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Abstract

In wireless sensor networks (WSNs), sensors’ locations
play a critical role in many applications. Having a GPS re-
ceiver on every sensor node is costly. In the past, a number
of location discovery (localization) schemes have been pro-
posed. Most of these schemes share a common feature: they
use some special nodes, called beacon nodes, which are as-
sumed to know their own locations (e.g., through GPS re-
ceivers or manual configuration). Other sensors discover
their locations based on the reference information provided
by these beacon nodes.

Most of the beacon-based localization schemes assume a
benign environment, where all beacon nodes are supposed
to provide correct reference information. However, when
the sensor networks are deployed in a hostile environment,
where beacon nodes can be compromised, such an assump-
tion does not hold anymore.

In this paper, we propose a general scheme to detect lo-
calization anomalies that are caused by adversaries. Our
scheme is independent from the localization schemes. We
formulate the problem as an anomaly intrusion detection
problem, and we propose a number of ways to detect local-
ization anomalies. We have conducted simulations to evalu-
ate the performance of our scheme, including the false pos-
itive rates, the detection rates, and the resilience to node
compromises.

1. Introduction

Sensor networks have been proposed for various appli-
cations. In many of these applications, nodes need to find
their locations. For example, in rescue applications, rescue
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personnel can perform their tasks only if the location of the
hazardous event (reported by sensors) is known. Location
information is also important for geographic routing proto-
cols, in which such information (in the form of coordinates)
is used to select the next forwarding host among the sender’s
neighbors [2,3,14,18,21,42]. Because of the constraints on
sensors, finding locations for sensors is a challenging prob-
lem. The location discovery problem is referred to aslocal-
izationproblem in the literature.

The Global Positioning System (GPS) [13] solves the
problem of localization in outdoor environments for PC-
class nodes. However, due to the cost reason, it is highly un-
desirable to have a GPS receiver on every sensor node. This
creates a demand for efficient and cost-effective localiza-
tion algorithms in sensor networks. In the past several years,
a number of localization protocols have been proposed to
reduce or completely remove the dependence on GPS in
wireless sensor networks [4, 6, 12, 29–32, 35, 36]. Most of
these schemes share a common feature: they use some spe-
cial nodes, called beacon nodes, which are assumed to know
their own locations (e.g., through GPS receivers or manual
configuration). Other sensors discover their locations based
on thebeaconsprovided by these beacon nodes.

Sensor networks may be deployed in hostile environ-
ments, where sensor nodes can be compromised, beacon
nodes can be compromised, communication can be redi-
rected, etc. Most of the proposed localization schemes are
designed to work in environments where all the beacon
nodes behave correctly; when those nodes can be compro-
mised and act maliciously, sensors using the existing local-
ization schemes might be misled to believe that they are
in locations far away from their actual locations. This can
cause severe consequence. For example, when sensor net-
works are used for battle fields surveillance, if sensors are
misled by enemies, such that their derived locations are far
off, then when sensors report that their regions are safe, this
wrong information can cause significant damage. There-
fore, it will be of great importance if sensors can discover
whether their derived location is correct or not.
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In this paper we propose a novel scheme to detect ma-
licious attacks in localizations. Our scheme takes advan-
tage of the deployment knowledge that is available in many
sensor network applications. For example, let us look at a
deployment method that uses an airplane to deploy sensor
nodes. The sensors are first pre-arranged in a sequence of
smaller groups. These groups are dropped out of the air-
plane sequentially as the plane flies forward. This is analo-
gous to parachuting troops or dropping cargo in a sequence.
The positions where the sensor groups are dropped out of
the airplane are referred to asdeployment points; their coor-
dinates can be easily determined (e.g. using GPS) and stored
in sensors’ memories prior to sensors’ deployment. During
the deployment, sensors can land on random locations, the
distribution of which usually follows some probability dis-
tribution function (pdf) that can be modeled prior to the de-
ployment. Although not all sensor network are deployed
like this, deployment knowledge can be modeled more or
less for many sensor network deployments.

We show that, equipped with deployment knowledge,
sensors can efficiently detect localization anomalies. Our
strategy is let sensors verify whether their derived loca-
tions are consistent with the deployment knowledge. The
level of inconsistency that is above certain threshold is usu-
ally an indicator of malicious attacks. We formulate this
inconsistency as an anomaly and study this problem in
the framework of anomaly intrusion detection by leverag-
ing the methodologies from the intrusion detection field.
We call our problem theLocalization Anomaly Detection
(LAD) problem. We study the effectiveness of our proposed
scheme in this paper.

In addition to being effective in detection attacks against
the localization, a localization anomaly detection scheme
must also resist against attacks on the detection scheme
itself. As much as adversaries like to attack localization
schemes, they will attack the detection scheme if they know
such a scheme is deployed. There are a number of attacks
the adversaries can launch. We have developed a mathe-
matical framework to model those attacks, and this model
is used in our simulation-based evaluation to generate at-
tacks. Our results show that the proposed detection scheme
is highly resilient against attacks that can cause large dam-
age.

The rest of the paper is organized as follows: the next
section describes the related work. Section 3 presents the
modeling of deployment knowledge. Section 4 formally de-
fines the Localization Anomaly Detection problem. Sec-
tion 5 describes our proposed LAD detection scheme.
Section 6 describes the potential attacks on our detec-
tion scheme. Section 7 then presents the evaluation results.
Finally we conclude and lay out some future work in Sec-
tion 8.

2. Related Work

2.1. Localization Problems and Schemes

In the past several years, a number of localization pro-
tocols have been proposed to reduce or completely remove
the dependence on GPS in wireless sensor networks [1, 4–
6,11,12,29–33,35,36].

Most localization solutions in sensor networks require
a few nodes called beacons (which are also called anchors
or reference points), which already know their absolute lo-
cations via GPS or manual configuration. The density of
the anchors depends on the characteristics and probably the
budget of the network since GPS is a costly solution. An-
chors are typically equipped with high-power transmitters
to broadcast their location beacons. The remainders of the
nodes then compute their own locations from the knowl-
edge of the known locations and the communication links.
Based on the type of knowledge used in localization, local-
ization schemes are divided into two classes: range-based
schemes and range-free schemes.

Range-based protocols use absolute point-to-point dis-
tance or angle information to calculate the location be-
tween neighboring sensors. Common techniques for dis-
tance/angle estimation include Time of Arrival (TOA) [13],
Time Difference of Arrival (TDOA) [1,11,33], Angle of Ar-
rival (AOA) [31], and Received Signal Strength (RSS) [1].
While producing fine-grained locations, range-based proto-
cols remain cost-ineffective due to the cost of hardware for
radio, sound, or video signals, as well as the strict require-
ments on time synchronization and energy consumption.

Alternatively, coarse-grained range-free protocols
are cost-effective because no distance/angle measure-
ment among nodes is involved. In such schemes, errors
can be masked by fault tolerance of the network, redun-
dancy computation, and aggregation [12]. A simple algo-
rithm proposed in [4] and [5] computes the location as the
centroid of its proximate anchor nodes. It induces low over-
head, but high inaccuracy as compared to others. An alter-
nate solution, DV-Hop [32], extends the single-hop broad-
cast to multiple-hop flooding, so that sensors can find their
distance from the anchors in terms of hop counts. Us-
ing the information about the average distance per hop,
sensors can estimate their distance from the anchors. Amor-
phous positioning scheme [29] adopts a similar strategy
as DV-Hop; the major difference is that Amorphous im-
proves location estimates using offline hop-distance esti-
mations through neighbor information exchange.

Another existing range-free scheme is APIT algo-
rithm [12]. APIT resolves the localization problem by iso-
lating the environment into triangular regions between
anchor nodes. A node uses the point-in-triangle test to de-
termine its relative location with triangles formed by
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anchors and thus narrows down the area in which it prob-
ably resides. APIT defines the center of gravity of the
intersection of all triangles that a node resides in as the es-
timated node location.

Localization can also be achieved without using bea-
cons. A beaconless localization scheme is described in [8].
Instead of using the beacon information, the beaconless
scheme uses the deployment knowledge to derive the lo-
cation.

2.2. Localization in Hostile Environments

Most of the current localization schemes become vul-
nerable when there are malicious attacks. Although authen-
tication can be used to protect the integrity of the messages
sent by beacon nodes, it will not help if beacon nodes them-
selves are compromised, because a compromised beacon
node may provide incorrect location references. If a sen-
sor uses these incorrect references, it may derive a false lo-
cation.

One way to find out whether a beacon node is provid-
ing correct information or not is to verify the location of
the beacon nodes, but no effective solution has been pro-
posed to solve the location verification problem. Sastry et
al. made the first attempt towards solving this problem [34].
They proposed a protocol named Echo to verify a node’s
location claims using both radio frequency and ultrasound.
However, the Echo protocol only verifies whether a node
is inside a region or not, it does not verify whether a sen-
sor node is at certain specific location.

Our proposed technique differs from the Echo proto-
col in the following ways. First, the proposed technique is
aimed at a broader problem than the Echo protocol. While
the Echo protocol is to verify whether a sensor node is
inside a region to facilitate location-based access control,
our scheme is aimed at detectingany location estimation
anomaly atanysensor node. Second, the Echo protocol re-
lies on the existence of a very fast (e.g., radio frequency)
and a relatively slow (e.g., ultrasound) signals to derive dis-
tance from time delay; our approach does not need those
special signals.

Although the beaconless localization scheme does not
use beacons, it does have a similar problem in hostile envi-
ronments. Because a sensor using this scheme relies on its
neighbors to find out the location, if the neighbors are com-
promised, the estimated location will be incorrect. The work
described in [8] assumes that the localization scheme is per-
formed in a benign environment, and it does not show how
to deal with the hostile environment.

Recently, Lazos and Poovendran propose a new range-
independent localization scheme, SeRLoc, which can toler-
ate malicious attacks to certain degree [23]. However, when
beacon nodes can be compromised, especially those beacon

nodes that are close to the victim, SeRLoc will still have
hard time deriving the correct locations.

2.3. Intrusion Detection

The proposed approaches fall into the general field of in-
trusion detection. Intrusion detection has been studied for
more than twenty years. Intrusion detection techniques have
been traditionally classified intoanomaly detectionandmis-
use detection. Anomaly detection models the normal be-
haviors of the subjects being monitored and identifies any-
thing that significantly deviates from the normal behav-
iors as attacks. Many techniques have been proposed for
anomaly detection, including statistical approaches (e.g.,
Haystack [38], NIDES/STAT [17]), machine learning ap-
proaches (e.g., TIM [39], IBL [22]), computer immuno-
logical approaches [9, 10, 41], and specification based ap-
proaches [19, 20, 37, 40]. Misuse detection models the pat-
terns of known attacks or vulnerabilities, and identifies ac-
tions that conform to such patterns as attacks. Existing ap-
proaches include rule-based methods (e.g., ASAX [28], P-
BEST [27]), state transition based methods [7,16], and data
mining approaches [24, 25]. Most of these techniques can-
not be directly applied to sensor networks due to the re-
source constraints on sensor nodes. The technique proposed
in this paper are specifically targeted at detecting localiza-
tion anomalies in sensor networks; it differs from the tra-
ditional intrusion detection techniques in that it specifically
exploits the semantics of localization to identify the anoma-
lies.

3. Modeling of the Deployment Knowledge

In this section, we present a model for a specific type of
deployment. However, the general approach that we use in
this paper can be applied to other deployment models. Fo-
cusing on a specific deployment model in this paper allows
us to evaluate the effectiveness of our detection scheme in
a concrete scenario. Evaluation for other deployment mod-
els will also be pursued in the future.

We assume that sensor nodes are static once they are de-
ployed. We define thedeployment pointof a sensor as the
point location where the sensor is to be deployed. This is
not the location where this sensor finally resides. The sensor
node can reside at points around this deployment point ac-
cording to a certain probability distribution. As an example,
let us consider the case where sensors are deployed from a
helicopter. The deployment point of such a sensor is the lo-
cation where the sensor is thrown out of the helicopter. We
also define theresident pointof a sensor as the point loca-
tion where the sensor finally resides.
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Figure 1. A deployment example (each solid
dot represents a deployment point).

3.1. Group-based Deployment Model

In practice, it is quite common that nodes are deployed
in groups, i.e., a group of sensors are deployed at a single
deployment point, and the probability distribution functions
of the final resident points of all the sensors from the same
group are the same.

In this work, we assume such a group-based deployment,
and we model the deployment knowledge in the following
(we call this model thegroup-based deployment model):

1. N sensor nodes to be deployed are divided inton

equal-size groups so that each group,Gi, for i =
1, . . . , n is deployed from the deployment point with
index i. To simplify the notion, we also useGi to
represent the corresponding deployment point, and let
(xi, yi) represent its coordinates.

2. The deployment points are arranged in a grid (see Fig-
ure 1). Note that the scheme we developed for grid-
based deployment can be easily extended to other de-
ployment strategies, such as deployments where the
deployment points form hexagon shapes, or deploy-
ments where the deployment points are random (as
long as their locations are given to all sensors).

3. During deployment, the resident point of a nodek in
group Gi follows a probability distribution function
f i

k(x, y | k ∈ Gi) = f(x − xi, y − yi). An exam-
ple of the pdff(x, y) is a two-dimensional Gaussian
distribution. Figure 2 shows an example of the two-
dimensional Gaussian distribution at the deployment
point (150, 150).

3.2. Deployment Distribution

In this paper, we model the sensor deployment distribu-
tion as a Gaussian distribution (also called Normal distri-
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Figure 2. Deployment distribution for one
group.

bution). Gaussian distribution is widely studied and used in
practice. Although we only employ the Gaussian distribu-
tion in this paper, our methodology can also be applied to
other distributions.

We assume that the deployment distribution for any node
k in groupGi follows a two-dimensional Gaussian distri-
bution, which is centered at the deployment point(xi, yi).
Namely, the mean of the Gaussian distributionµ equals
(xi, yi), and the pdf for nodek in groupGi is the follow-
ing [26]:

f i
k(x, y | k ∈ Gi) =

1

2πσ2
e−[(x−xi)

2+(y−yi)
2]/2σ2

= f(x − xi, y − yi),

where σ is the standard deviation, andf(x, y) =
1

2πσ2 e−(x2+y2)/2σ2

.
Although the distribution function for each single group

is not uniform, we still want the sensor nodes to be evenly
deployed throughout the entire region. By choosing a proper
distance between the neighboring deployment points with
respect to the value ofσ in the pdf, the probability of find-
ing a node in each small region can be made approximately
equal.

3.3. Computingg(z)

We derive a number of formulae that will be used later in
our detection scheme. We assume that the probability that a
node from groupGi can land at a locationℓ distance from
the deployment point ofGi follows a Gaussian distribution.
That is:

fR(ℓ | ni ∈ Gi) =
1

2πσ2
e−

ℓ
2

2σ2 ,

whereR is the wireless transmission range andσ is the stan-
dard deviation of the Gaussian distribution.
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Theorem 1 We defineg(z | ni ∈ Gi) as the probabil-
ity that the sensor nodeni from groupi resides within the
neighborhood of a sensor that isz distance from the deploy-
ment point of groupGi. Based on geometry knowledge, we
can derive the following formula:

g(z | ni ∈ Gi)

= 1{z < R}

[

1 − e−
(R−z)2

2σ2

]

+

∫ z+R

|z−R|

fR(ℓ | ni ∈ Gi)

·2ℓ cos−1

(

ℓ2 + z2 − R2

2ℓz

)

dℓ, (1)

where1{·} is the set indicator function: the value of1{·} is
1 when the evaluated condition is true, and0 otherwise.

Proof. Due to the page limitation, the proof is omitted from
this paper.

Therefore,gi(θ), the probability that a node from the de-
ployment groupGi can land within the neighborhood of
point θ = (x, y), can be computed in the following (where
(xi, yi) represents the deployment point of groupGi):

gi(θ) = g(
√

(x − xi)2 + (y − yi)2 | ni ∈ Gi).

For simplicity, we useg(z) to representg(z | ni ∈ Gi)
in the rest of this paper, when it is obvious to see from the
context that we are referring to the nodes in groupGi.

The formula forg(z) is quite complicated, and we can-
not afford to compute it using Equation (1) in sensor net-
works. We can solve the performance problem using the
table-lookup approach, i.e., we precomputeg(z), and store
the values in a table. More specifically, we divide the range
of z into ω equal-size sub-ranges, and store theg(z) val-
ues for theseω +1 dividing points into a table. When a sen-
sor needs to computeg(z0), it looks up the table, and finds
the sub-range that containsz0; then it uses the interpola-
tion to computeg(z0). The computation takes only constant
time. Our results also show that to gain satisfactory level of
accuracy,ω does not need to be very large.

4. The Localization Anomaly Detection Prob-
lem

We introduce a localization anomaly detection phase af-
ter the localization phase. In the localization phase, sen-
sors derive their locations. Then in the detection phase,
sensors verify whether the derived locations are correct or
not. A failure of the verification indicates an anomaly. In
this paper, we assume that the localization phase has al-
ready ended, and each sensor has already derived a loca-
tion. This phase can be performed using any localization

scheme proposed in the literature. We focus only on the de-
tection phase, namely, to detect whether the derived loca-
tion is consistent with this node’s actual neighborhood in-
formation.

In what follows, we use|L1 − L2| to represent the dis-
tance between two locationsL1 andL2.

Definition 1 (Localization Error) LetLa = (xa, ya) rep-
resent the actual location of a sensorv. Let Le = (xe, ye)
represent the location that the sensor derives via certain lo-
calization scheme (note that the localization scheme might
be under attacks). We call the distance betweenLe andLa

the localization error.

Most of the sensor networks applications can and should
be able to tolerate certain degree of localization errors be-
cause, unlike the GPS scheme, all the localization schemes
in sensor networks cannot produce very accurate results. We
call the error that a sensor network can tolerate theMaxi-
mum Tolerable Error (MTE), the value of which is applica-
tion dependent. We define the anomaly based onMTE.

Definition 2 (Anomaly) Ananomalyis defined as a phe-
nomenon in which the localization error is greater than the
Maximum Tolerable Error (MTE), i.e.,|Le − La| > MTE.

To attack a sensor network’s localization, attackers need
to cause the localization to generate an error that is beyond
the network’s maximum tolerable error; otherwise, the at-
tacks are not considered as effective. The greater such er-
ror is, the more successful the attacks are. An attack caus-
ing |Le − La| = 120 leads to more severe damage than an
attack that causes|Le − La| = 60. We quantify the sever-
ity of an attack using the error that the attack can achieve,
and we use this quantification to further define the anomaly
with different degrees of damage.

Definition 3 (D-Anomaly) An anomaly is calledD-
anomaly if the localization error is greater thanD,
i.e., |Le − La| > D. D is called theDegree of Dam-
age. D is chosen by attackers based on their targeted
errors.

If the error |Le − La| is observable, we can easily de-
cide whether a phenomenon isD-anomaly by comparing
|Le − La| with D; however, the actual locationLa is not
observable, so we need to turn to other observable met-
rics to find out whether|Le − La| is beyondD or not. The
goal of this paper is to develop such a metricA and its cor-
responding threshold (called thedetection threshold), such
that whenA is larger than the detection threshold, we can
say that the localization is abnormal. Ideally, a metricA

should satisfy the following property:the metricA is larger
than the detection threshold if and only if|Le − La| > D.
Unfortunately, such a metric, if exists at all, is difficult to
find. In this paper, we turn to heuristic metrics, and we want
the above property to be satisfied as much as possible.
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Because the above ideal property cannot always be sat-
isfied for the metricA we select, there will be situations
whenA is larger than the detection threshold, but the dis-
tance metric|Le − La| is still belowD. In this case, a false
alarm will be raised, so we call this situation afalse positive.
Similarly, there will be situations whenA is smaller than
the detection threshold, but the distance metric|Le − La|
is larger thanD. In this case, our metric will fail to raise
an alarm, and we call this situation afalse negative. A good
metricA should be able to minimize both false positive and
false negative rates.

5. Detecting Localization Anomalies Us-
ing Deployment Knowledge

Based on deployment knowledge, we illustrate the key
idea of our localization anomaly detection scheme using the
following example: Assume that the deployment follows the
pattern described in Figure 1. Also assume that a sensorv is
actually at the locationO, but due to the attacks, its derived
localization result saysP . According to its actual location,
v is supposed to observe many neighbors from groupsA, B,
C, andD. That is, groupA is deployed at point A, groupB
is deployed at pointB, etc. On the other hand,v is not sup-
posed to see many neighbors from groupsE, F , G, or H.
However, ifP is v’s actual location,v should see the oppo-
site. Therefore, the observations at the locationsO andP

are different. The farther apartO andP are, the more dif-
ferent their observations are. Sincev’s actual observation at
the locationO is already known and its expected observa-
tion at the locationP can be calculated using the deploy-
ment knowledge, we can compare these two observations.
If they deviate substantially from each other, we can deter-
mine thatv’s localization resultP is inconsistent with its
actual observation.

We propose three metrics to measure the degree of incon-
sistency between a node’s derived location and its observa-
tion. For each metric, we obtain a threshold through train-
ing. If the level of inconsistency exceeds such a threshold,
we claim that the localization results are inconsistent with
the observation, thus an alarm will be raised. We have eval-
uated the effectiveness of our proposed scheme, including
its tolerance to malicious attacks, false positive rates, de-
tection rates, etc. A nice property of our proposed scheme
is that even if the anomaly detection thresholds are not op-
timally selected, our method still has a high detection rate
and low false alarm rate for large localization errors. This
makes the proposed method an ideal candidate for localiza-
tion anomaly detection.

5.1. The Detection Scheme

After sensors are deployed, each sensor broadcasts its
group id to its neighbors, and each sensor can count the
number of neighbors fromGi, for i = 1, . . . , n. Assume
that a sensor finds out that it haso1, . . . , on neighbors from
groupG1, . . . , Gn, respectively. We callo = (o1, . . . , on)
the observation of the sensor. Because the observations at
different locations can be very different, especially when
two locations are far away from each other, we can use the
observation to verify whether the localization result is con-
sistent with the observation.

Based on the estimated locationLe = (xe, ye) and the
deployment knowledge, a sensor can derive the expected
observations and the likelihood of its actual observations.
If the expected observations are too different from its ac-
tual observations, or if the likelihood of the actual obser-
vation atLe is too low, a sensor can claim thatLe is in-
consistent with the actual observations, which indicates an
anomaly.

We propose three metrics for anomaly detection. The ob-
jective of this study is to investigate how effective these met-
rics are.

5.2. The Difference Metric

Let Le = (xe, ye) represent a sensor nodev’s estimated
location derived using certain localization scheme. Leto =
(o1, . . . , on) representv’s actual observation. This observa-
tion might be tainted by adversaries if some neighbors ofv

are compromised by the adversaries. Assume there are no
adversaries, and thatv is indeed at the locationLe, then we
can computev’s expected observationµ = (µ1, . . . , µn),
whereµi represents the expected number of neighbors that
come from groupi. If the expected observationµ is close
to the actual observationo, our no-adversary assumption is
probably true; however, ifµ ando are very different, the
no-adversary assumption might be false.

Because the probability that a sensor from groupi be-
comesv’s neighbor isgi(Le), v is expected to seem·gi(Le)
neighbors from groupi, wherem is the total number of sen-
sors in groupi. Therefore,µi can be computed using the fol-
lowing equation:

µi = m · gi(Le)

= m · g(
√

(xe − xi)2 + (ye − yi)2). (2)

We use the difference between the expected observa-
tion µ and the actual observationo to measure how close
these two observations are. The differenceDM is defined
as the following:

DM =

n
∑

i=1

| oi − µi | .
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We useDM as one of our anomaly indicators. We call
this metric theDifference Metric(or the Diff Metric in
short). When the value ofDM is greater than a threshold
value (as we will explain later, such a threshold is derived
via training), we say that the locationLe is abnormal.

5.3. The Add-all Metric

We use an example to illustrate the motivations underly-
ing this metric. We will use Figure 1 again. Assume that a
nodev’s actual location isO, but due to the attacks on the
localization phase,v finds out that its estimated location is
at P . Therefore, we have two sets of observations: one is
nodev’s actual observationo atO, the other is the expected
observationµ atP . The observationµ = (µ1, . . . , µn) can
be computed using Equation (2).

We define theunionof the observationso andµ: let t =
(t1, . . . , tn) be the union of the observationµ ando, where
ti is defined as the following:

ti = max{oi, ui}, for i = 1, . . . , n. (3)

There is an important fact about the observationso and
µ: From Figure 1, we can see that in the observationo, the
number of neighbors from groupsA, B, C, andD is high,
but the number of neighbors from groupsE, F , G, andH

is low. In the observationµ, the situation is the opposite. If
we union these two observations together, in the resultant
observationt, the the number of neighbors fromA, B, C,
D, E, F , G, andH will be high. Therefore, compared to
o andµ, the total number of neighbors int is higher (we
use|t| to represent the total number of neighbors int); and
the more differentO andP are, the higher the value of|t|
is. On the other hand, ifO andP are close to each other,
the observationso andµ should be similar; thus|t| will not
gain much from the union ofo andµ.

With the above discussion, we propose to use the total
number of neighbors in the union observation as another
anomaly indicator. Therefore, we define the following met-
ric:

AM =

n
∑

i=1

max{oi, ui}.

We call the metricAM theAdd-all Metric. We compare
the result of this metric with a threshold derived from the
training to decide whether the estimated locationLe is ab-
normal.

5.4. The Probability Metric

When a sensor node seesoi sensors from groupi, based
on its estimated location, the sensor can calculate how likely
it can haveoi neighbors from groupi. If the probability

is too small, it indicates a potential anomaly. Therefore,
we can use this probability as another anomaly indicator.
Since there aren deployment groups, we can compute the
probability value for each group, and choose the smallest
probability value. We then compare this smallest probabil-
ity value with a threshold (also explained later in Section 7).
If the probability value is smaller than the threshold, we say
that there is an anomaly with the localization result. We call
such a metric theProbability Metric.

Assume a sensorv has estimated its locationLe =
(xe, ye) using a localization scheme. Given the number (m)
of nodes deployed in each group and the pdf function of the
deployment, we can compute the probability that exactlyoi

nodes from groupGi (for eachi = 1, . . . , n) can be ob-
served byv. Let Xi represent the number ofv’s neighbors
that come from groupGi. The probability that the nodev at
the locationLe has exactlyoi neighbors from groupi can
be computed using the following formula:

PM = Pr(Xi = oi | Le)

=

(

m

oi

)

(gi(Le))
oi (1 − gi(Le))

(m−oi) .

If any of thePr(Xi = oi | Le), for i = 1, . . . , n, is
less than a threshold, our detection will raise an alarm to in-
dicate that the location is abnormal. Obviously, the choice
of the threshold is important, if the threshold is too large,
we will have a lot of false positives; if the threshold is too
small, the false negative rate might be too large.

5.5. Obtaining the Thresholds Using Training

Ideally, to obtain the training data, we need to conduct an
actual sensor network deployment. After the deployment,
each sensor obtains the list of its neighbors, and then uses
a selected localization scheme to estimate its own location.
However, collecting the training data in this way is beyond
our capability; we turn to simulation. We describe our data
collection and training process in the following:

1. Collecting data from simulation: Based on our model
of deployment knowledge, we generate a number of
sensor networks. We randomly selectN sensor nodes
from these sensor networks. For each sensor, we col-
lect the following data:

(a) We obtain the node’s observationo and its actual
location(xa, ya).

(b) We use a localization scheme to compute the lo-
cation(xe, ye) for the node.

2. Training: we compute the proposed metrics for all the
data in the training data sets, using(xa, ya), (xe, ye),
and the observationso. The metric results form a sam-
ple distribution.
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3. Deriving the Detection Threshold: we useτ percentile
to decide a threshold from the metrics computation
results. Namely, theτ percent of the training results
should be within this selected threshold. The value of
τ is a configurable parameter and is application depen-
dent. The value of(1 − τ) is the false positive rate.1

For example, for theDiff metric, if through the simula-
tion, we find thatτ = 99.99% of the metric results is within
30 in the non-compromised network, we will use30 as the
detection threshold.

Obtaining thresholds for anomaly detection is in general
a challenging task, because it is usually difficult to observe
all possible “normal” behaviors during the training process.
However, we are targeting at a specific localization appli-
cation in sensor networks, in which the only inputs are the
estimated locations and the observed neighbor information.
Thus, it is likely to observe most (if not all) of the normal
behaviors during the training process.

Since the anomaly detection thresholds are obtained
through the simulated deployments, the quality of the sim-
ulations has a potential impact on the quality of anomaly
detection. However, as we will show through our exper-
iments in Section 7, our anomaly detection method has a
nice property, i.e., our method has a high detection rate and
low false positive rate for large localization errors intro-
duced by attacks, even if the anomaly detection thresholds
are not optimally selected. In other words, the detec-
tion performance of the LAD scheme is not sensitive to
the quality of the detection thresholds for high-impact lo-
calization anomalies. This property makes the LAD
scheme an ideal candidate for localization anomaly detec-
tion.

6. Attacks on Our Detection Scheme

Just like the localization phase, which might be con-
ducted in a hostile environment, the detection phase is con-
ducted in the same environment. This means, if adversaries
have already attacked the localization phase, very likely
they will attack the detection phase to prevent their attacks
on the localization from being detected. Therefore, because
a sensor’s detection is based on the information provided
by its neighbors, we must consider the situations where a
subset of this sensor’s neighbors are compromised. A com-
promised neighbor can send out false information or refuse
to send out correct information. A good detection scheme
should be able to achieve decent detection rate and low false
positive rate even when a non-trivial portion of the neigh-
bors are compromised.

1 This false positive rate is for the training data set only, but the ac-
tual false positive rate should be close to this value if our deployment
knowledge is modeled correctly.

(c) Multi−Impersonation Attack

I am from group 28

I am from group 5

I am from group 2

I am from group 1

I am from group 8

Pre−defined
Range

(d) Range−Change Attack

New Range

(b) Impersonation Attack

I am actually from group 5

 I am from group 9

but I am not telling anybody.

I am actually from group 5,

(a) Silence Attack

Figure 3. Various Attacking Scenarios.

Once adversaries have compromised a sensor node, they
can launch a number of attacks in order to corrupt detec-
tion. Their goal is to change the victim’s observation, so
they can affect the victim’s detection results. There are four
types of attacks that an adversary can launch against local-
ization (we useo = (o1, . . . , on) to represent the victim’s
observation if none of its neighbors is compromised):

• Silence attack:A compromised sensor can keep silent.
If this sensor comes from groupi, the victim’s obser-
vationoi on groupi can be decreased by one.

• Impersonation attack:Instead of reporting its actual
group membershipi, a compromised sensor can claim
that it comes from another group, e.g. groupj. There-
fore,oj can be increase by one.

• Multi-Impersonation attack:If no pair-wise authenti-
cation mechanism is used, a compromised sensor can
send out many messages, each of which can appear to
come from any group. Therefore,ok (for k = 1, . . . , n)
can beincreasedby a arbitrary number.

• Range-Change attack:In this attack, the adversaries
cause the range of a compromised node to be changed.
When the compromised node’s range increases, a vic-
tim far away from this compromised node will now
consider this node as a neighbor. If this compromised
node comes from groupi, the victim’s observation
oi can be increased by one. The range-change at-
tack can be achieved via three different ways: (1)
The compromised sensor can change its transmission
power. (2) The compromised sensor can use worm-
hole attacks [15]. In the wormhole attack, an attacker
records packets at one location in the network, tunnels
them to another location, and retransmits them there
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into the network. This essentially achieves the range-
change attack. (3) The range-change attack can also
be achieved if adversaries can physically move a com-
promised node that is outside of the victim’s neighbor-
hood into the victim’s neighborhood.

The above attacks can be combined to form a variety
of new attacks. Regardless of how they are combined, two
key observations can be made for any compromised node
(assume that this compromised node comes from group
i). First, the number of observations on groups other than
group i can only be increased. This is because a compro-
mised node cannot stop the non-compromised nodes from
broadcasting their group memberships. However, a com-
promised node can broadcast multiple messages claiming
it comes from other groups, thus increasing the observa-
tions on those groups. Second, the number of observation
on groupi can be decreased by only one for each compro-
mised neighbors from groupi; this is achieved via the si-
lence attack.

We have generalized the various attacks into two classes,
and have defined them in a unified framework. In our defi-
nitions, we letx represent the total number of compromised
nodes in a sensor’s neighborhood. Leta = (a1, . . . , an) be
what a node can observe when none of its neighbors is com-
promised. Leto = (o1, . . . , on) be what a node has actually
observed when up tox of its neighbors are compromised.

6.1. Dec-Bounded Attacks

When all the attacks described in Figure 3 are possible,
adversaries can make each observationoi arbitrarily larger
thanai, i.e. oi − ai can be as large as possible2. However,
adversaries cannot makeoi arbitrarily smaller thanai, be-
cause the adversaries cannot prevent the non-compromised
neighbors from broadcasting their membership. This means
that ai − oi has an upper bound. We call this type of at-
tack theDecrease-Bounded (Dec-Bounded)attack. It is for-
mally defined in the following:

Definition 4 (Dec-Bounded Attack) We say that an attack
is aDec-Boundedattack if any observationo resulting from
this attack satisfies the following condition:

∑

∀i,ai>oi

(ai − oi) ≤ x.

6.2. Dec-Only Attacks

If we use authentication mechanisms along with the
wormhole detection mechanism [15], and also assume that
attackers cannot physically move sensors, we can limit the

2 Of course,oi must be bounded by the total number of nodes coming
from Groupi.

attacks to the silence attack only Therefore, the attackers
can only decrease the victim’s observations via the silence
attack, and they cannot increase the observations. We call
this type of attack theDecrease-Onlyattack (in shortDec-
Only). It is formally defined in the following:

Definition 5 (Dec-Only Attack) We say that an attack is a
Dec-Onlyattack if any observationo resulting from this at-
tack satisfies the following condition:

oi ≤ ai, for i = 1, . . . , n,
n

∑

i=1

(ai − oi) ≤ x.

The Dec-Onlyattacks are less powerful than theDec-
Boundedbecause of the assumptions and constraints made
on the attackers’ behaviors; some of the assumptions might
not be realistic in sensor network applications. Therefore,
theDec-Onlyattacks only have theoretic value; in our eval-
uation, we mainly focus on the powerfulDec-Boundedat-
tacks.

6.3. Impacts of the Attacks

An adversary may launch the above attacks to decrease
the detection rate of the LAD scheme, so that it has a greater
chance to convince sensor nodes to take false locations
without noticing the localization anomalies. Similarly, an
adversary may also increase the false alarm rate by launch-
ing the above attacks (without compromising the localiza-
tion scheme). As a result, a sensor node may raise an alarm
and stop using the estimated location even if there is no lo-
calization anomaly. This will certainly lead to a denial of
service (DOS) attack against the localization service. Ob-
viously, the more sensor nodes the adversary can compro-
mise and the less constraints on the adversary’s capabilities,
the more the adversary can decrease the detection rate or
increase the false alarm rate. We will investigate how well
LAD can tolerate these attacks through simulations in the
next section.

Because of the above attacks, it is possible that an ad-
versary will simply launch DOS attacks against LAD rather
than compromising the localization scheme. We make two
observations about this threat. First, by launching such DOS
attacks, an adversary can only render the localization ser-
vice unusable, but cannot convince a sensor node to ac-
cept a false location. In other words, if the LAD scheme
maintains an acceptable detection rate, it will narrow the
adversary’s choices down to DOS attacks. Second, such at-
tacks are only sensible when they are less expensive than
attacking the localization scheme itself. Otherwise, an ad-
versary can already achieve the DOS attacks at the local-
ization phase; launching DOS attacks during the detection
phase cannot achieve extra benefit.
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Based on the above discussion, it is necessary to compare
the difficulty to compromise LAD and the difficulty to com-
promise a localization scheme. Indeed, as discussed earlier,
all the current localization schemes are vulnerable, since
they were not developed to handle malicious attacks. Al-
most all of the range-based localization schemes and some
range-free schemes (e.g., [6, 30–32, 35, 36]) eventually re-
duce localization to a Minimum Mean Square Estimation
(MMSE) problem. Though this is effective to reduce the im-
pact of measurement errors that occur during localization,
an adversary can still introduce arbitrarily large location er-
rors by compromising a single anchor node and having the
compromised anchor node declaring a false location.

Some other range-free localization schemes (e.g., APIT
[12]) are more resistant to malicious attacks. However, the
correctness of location estimation is still dependent on the
anchor nodes, whose quantity is usually limited due to cost
reasons. These beacon nodes will become obvious targets.
An adversary can either compromise selected anchor nodes,
or simply replay beacons intercepted in other areas (without
compromising those anchor nodes) to launch attacks. Thus,
we believe attacking these localization schemes is not sub-
stantially more difficult than attacking LAD.

It is possible to enhance the security of existing local-
ization schemes or develop new attack-resistant ones. How-
ever well these schemes work, they will still be vulnerable if
the adversaries are able to compromise sensor nodes. Thus,
having LAD as a second line of defense will still be valu-
able.

7. Evaluation

This section provides a detailed quantitative analysis
evaluating the performance of our LAD scheme.

7.1. Experiments Setup and Methodologies

In our experiments, the deployment area is a square plane
of 1000 meters by1000 meters. The plane is divided into
10 × 10 grids. Each grid is100m × 100m. The center of
each grid is the deployment point. Figure 1 shows the de-
ployment points. We still usem to represent the number of
nodes in each group andR to represent the transmission
range. We set the parameterσ of the Gaussian distribution
to 50 in all of the experiments.

To simulate attacks with the degree of damageD, we use
the following procedure:

1. We randomly pick a nodev at the locationLa, and get
the actual (non-tainted) observationa at the location.

2. We simulate an attack against the localization of node
v by letting v’s estimated location be a random loca-
tion Le, where|Le − La| = D (which simulates the

D-anomaly attack). We compute the expected obser-
vationµ at the locationLe.

3. To simulate the Dec-Bounded or Dec-Only at-
tacks against the LAD detection scheme, we gen-
erate a new observationo from a. The relationship
of o and a should comply with the constraints de-
fined for those attacks. The generated (tainted)
observation o becomes nodev’s actual observa-
tion.

There are many ways to generateo from a. We use a
greedy procedure to minimize the selected detection metric.
The underlying motivation is that if an attacker can reduce
the detection metric result to below the detection threshold,
its attacks on the localization will escape from being de-
tected. The greedy procedure depends on both the metrics
and the types of attacks. There are2 × 3 combinations of
attacks and detection metrics; the procedure for each com-
bination is different. We will only describe how to simu-
late theDec-Boundedattack to minimize theDiff metric; the
simulation of the other combinations can be achieved simi-
larly. The idea of the procedure is to makeoi as close toµi

as possible, so theDiff metric can be minimized. There are
two cases in our procedure (we letX be the number of com-
promised nodes within the sensor’s neighborhood):

1. If µi > ai, attackers can immediately increaseai by
(µi − ai), thus gettingoi = µi, because in theDec-
Boundedattack, attackers can arbitrarily increase the
observations of any deployment group.

2. If µi < ai, attackers have to decreaseai to get closer
to µi. They can achieve this only via the silence at-
tacks. However, each time the attackers decreaseai by
one, it must consume a compromised node. For each
ai > µi, we letoi = ai, and then we repeat decreas-
ing bothoi andX by one, until eitheroi = µi or X

reaches zero.X = 0 means there is no more compro-
mised node to consume, so we cannot decrease the ob-
servation anymore.

Once the tainted observationo is simulated, we can use
our proposed detection metrics and the derived (from train-
ing) detection thresholds to conduct the anomaly detection.
Note that the purpose of our experiments is to evaluate
the anomaly detection method. Thus, we will use different
thresholds to evaluate the detection rate and the false posi-
tive rate.

7.2. Selecting a Localization Scheme

Our proposed LAD scheme is a general detection
scheme that is independent of localization schemes. It as-
sumes that the estimated location is already obtained us-
ing any of the localization schemes; it then detects whether
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the estimated location is consistent with its observa-
tions.

However, the performance of the LAD scheme does de-
pend on the specific localization schemes. For different
schemes, the detection threshold derived from training will
be different; thus the false positive and the detection rate
will be different. Therefore, in this paper, to evaluate the
performance of the LAD scheme, we must combine it with
a specific localization scheme. We choose to study LAD for
the beaconless localization scheme [8] in this paper. The
methodology for studying the LAD scheme for other local-
ization schemes is similar, and will be pursued in our future
work.

7.3. Parameters

Seven different parameters are involved in the LAD
scheme, including:

• m: the density of the network.

• M : the detection metrics.

• T : the type of attacks.

• D: the degree of damage of an attack.

• x: the percentage of the compromised nodes.

• FP : the false alarm rate.

• DR: the detection rate.

To understand the effectiveness of our scheme, we have
selected five interesting parameter combinations to study.
We present the results in the rest of this section. We give
each figure (or each group of figures) a name using the pa-
rameters involved in that figure(s). The name follows the
format y-x-a, where the parametersy andx represent they-
axis and thex-axis, respectively; we will plot several curves
on the same figure, each using different values for the pa-
rametera. For example,a could be the type of attacksT , the
degree of damageD, etc. Sometimes, we use y-x-a-b to rep-
resent a group of y-x-a figures, with each figure using a dif-
ferent value for the parameterb.

7.4. ROC Curves for Different Metrics (DR-FP-
M-D)

The goal of this experiment is to understand the perfor-
mance of the LAD scheme for three different metrics, in-
cluding theDiff Metric, theAdd-All Metric, and theProb-
ability Metric. In intrusion detection, the Receive Operat-
ing Characteristic (ROC) curve is usually used to measure
the performance of a detection method. The ROC curve is
a plot of intrusion detection accuracy against the false posi-
tive rate. It can be obtained by varying the detection thresh-
old. In this experiment, we want to plot the ROC curves for
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Figure 4. Receive Operating Characteristic
(ROC) curves for different detection metrics
and different degrees of damage D: DR-FP-
M-D (x = 10%, m = 300, T=“ Dec-Bounded At-
tack”). Note: the scales for both x-axis and y-axis
in different figures are different.

different detection metricsM and different degrees of dam-
ageD.

We fix the values for the other parameters as the follow-
ings: the percentage of the compromised nodesx is set to
10%, the network densitym is set to 300 nodes per deploy-
ment group (there are10 × 10 groups in our studies), and
the type of the attacks is set to theDec-Boundedattacks, the
most powerful attacks against the localization among the
two attacks defined in our framework. The results are de-
picted in Figure 4 (Note that we have used different scales
for both x-axis and y-axis in different figures for better pre-
sentation effects):

The figure shows that the LAD scheme is more effec-
tive for attacks with higher degree of damage. For example,
when adversaries launch attacks withD = 120 (i.e., an suc-
cessful attack must cause the localization error to exceed
120), the Diff metric can achieve almost100% detection
rate with below5% false positive rate; when attacks have
D = 160, theDiff metric can achieve100% detection rate
without raising any false alarms. These results show that the
attackers’ damage to the localization schemes is limited. If
they want to cause a damage with a largeD, the anomaly
will almost be certain to be detected.

From the figures, we can also see that in general, theDiff
metric performs the best among the three metrics. There-
fore, we will only use this metric in the rest of our studies.
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(ROC) curves for different attacks with D = 40
and D = 80: DR-FP-T-D (x = 10%, m = 300,
M=“ Diff Metric”)

7.5. ROC Curves for Different Attacks (DR-FP-T-
D)

The goal of this experiment is to understand the effec-
tiveness of the anomaly detection under theDec-Bounded
attacks and theDec-Onlyattacks. Similar to the previous
figures, we letx = 10% andm = 300; we only use theDiff
metric.

We have plotted a number of ROC curves for different
types of attacks and different degrees of damageD. The re-
sults are depicted in Figures 5 and 6.

From the figure, we can see that theDec-Boundedat-
tack is the most powerful attack, namely, it is the most diffi-
cult one to detect, especially whenD is small. For instance,
whenD = 40, the detection rates for theDec-Onlyattack
are high with small false alarm rates, but the detection rate
for theDec-Boundedattack is still very low.

However, with the increase ofD, the detection rate under
different attacks becomes less and less different. For exam-
ple, whenD = 120 and the false positive is below2%, the
detection rate for theDec-Boundedattacks is already over
99.5%, close to the detection rates (100%) achieved by the
Dec-Onlyattacks. This useful observation tells us that to de-
tect the attacks with large degree of damage, we do not need
to use the expensive authentication and wormhole detection
mechanisms to prevent the powerfulDec-Boundedattacks.
Although these mechanisms can achieve significant bene-
fits for smallD, whenD is high, the benefits become not
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Figure 6. Receive Operating Characteristic
(ROC) curves for different attacks with D =
120 and D = 160: DR-FP-T-D (x = 10%, m =
300, M=“ Diff Metric”)

significant enough to merit the cost.
In the rest of our experiments, we will only focus on the

Dec-Boundedattack.

7.6. Detection Rate vs. Degree of Damage (DR-D-
x)

The goal of this experiment is to study how the degree
of damageD affects the detection rate. To this end, we let
m = 300, false positive rateFP = 0.01, andT be theDec-
Boundedattack; we use theDiff metric only. We plot curves
for x = 10%, x = 20%, andx = 30%. The results are de-
picted in Figure 7.

The figure clearly shows that when the degree of dam-
age D is low, the detection rate is very low. This indi-
cates that our scheme is not very effective for the attacks
that cause small degree of damage. This result is caused by
the localization schemes, because most of the localization
schemes (except GPS-based) cannot achieve very high ac-
curacy; when theD is too small, it is difficult to distinguish
whether the anomaly is caused by attackers or by localiza-
tion errors.

However, when the degree of damageD becomes large,
the results show that the LAD detection scheme can more
clearly distinguish anomalies from normal. Therefore, the
detection rate is approaching100% with the increase of the
D, when the false positive rate is limited to1%. This prop-
erty of our LAD scheme indicates that if attackers want
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Figure 7. Detection Rate vs. Degree of Dam-
age: DR-D-x ( FP = 0.01, m = 300, M=“ Diff
Metric”, T=“ Dec-Bounded Attack”).

to cause more severe damage, they will be detected with
higher probability. In other words, a successful attack’s
damage is always limited to a small distance, which does
little harm to most of the sensor network applications.

7.7. Detection Rate vs. Node Compromise Ratio
(DR-x-D)

The goal of this experiment is to study how much of node
compromise can be tolerated by our LAD scheme. To this
end, we letm = 300, false positive rateFP = 0.01, andT

be theDec-Boundedattack, and we use theDiff metric. We
plot curves forD = 80, D = 120, andD = 160. The re-
sults are depicted in Figure 8.

The figure shows that the higher the degree of damageD

the higher the tolerance. For instance, whenD = 160, the
LAD detection scheme can tolerate up to50% of the node
compromises without significant drop in its detection rate.
On the other hand, whenD = 80, the detection rate drops
rapidly if the node compromise percentage reaches15%.

7.8. Detection Rate vs. Network Density (DR-m-x-
D)

Network densitym plays an important role in the bea-
conless localization scheme. The localization becomes
more and more accurate when the network densitym in-
creases. An interesting question is whether the density
affects the LAD scheme. We have conducted an experi-
ment to answer this question.
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Figure 8. Detection Rate vs. the Percentage
of Compromised Nodes: DR-x-D ( FP = 0.01,
m = 300, M=“ Diff Metric”, T=“ Dec-Bounded
Attack”).

In our experiment, we let the false positive rateFP =
0.01, T be theDec-Boundedattack, and we use theDiff
metric. The results are depicted in Figure 9.

The figure shows that when the network densitym in-
creases, the detection rate increases. However, such an in-
crease is not caused by the LAD detection scheme, but by
the beaconless localization scheme. As we know, whenm

increases, the localization becomes more accurate; in other
words, the distance between the estimated locationLe and
a sensor’s actual locationLa decreases. Such a decrease
makes it easier to separate a normal behavior from anomaly.
Therefore, whenm increases, the detection threshold can
be made smaller while still being able to maintain the
same level of the false positive rate. The consequence of
the smaller detection threshold is that it is easier to catch
anomalies.

8. Conclusion and Future Work

We propose an anomaly detection scheme named LAD
for wireless sensor networks to detect anomalies in localiza-
tion. The LAD scheme takes advantage of the deployment
knowledge and the group membership of its neighbors, and
uses such knowledge to find out whether the estimated loca-
tion Le is consistent with its observations. If they are incon-
sistent, LAD will report an anomaly. We have studied var-
ious properties of the LAD scheme. Our simulation results
show that LAD can effectively detect localization anoma-
lies, even if a significant portion of the neighbors is com-
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Figure 9. Detection Rate vs. Network Den-
sity: DR-m-x-D ( FP = 0.01, M=“ Diff Metric”,
T=“ Dec-Bounded Attack”).

promised. Our simulation also shows that the more harm-
ful an anomaly is, the higher the detection rate is, and at the
same time the lower the false positive rate is, i.e., with the
LAD scheme, it is difficult for adversaries to cause a large
localization error without being detected.

In our future work, we will study another factor that
can affect the effectiveness of the LAD scheme. This fac-
tor is the accuracy of the deployment knowledge model. If
this model cannot accurately model the actual deployment,
there will be extra errors (both on false positive and detec-
tion rate) in the anomaly detection. We will study the prop-
erties of this kind of errors in our future work.

Our work only achieves the first step toward secure lo-
calization in sensor networks. Our ultimate goal is not only
to detect the anomalies, but also to correct the errors caused
by the anomalies.
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