl000 meters. The plane is divided into
10 x 10 grids. Each grid isl00m x 100m. The center of Once the tainted observatienis simulated, we can use
each grid is the deployment point. Figure 1 shows the de-our proposed detection metrics and the derived (from train-
ployment points. We still use: to represent the number of  ing) detection thresholds to conduct the anomaly detection
nodes in each group anfl to represent the transmission Note that the purpose of our experiments is to evaluate
range. We set the parameteof the Gaussian distribution  the anomaly detection method. Thus, we will use different
to 50 in all of the experiments. thresholds to evaluate the detection rate and the false posi
To simulate attacks with the degree of damafeve use tive rate.
the following procedure:

1. We randomly pick a nodeat the locatior/.,,, and get 7.2. Selecting a Localization Scheme

the actual (non-tainted) observatiarat the location. Our proposed LAD scheme is a general detection

2. We simulate an attack against the localization of node scheme that is independent of localization schemes. It as-
v by letting v's estimated location be a random loca- sumes that the estimated location is already obtained us-
tion L., where|L. — L,| = D (which simulates the ing any of the localization schemes; it then detects whether
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the estimated location is consistent with its observa-
tions.

However, the performance of the LAD scheme does de
pend on the specific localization schemes. For differer
schemes, the detection threshold derived from trainint wi
be different; thus the false positive and the detection rat
will be different. Therefore, in this paper, to evaluate thegor
performance of the LAD scheme, we must combine it Witf‘fé o
a specific localization scheme. We choose to study LAD fog
the beaconless localization scheme [8] in this paper. Trgo.s
methodology for studying the LAD scheme for other local-&
ization schemes is similar, and will be pursued in our futur:
work.

1r

0.8

7.3. Parameters

Seven different parameters are involved in the LAC
scheme, including:

e m: the density of the network.

e )M the detection metrics.

T the type of attacks.

D: the degree of damage of an attack.

x: the percentage of the compromised nodes.
e F'P:the false alarm rate.

e DR: the detection rate.

To understand the effectiveness of our scheme, we have
selected five interesting parameter combinations to study..

We present the results in the rest of this section. We give

each figure (or each group of figures) a name using the pa-

rameters involved in that figure(s). The name follows the
format y-x-a, where the parameterandx represent thg-

axis and the-axis, respectively; we will plot several curves
on the same figure, each using different values for the pa-
rametetua. For exampleg could be the type of attacks, the
degree of damagp, etc. Sometimes, we use y-x-a-b to rep-
resent a group of y-x-a figures, with each figure using a dif-
ferent value for the parameter

7.4. ROC Curves for Different Metrics (DR-FP-
M-D)

The goal of this experiment is to understand the perfor-
mance of the LAD scheme for three different metrics, in-
cluding theDiff Metric, the Add-All Metric, and theProb-
ability Metric. In intrusion detection, the Receive Operat-
ing Characteristic (ROC) curve is usually used to measure
the performance of a detection method. The ROC curve is
a plot of intrusion detection accuracy against the falsé pos
tive rate. It can be obtained by varying the detection thresh
old. In this experiment, we want to plot the ROC curves for
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Figure 4. Receive Operating Characteristic
(ROC) curves for different detection metrics

and different degrees of damage D: DR-FP-
M-D (z = 10%, m = 300, T="Dec-Bounded At-
tack”). Note: the scales for both x-axis and y-axis
in different figures are different.

different detection metrics/ and different degrees of dam-
ageD.

We fix the values for the other parameters as the follow-
ings: the percentage of the compromised nadés set to
10%, the network densityn is set to 300 nodes per deploy-
ment group (there aréd x 10 groups in our studies), and
the type of the attacks is set to thec-Boundedttacks, the
most powerful attacks against the localization among the
two attacks defined in our framework. The results are de-
picted in Figure 4 (Note that we have used different scales
for both x-axis and y-axis in different figures for betterpre
sentation effects):

The figure shows that the LAD scheme is more effec-
tive for attacks with higher degree of damage. For example,
when adversaries launch attacks with= 120 (i.e., an suc-
cessful attack must cause the localization error to exceed
120), the Diff metric can achieve almod00% detection
rate with below5% false positive rate; when attacks have

= 160, the Diff metric can achiev&é00% detection rate
without raising any false alarms. These results show tleat th
attackers’ damage to the localization schemes is limitied. |
they want to cause a damage with a lafgethe anomaly
will almost be certain to be detected.

From the figures, we can also see that in generaDifie
metric performs the best among the three metrics. There-
fore, we will only use this metric in the rest of our studies.
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7.5. ROC Curves for Different Attacks (DR-FP-T- significant enough to merit the cost.
D) In the rest of our experiments, we will only focus on the

Dec-Boundedittack.
The goal of this experiment is to understand the effec-
tiveness of the anomaly detection under Dec-Bounded  7.6. Detection Rate vs. Degree of Damage (DR-D-

attacks and th®ec-Onlyattacks. Similar to the previous X)
figures, we lett = 10% andm = 300; we only use th®iff
metric. The goal of this experiment is to study how the degree

We have plotted a number of ROC curves for different of damageD affects the detection rate. To this end, we let
types of attacks and different degrees of dam&gé&he re- m = 300, false positive raté’ P = 0.01, andT" be theDec-

sults are depicted in Figures 5 and 6. Boundedhttack; we use thBiff metric only. We plot curves
From the figure, we can see that tBec-Boundedat- for z = 10%, « = 20%, andz = 30%. The results are de-

tack is the most powerful attack, namely, it is the most diffi- picted in Figure 7.

cult one to detect, especially whéhis small. For instance, The figure clearly shows that when the degree of dam-

when D = 40, the detection rates for tHeec-Onlyattack age D is low, the detection rate is very low. This indi-
are high with small false alarm rates, but the detection ratecates that our scheme is not very effective for the attacks
for the Dec-Boundedttack is still very low. that cause small degree of damage. This result is caused by
However, with the increase @, the detection rate under the localization schemes, because most of the localization
different attacks becomes less and less different. For examschemes (except GPS-based) cannot achieve very high ac-
ple, whenD = 120 and the false positive is belo2%, the curacy; when thé is too small, it is difficult to distinguish
detection rate for th®ec-Boundedttacks is already over whether the anomaly is caused by attackers or by localiza-
99.5%, close to the detection rateB)(0%) achieved by the  tion errors.
Dec-Onlyattacks. This useful observation tells us thatto de-  However, when the degree of damalgebecomes large,
tect the attacks with large degree of damage, we do not needhe results show that the LAD detection scheme can more
to use the expensive authentication and wormhole detectiorclearly distinguish anomalies from normal. Therefore, the
mechanisms to prevent the powerfdc-Boundedattacks. detection rate is approaching0% with the increase of the
Although these mechanisms can achieve significant bene-D, when the false positive rate is limited 16. This prop-
fits for small D, when D is high, the benefits become not erty of our LAD scheme indicates that if attackers want
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to cause more severe damage, they will be detected with

higher probability. In other words, a successful attack's | our experiment, we let the false positive rate® =
o_lamage is always limited to a small dlstanc_e, V\_/h|ch does( o1, T be theDec-Boundedattack, and we use thiff
little harm to most of the sensor network applications. metric. The results are depicted in Figure 9.

The figure shows that when the network densityin-
7.7. Detection Rate vs. Node Compromise Ratio creases, the detection rate increases. However, such an in-

(DR-x-D) crease is not caused by the LAD detection scheme, but by
the beaconless localization scheme. As we know, when
The goal of this experiment is to study how much of node increases, the localization becomes more accurate; im othe

compromise can be tolerated by our LAD scheme. To this words, the distance between the estimated locatioand

end, we letn = 300, false positive raté"P = 0.01, andT a sensor’s actual locatioh, decreases. Such a decrease
be theDec-Boundedittack, and we use tHaiff metric. We makes it easier to separate a normal behavior from anomaly.
plot curves forD = 80, D = 120, andD = 160. The re- Therefore, whernm increases, the detection threshold can
sults are depicted in Figure 8. be made smaller while still being able to maintain the

The figure shows that the higher the degree of danfage Same level of the false positive rate. The consequence of
the higher the tolerance. For instance, wh2n= 160, the the smaller detection threshold is that it is easier to catch
LAD detection scheme can tolerate up5@f% of the node ~ anomalies.
compromises without significant drop in its detection rate.

On.the _other hand, wheb = 80, the detection rate drops 8. Conclusion and Future Work
rapidly if the node compromise percentage readliés.

We propose an anomaly detection scheme named LAD
7.8. Detection Rate vs. Network Density (DR-m-x-  for wireless sensor networks to detect anomalies in loaaliz
D) tion. The LAD scheme takes advantage of the deployment
knowledge and the group membership of its neighbors, and
Network densitym plays an important role in the bea- uses such knowledge to find out whether the estimated loca-
conless localization scheme. The localization becomestion L. is consistent with its observations. If they are incon-
more and more accurate when the network densitin- sistent, LAD will report an anomaly. We have studied var-
creases. An interesting question is whether the densityious properties of the LAD scheme. Our simulation results
affects the LAD scheme. We have conducted an experi-show that LAD can effectively detect localization anoma-
ment to answer this question. lies, even if a significant portion of the neighbors is com-
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promised. Our simulation also shows that the more harm-

(4]

(5]

(6]

(7]

(8]

9]

(10]

ful an anomaly is, the higher the detection rate is, and at the[11]

same time the lower the false positive rate is, i.e., with the
LAD scheme, it is difficult for adversaries to cause a large

localization error without being detected.
In our future work, we will study another factor that

can affect the effectiveness of the LAD scheme. This fac-
tor is the accuracy of the deployment knowledge model. If
this model cannot accurately model the actual deployment
there will be extra errors (both on false positive and detec-

tion rate) in the anomaly detection. We will study the prop-
erties of this kind of errors in our future work.

Our work only achieves the first step toward secure lo-
calization in sensor networks. Our ultimate goal is not only

(12]

3]

(14]

to detect the anomalies, but also to correct the errors dause [15]
by the anomalies.
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