
Intentio Ex Machina: Android Intent Access

Control via an Extensible Application Hook

Carter Yagemann and Wenliang Du

Syracuse University, Syracuse NY 13210, USA,
{cmyagema,wedu}@syr.edu

Abstract. Android's intent framework serves as the primary method for
interprocess communication (IPC) among apps. The increased volume of
intent IPC present in Android devices, coupled with intent's ability to im-
plicitly �nd valid receivers for IPC, bring about new security challenges.
We propose Intentio Ex Machina (IEM), an access control solution for
Android intent security. IEM separates the logic for performing access
control from the point of interception by placing an interface in the An-
droid framework. This allows the access control logic to be placed inside
a normal application and reached via the interface. The app, called a
�user �rewall�, can then receive intents as they enter the system and in-
spect them. Not only can the user �rewall allow or block intents, but it
can even modify them to a controlled extent. Since it runs as a user ap-
plication, developers are able to create user �rewalls that manufacturers
can then integrate into their devices. In this way, IEM allows for a new
genre of security application for Android systems o�ering a creative and
interactive approach to active IPC defense.

1 Introduction

One of the constraints which has shaped the design of Android is the limited
hardware resources of embedded devices. Due to small memory size, Android's
creators wanted to design an architecture which encourages apps to leverage
the functionalities and capabilities of apps already present on the device. This
allows Android devices to conserve memory by avoiding overlapping code. From a
security perspective, this increased utilization of frequently implicit interprocess
communication (IPC) gives rise to interesting and unique security concerns.

First, since an app does not need to explicitly know a receiver in order to
perform IPC, it can invoke any other app which has registered components. This
is concerning for the receiving app because by registering components to handle
external requests, the app is opening itself to every other app on the device.
This includes apps that could be malicious or come from untrusted sources.
If the receiving app's exposed components contain vulnerabilities, the attack
surface for exploitation immediately becomes systemwide. Attacks related to
this problem have already been observed in the wild and are categorized as
component hijacking [21].

2 Carter Yagemann et al.

Second, since any app can register components, senders do not have full
control over where their data will end up. If a malicious app registers itself
to handle a wide variety of requests, apps using intents could �nd their data
being ex�ltrated into the hands of devious actors. This kind of attack has been
categorized in other works as intent spoo�ng [10, 1].

These problems have motivated both researchers and developers to seek so-
lutions. Our proposal for intent IPC access control is an architecture which
leverages the system-centric and standardized nature of intent IPC. Intentio Ex
Machina1 (IEM) is motivated by the insight that while every �rewall intercepts
packets and takes actions based on a decision engine, these two pieces do not
have to reside near each other. More speci�cally, IEM replaces the intent �re-
wall's engine with an interface that can bind to a user app. This �user �rewall�
can then act as the system's intent �rewall. By placing the decision engine in
an app, rather than in the framework like the current intent �rewall, developers
can easily design engines to utilize all the capabilities of a user app including
pushed updates that do not require rebooting or �ashing, rich graphically en-
hanced user interaction, and simpli�ed access to system resources such as GPS
and networking.

We have made a virtual machine image containing IEM and a proof-of-
concept user �rewall available for download2.

2 Background

2.1 Intent

Intents are a framework level abstraction of Linux binder IPC. They provide
a simpli�ed and standardized object for communicating with other apps and
system services.

The Android system server maintains a binder of handles to create a mapping
between sources and destinations. Whenever a system or user app is created,
it is assigned a binder handle, which allows the app to send messages to the
system server. Upon startup, every app uses its binder handle to the system
server to register itself as an active app on the Android device. This registration
establishes a network of paths for intents to take, all centered around the system
server. Apps can also register intent �lters to de�ne the kinds of external intents
that their components are willing to receive.

Upon receiving an intent, the system server has to resolve which component
should be the receiver. If a target is explicitly speci�ed in the intent, the system
server checks it against the receiver's intent �lter and con�rms that they match
before delivering it. Otherwise, the system server will search its list of intent
�lters to �nd eligible receivers.

1 Latin for intent of the machine. Ex Machina is an acronym meaning Extensible
Mandatory Access Control Hook Integrating Normal Applications.

2 http://jupiter.syr.edu/iem.amp.html

Intentio Ex Machina 3

Once the receiver3 has been resolved, the intent is then passed to the intent
�rewall. The �rewall compares it against its policies to decide whether it should
be blocked or not.

Finally, the receiver processes the intent and if a result is needed, it gives this
to the system server to forward to the original sender. The overall transaction
occurs asynchronously since it involves communicating across several processes.

2.2 Activity Manager Service

The system server in Android is a privileged process running in user space. Apps
communicate with it via binder messages and intents. The system server itself
can be further divided into a collection of services, each of which is designed to
manage a particular functionality of the system.

Activity Manager Service (AMS) is responsible for handling intents. It has a
collection of public methods that apps can invoke; it communicates with all the
other services to make sure that intents are resolved, permissions are checked,
and receivers are running and ready to receive.

System Server

Activity Manager Intent FirewallSender Application

Receiver
Application

Fig. 1. Android Intent Firewall.

2.3 Intent Firewall

The intent �rewall is an access control mechanism originally introduced in An-
droid 4.3 and is present in all production devices. SEAndroid4 con�guration �les
support intent �rewall policies, but few devices utilize it [29]. The main purpose
of the intent �rewall is to stall major malware outbreaks by allowing device man-
ufacturers to push policies that will explicitly block the malware's components.

3 There can also be multiple receivers in the case of broadcast intents.
4 Security Enhancements for Android. Facilities device hardening via a bundle of poli-
cies.

4 Carter Yagemann et al.

Since such outbreaks are extremely rare, the intent �rewall has almost never
been used [22]. Figure 1 shows how the intent �rewall �ts into the framework.

AMS checks intents against the intent �rewall near the end of the process.
As a consequence, even though intents can be created with implicit or explicit
destinations, they are all resolved to a receiver by the time they enter the �rewall.
Also, all three types of intents5 are checked by the intent �rewall before reaching
the receiver. In other words, every intent type goes through the �rewall before
delivery. No intents can bypass it.

3 Design

In this section, we formulate the main architectural goal of IEM and assess the
challenges in trying to achieve it. Figure 2 contains a high-level overview of the
design, which will be explained in the following subsections.

4

System Server

Activity Manager IEM

User Firewall

Sender Application

Receiver
Application

1 2

3

Fig. 2. Intentio Ex Machina.

3.1 Architectural Goal

All �rewalls contain three critical pieces: the interceptor, the decision engine,
and the policy. The interceptor captures the data packets and delivers them to
the decision engine, which then decides if the packets should be allowed or de-
nied based on the con�guration de�ned in the policy. From this model, we can
make some insightful observations. First, there is little �exibility in where an
interceptor can be placed since it has to be somewhere along the original path
of the packets. On the other hand, the decision engine can be placed anywhere

5 AMS di�erentiates via distinct API intents targeting activities, services, and broad-
cast receivers.

Intentio Ex Machina 5

so long as the interceptor can reach it. Second, while the policy is easy to recon-
�gure, it is restricted by the logic of the decision engine. A policy can only refer
to attributes which the engine recognizes.

With these two observations in mind, reconsider the intent �rewall in Fig-
ure 1. In this case, the interceptor and the decision engine both reside in the
framework. This is the only possible placement for the interceptor, but what
about the engine? Since it too resides in the framework, modi�cations require
an OS patch, which requires the device to shutdown for several minutes. What
would happen if the engine was placed inside a user app instead? It could then
be installed, updated, and maintained with the ease of any other app. Now the
policy is less restricted by the engine because it can easily be changed.

With this in mind, the goal of IEM is to provide a hook in the intent �ow
to allow for an app to serve in place of the intent �rewall. As previously stated,
doing this makes changing the �rewall's enforcement logic easier, which in turn
allows for more �exibility. Making the �rewall an app empowers the device man-
ufacturer to deploy the solution that �ts the needs of the customer. One man-
ufacturer might deploy a user �rewall which monitors location and allows the
user to restrict which apps run while in the o�ce. Another user �rewall might
allow a user to prevent apps from getting her location while she's driving. A par-
ent might use a user �rewall on her child's device to prevent him from playing
video games before dinner, or maybe he can text message his friends only after
he �nishes his math homework. These are all apps an Android developer can
program, so these are all apps which IEM can empower.

Figure 2 shows IEM and how it interfaces with the rest of the framework and
user apps. From here on, �IEM� speci�cally refers to the hook which resides in
the framework while �user �rewall� refers to any app which utilizes IEM. Intents
�rst enter the system server through the public API at edge 1. This is where
AMS resolves the receiver. The intent then enters IEM via edge 2. The intent is
delivered to the user �rewall and a decision is returned via edge 3. If the user
�rewall decides to allow the intent, the activity manager is alerted via edge 2
and the intent is delivered via edge 4.

In the next subsection, we identify and address the key challenges in trying
to achieve this architecture.

3.2 Design Challenges

Figure 3 shows the three new pieces introduced into the framework by IEM. This
subsection considers each piece in turn and addresses the challenges caused by
their addition.

Intent Interceptor The �rst new piece an intent reaches is IEM's interceptor.
The challenge here is deciding which intents are appropriate to intercept. This
problem is nontrivial because we cannot assume that the user �rewall will always
be responsive since it is a user app. Like any other app, it can crash or freeze.
This is di�erent from the original intent �rewall, which can simply intercept all
intents because it is self-contained.

6 Carter Yagemann et al.

Framework

Sender
Component

User Firewall

Activity
Manager

IEM

Intent
Interceptor

User Firewall
Interface

Fig. 3. The �ow of intents through IEM.

Since the system server uses intents to start components, if the interceptor
intercepts everything and the user �rewall crashes, the system will no longer
be able to start components. The device will end up in an unrecoverable state.
For this reason, intents created by the system server are exempt from being
intercepted. All other intents can be safely intercepted because failing to deliver
them will not impact stability.

User Firewall Interface After the interceptor, the intent next reaches the user
�rewall interface. In order for this interface to work, it has to be able to send
intents to an app (the user �rewall) and get responses containing decisions.

How can the interface forward an intent to an app and get a response? The
answer to this challenge can be derived from a feature that already exists in
Android: the extensible framework. This design pattern works by having a system
service bind to an app service chosen by the user in the device settings. Once
bound, the two services can directly exchange messages though binder IPC to
communicate. This allows the user to install third party apps to serve as the
keyboard, the settings administrator, the �daydream� screen when the device is
docked, and more.

IEM mimics this architecture and consequently satis�es the same security
guarantees. Once the device manufacturer explicitly enables a user �rewall, IEM
will bind to that app's user �rewall service at startup. Once bound, the inter-
cepted intents will be sent to the user �rewall via the binding. The messages
include a �reply to� handle, which the user �rewall can use to return a response.
Note that this is a direct bidirectional binder IPC channel. The messages travers-
ing the channel are not intents.

There is another challenge regarding the design of the user �rewall interface.
In the original architecture, intents are resolved entirely inside the framework

Intentio Ex Machina 7

using additional stateful information being held in AMS. Consequently, while
the intent �ow as a whole is asynchronous, it is necessary that the portion that
occurs inside AMS never block so resource exhaustion cannot occur. Since IEM
inserts a binder IPC exchange into the middle of this resolution logic, avoiding
blocks can no longer be taken for granted.

As mentioned earlier, the user �rewall app could crash or freeze. If this hap-
pens, the app will cease to respond to the interface. This will cause resource
exhaustion inside AMS. Even if a timeout mechanism is implemented to prevent
buildup, the resulting design will be weakened because now an arti�cial time
limit has been imposed on the user �rewall for making access control decisions.
If this timeout is short, it no longer becomes possible for the user �rewall to
involve the user in critical decision making processes. This reduces the �exibility
of the �rewall logic, which weakens the goal our architecture strives to achieve.
Alternatively if the timeout is long, the device will become unresponsive, which
is unacceptable. There is no middle ground. Either choice is detrimental to the
goal of designing a platform that is �exible. For this reason, there cannot be any
timeouts. The interface must be completely stateless so no blocking occurs. This
distinguishes IEM from many other hook designs.

Since IEM has to maintain statelessness and never be waiting on the user
�rewall, the messages it sends have to contain all the information necessary to
reconstruct the state. To address this challenge, we introduce the concept of in-
tent wrapper. The wrapper is a bundle containing the original intent along with
everything necessary to duplicate its state. This includes sender information,
which is something the original intent �rewall does not consider. By wrapping
these additional variables together along with the intent, not only does the user
�rewall now receive a complete picture of sender, receiver, and interaction be-
ing performed, but the interface no longer has to remember the intent's state
because that information will be returned by the user �rewall in the response.
However, this state information has to be protected from being modi�ed by the
user �rewall; a challenge which will be addressed next.

User Firewall The intent wrapper now reaches the user �rewall. What should it
be allowed to modify? It could, for example, perform data sanitization or redirect
the intent to a di�erent receiver. However, allowing the user �rewall to modify
all the �elds of the wrapper would give it the power to send any intent to any
app on behalf of any other app. There is value in allowing for modi�cation, but
having no restrictions breaks the principal of least privilege. We introduce the
intent token to address this concern.

Inspiration for the intent token comes from SYN cookies, which prevents SYN
�ooding by making TCP handshakes stateless [5]. Similarly, the intent token
allows IEM to remain stateless while still restricting the user �rewall's power.
Tokens are generated inside IEM by hashing a secret created at startup with
the parts of the state that should not be modi�ed. Randomized salts are used to
ensure that tokens are unique. As long as the secret is kept con�dential, the user
�rewall will be unable to create valid tokens and consequently cannot arbitrarily
modify an intent's state. Intents are also numbered sequentially and checked

8 Carter Yagemann et al.

against a sliding window inside IEM to prevent replay. While the window could
be considered stateful, its �xed size makes it not prone to resource exhaustion
and therefore acceptable for the IEM design. In this way, the user �rewall is
a privileged app, but only to the extent essential for performing its role as an
intent �rewall.

More challenging, however, is deciding which parts of the state should be
included in the token to prevent modi�cation. This answer can be determined
by grouping the contents of the intent wrapper into the three mutually exclusive
categories: sender, intent, and receiver. The variables pertaining to the sender's
identity stand out from those of the intent and receiver because the sender is
the creator of the intent. If the user �rewall changes who created the intent, all
integrity is lost. On the other hand, the sender already expects that the system
will resolve the receiver. For this reason, the user �rewall is allowed to modify
the action to be performed and who will carry it out, but it cannot change who
sent it.

While this subsection has provided an overview of the security mechanisms
inside IEM, the following subsection explains in detail how these mechanisms
mitigate threats at each surface.

3.3 Threat Model

Figure 3 shows that the boundaries between IEM, framework, and app are
crossed in four places. This subsection addresses the security of these crossings
in the order that intents reach them.

The threat model for IEM assumes that the framework is secure and trust-
worthy. This includes AMS since it is a part of the framework. This assumption
is made because IEM is designed solely to enforce intent security, so any com-
promise of other framework components is out of scope. The model also assumes
that the secret created by IEM for generating tokens is kept secret. This is a
safe assumption because IEM never needs to share this secret with any other
component.

The �rst boundary crossing is from the sending app to AMS. The intents
enter AMS through an API that is unmodi�ed by IEM. Therefore, IEM assumes
that this boundary is secure.

The next boundary is between IEM and AMS. Since the threat model already
assumes that AMS is trustworthy, the boundary is between two trusted parties.
This makes the boundary secure.

After entering IEM, the intent next reaches the boundary between the in-
terface and the user �rewall in user space. This surface can be attacked by a
malicious app, but the previously mentioned security mechanisms prevent the
attacker from having any success.

Three actions occur over this boundary. First, the interface binds to the
app. Second, the interface sends the app intents to inspect. Third, the interface
receives intents from the app. Attacking the �rst action requires the attacker to
bind to either the interface or the user �rewall. The interface protects against this
by disallowing apps from initiating the binding process. Instead, it is always the

Intentio Ex Machina 9

interface that initiates the binding and since it gets its target from the device
settings, it will bind with the correct service. Since the interface is a part of
the system, the user �rewall can di�erentiate the attacker from the interface by
checking the UID of the bind request. This action can also be protected using the
permissions mechanism already present in Android. To attack the second action,
the adversary will have to sni� and spoof binder messages. Since the binder is
part of the Linux kernel, this is only doable by either gaining root privileges or
by compromising the kernel. In either case, the integrity of the entire system is
compromised, which is beyond the scope of IEM. Finally, an attacker targeting
the third action would have to spoof a user �rewall response, but as stated
earlier, this is prevented by the intent token.

This completes the threat model for IEM. As a side note, we would like to
mention that there are also multiple challenges pertaining to the implementation
of IEM in Android, but due to length constraints we cannot go into the necessary
detail to explain them in this publication.

Listing 1.1. UFW service handler template.

@Override
public void handleMessage (Message msg) {

Bundle data = msg . getData () ;
Bundle r e s = checkIntent (data) ;
i f (r e s != null) { // a l l ow

Message r = Message . obta in (null , 1) ;
r . setData (r e s) ;
try {

msg . replyTo . send (r) ;
} catch (RemoteException e) {}

} // b l ocked i n t e n t s r e qu i r e no ac t i on
}

4 Applications

The generic nature of IEM allows developers to create many di�erent kinds of
user �rewalls to serve a variety of purposes. All the user �rewalls presented in
this section could be implemented by modifying the original intent �rewall, but
doing so would be vastly impractical. Developers would need to have Android
framework expertise to access resources without using an SDK and each �rewall
would have to be tested extensively since implementation modi�es the operating
system. Some of the examples are designed to address very speci�c needs, so it
would be very challenging to anticipate and generalize these �rewalls to a degree
which justi�es implementing them directly into the Android framework.

The developer of a user �rewall only needs to implement a service component.
Listing 1.1 is a template for the handler. This architecture gives the user �rewall

10 Carter Yagemann et al.

developer the �exibility to design the internal logic of his app however he desires
to provide whatever services and features his end-users require.

In this section, we describe a few examples of user �rewalls made possible by
IEM. We have chosen just a small sample from the in�nite number of possible
user �rewalls, which we believe are su�cient to demonstrate the �exibility of the
IEM architecture.

Fig. 4. Redirecting intents.

4.1 Redirecting Intents

Unlike traditional �rewalls, user �rewalls are not restricted to binary allow or
deny access control. It is also possible for user �rewalls to allow an intent, but
modify some of its contents. This allows for some interesting use cases such as
intent redirection.

Consider a corporation that is concerned about employees taking pictures
using their phone while in the o�ce. Banking institutions are an example since
there may be sensitive information in documents and on computer monitors that
could be captured when the photo is taken. Suppose that the corporation has
created a camera app for their employees, which is designed to only take �safe�
photos. However, since this app is very restrictive, employees do not want to
have to use the corporate camera app when they are not at work. A user �rewall
can control which camera app is launched based on GPS location using intent
redirection.

Figure 4 demonstrates this case. When the user wants to launch the normal
camera app, the user �rewall will check the user's current location. If they are
not in the o�ce, the intent will be allowed. If they are in the o�ce, the intent
will be redirect to the corporate camera app and it will appear instead.

Intentio Ex Machina 11

Fig. 5. Intent DoS detection.

4.2 Preventing Intent Denial of Service

When we implemented the intent token, we intentionally created a new �eld for
it inside the intent because attempting to read or write to any part of the extras
bundle of an intent will raise an unmarshaling exception if any object in the
extras is a custom class and the receiver does not have a de�nition for it. We
discovered that most apps do not handle the unmarshaling exception and will
crash. The Gmail app is one such example. This is a known vulnerability that
Google has acknowledged [27].

To demonstrate the potential damage of this vulnerability, we created a ma-
licious app called Marshal Bandit. Upon boot, Marshal Bandit queries AMS for
all the running services and spams them with intents containing a custom object
in the extras bundle. This causes services on the device to repeatedly crash and
overwhelms the system's worker threads. The result is a denial of service, which
causes the device to become unresponsive and eventually reboot. Since the user
cannot access the Settings app while the attack is underway, the device is crip-
pled. Even if the user knows how to boot the device into the recovery mode, she
will not know which app to uninstall. Marshal Bandit is a normal app with no
granted permissions.

This type of attack cannot be stopped in current Android devices, but it can
be stopped by a user �rewall thanks to IEM. In Figure 5, we demonstrate a
user �rewall that can detect the sudden �ood of intents coming from our ma-
licious app. Upon detection, the user �rewall will inform the user which app is
performing the attack while stopping background processes, halting the spam of
intents. The user can then regain control of the device and uninstall the mali-
cious app. This user �rewall is a normal app using only the �stop background
processes� permission and IEM. The successful thwarting of this recently discov-
ered denial of service attack demonstrates the �exibility and capability of IEM.

12 Carter Yagemann et al.

Implementation logic of this complexity at the framework level would be chal-
lenging compared to the narrow scope of attacks it addresses. With IEM, a user
�rewall that addresses this vulnerability can be developed by a single developer
in one work day.

Fig. 6. Data sanitization.

4.3 Sanitizing Intent Data

Since user �rewalls can modify the contents of the intent itself, they can perform
data sanitization. This is applicable to trends such as bring your own device for
the corporate environment.

If an Android app wants to share data with another app, most ways of doing
so require an intent. The intent will either contain the data itself, a URI pointing
to a �le containing the data, or the intent will be for a service binding that will
then be used to share data back and forth. In all three cases, a user �rewall can
either block or alter the data by dropping or modifying the initial intent. Figure
6 demonstrates this functionality. In this example, when the user tries to open
a malicious image �le, the user �rewall modi�es the intent so a benign image is
opened instead. This same technique can just as easily be applied to other types
of data to either prevent data leakage or to protect apps from exploitation. This
functionality is similar to the web application �rewall (WAF) concept [26].

This is not a complete solution to controlling data �ow, but IEM can allow
user �rewalls to address some �ow concerns while being easy to develop, deploy,
and maintain.

Intentio Ex Machina 13

I/CallChain(1264): com.google.android.gm <= {com.google.android.googlequicksearchbox}
I/CallChain(1264): com.android.browser <= {com.google.android.gm, com.google.android.googlequicksearchbox}

Fig. 7. Caller chain.

4.4 Determining Caller Chains

One potential shortcoming with the Android permissions architecture is it only
considers the immediate sender of an intent. It does not account for the case
where a chain of apps are invoked via intents. If an attacker invokes an app
with slightly greater permissions and that in turn invokes another app with still
greater permissions, the �nal receiver could be excessively more privileged than
the original sender. This pattern can lead to privilege escalation [14, 12, 19, 28,
6, 7]. Multiple works have identi�ed this problem and implemented caller chains
to resolve it [3]. However, all these solutions are relatively complex and require
modi�cation of the Android operating system.

Using IEM, it is easy to implement a user �rewall which can track call chains.
Figure 7 demonstrates a user �rewall which a single developer programmed in
under an hour. When an intent enters this user �rewall, it records the sender
and receiver as a pair. The user �rewall can then use these pairs to recursively
determine all the callers associated with a particular receiving app. The user
�rewall can then analyze the callers to determine if the permissions of the receiver
greatly exceed those of the sender.

5 Evaluation

In addition to evaluating IEM in terms of what useful user �rewalls it allows
developers to create, we also formally evaluate it based on two additional criteria.
First, how does IEM impact the stability of currently existing Android apps; both
when allowing and blocking intents. Second, how does IEM impact the time it
takes to route intents?

14 Carter Yagemann et al.

5.1 Application Stability

We tested IEM using the standard Google apps which come on Nexus devices
as well as the top 50 free third-party apps from the Google Play Store. We
explicitly included the Google apps in our evaluation because we found that
they communicate with each other heavily using a wide variety of intent types.

During our tests of IEM, we did not �nd any cases where blocking an intent
would cause an app to crash or become unresponsive. When blocking access to
the Google Play Services, we did �nd apps that would refuse to start, prompting
the user that Play Services needs to be installed. In either case, the apps behaved
well even while the user �rewall is blocking intents.

No UFW Allow All Call Chain

Activity 346.9 348.2 352.1
Service 14.0 14.9 16.8
Broadcast 7.6 11.8 12.2

Table 1. Milliseconds to route intents, averaged over 5000 trials.

5.2 Performance

To test the intent routing performance of IEM, we created two simple apps to
send and receive activity, service, and broadcast intents.

Table 1 shows the milliseconds needed to send the intent across apps. Each
value shown is the average of 5000 trials. Our test device was a Nexus 5 running
our modi�ed version of Android 5.0.2 with IEM.

For our �rst set of trials, we con�gured IEM to not use a user �rewall. This
serves as our baseline as the logic in this con�guration is identical to the original
intent �rewall. We then tested the intents using two user �rewall policies. The
�allow all� policy accepts any intent and serves to measure the overhead added
by the round trip between the interface and the user �rewall. The �call chain�
policy inspects, stores, and logs every intent's sender and receiver and then
recursively constructs chains. This is the most performance intensive example
from our applications section.

Our results in Table 1 show that the user �rewall interface adds some over-
head, but the di�erence in routing time remains well below what a human user
can perceive.

6 Related works

This section discusses the IPC security mechanisms already present in Android
as well as proposed designs from related research. These security architectures
can be categorized into two general categories: access control and virtualization.

Intentio Ex Machina 15

6.1 Access control

In the access control category, we �rst �nd the sender permissions mechanism
currently implemented in Android. This security feature allows receivers to re-
quire of the sender a particular permission. This mechanism improves security by
allowing for some restriction in which senders can invoke the receiver's exposed
components, but it has its limitations [12]. First, the receiver can only specify a
single permission which the sender must have. Since it is common for Android
apps to have multiple permissions, this means that the receiver's exposed com-
ponents can be invoked by apps of lesser privilege. Second, even in the case of
requester apps of equal or greater privilege, privilege and trustworthiness are
not strongly correlated [15, 13]. Applications coming from a variety of sources
can request any combination of permissions and these permissions are granted
upon approval by the user during installation. This makes it possible for a ma-
licious app to have as many, if not more, permissions than the receiving app it
is trying to exploit. These problems have been the motivation for works such as
XmanDroid [6], Saint [25], CRePE [11], and others [18, 16, 23, 9, 24]. Even if the
developer of the receiving app wants to explicitly check who the sender of the
intent is, his app can only see the last app to send the intent. ChainDroid [31]
and Scippa [3] both demonstrate situations where this is inadequate for enforcing
access control.

The other IPC access control mechanism present in Android is the intent
�rewall. Unfortunately, this �rewall also has major shortcomings in the robust-
ness of its rule set which is why very few production Android devices have intent
�rewall policies despite the �rewall being present and enabled [22].

Other works, such as Boxify [4], use runtime sandboxing to force untrusted
apps to send their system transactions through additional access control mech-
anisms. These solutions can also restrict binder IPC, but implementing them
requires expert knowledge of Linux IPC and syscalls. Since they work at the
native level, the context of the transaction is obscured. IEM user �rewalls use
concepts the average app developer is already familiar with.

Our work is conceptually similar to Android Security Modules [17], but di�er-
entiates itself in two key aspects. First, while ASM only facilitates the monitoring
of resources, our work enables modi�cation for the purposes of redirection and
data sanitization. Second, ASM uses callback timeouts; a limitation our work
avoids by being stateless.

6.2 Virtualization

On the virtualization side of Android security, solutions attempt to achieve iso-
lation between processes by virtualizing di�erent portions of the Android device.
One solution, Cells [2], achieves this isolation by creating virtual devices that
run on top of the host device. Another solution, Airbag [30], also achieves pro-
cess isolation, but rather than creating full virtual devices, this solution creates
virtual system servers which prevents processes from di�erent containers from

16 Carter Yagemann et al.

communicating. There are also other works which implement isolation, such as
TrustDroid [8].

We chose an access control design for IEM because we want to leverage the
unique nature of intent IPC. Speci�cally, we want to leverage the fact that all
intents must travel through the framework using a standardized message format
which the system can understand. A virtualization solution would not leverage
the semantic understanding the system server has of intent messages.

7 Conclusion

Android is the most popular operating system for embedded mobile devices. It is
designed to encourage apps to leverage IPC with a greater frequency than seen
in operating systems which target traditional computers. This, coupled with the
unique properties of intent IPC, makes the study a worthy endeavor. The current
Android system includes a �rewall which can perform access control on intent
IPC. However, it is very limited and its poor usability means it has almost never
been utilized in practice. We propose IEM to separate the interceptor of the
�rewall from its decision engine using a novel stateless interface. This allows a
normal application, called a user �rewall, to become the engine for intent access
control. By doing so, IEM makes it easy to develop and modify the �rewall's
logic, allowing for easy implementation of interesting new access control.

8 Acknowledgments

This project was supported in part by the NSF grant 1318814.

References

1. Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen, XiaoFeng
Wang, Xiaoyong Zhou, Wenliang Du, and Michael Grace. Hare hunting in the wild
android: A study on the threat of hanging attribute references. In Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and Communications Security,
CCS '15, pages 1248�1259, New York, NY, USA, 2015. ACM.

2. Jeremy Andrus, Christo�er Dall, Alexander Van't Hof, Oren Laadan, and Jason
Nieh. Cells: A virtual mobile smartphone architecture. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP '11, pages
173�187, New York, NY, USA, 2011. ACM.

3. Michael Backes, Sven Bugiel, and Sebastian Gerling. Scippa: System-centric ipc
provenance on android. In Proceedings of the 30th Annual Computer Security
Applications Conference, ACSAC '14, pages 36�45, New York, NY, USA, 2014.
ACM.

4. Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp von
Styp-Rekowsky. Boxify: Full-�edged app sandboxing for stock android. In 24th
USENIX Security Symposium (USENIX Security 15), pages 691�706, Washington,
D.C., August 2015. USENIX Association.

Intentio Ex Machina 17

5. D. J. Bernstein. Syn cookies. http://cr.yp.to/syncookies.html. Accessed: 2015-11-
20.

6. Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and Ahmad-
Reza Sadeghi. Xmandroid: A new android evolution to mitigate privilege escalation
attacks. Technical Report TR-2011-04, Technische Universität Darmstadt, April
2011.

7. Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza
Sadeghi, and Bhargava Shastry. Towards taming privilege-escalation attacks on
android. In NDSS, 2012.

8. Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Ahmad-Reza
Sadeghi, and Bhargava Shastry. Practical and lightweight domain isolation on
android. In Proceedings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, SPSM '11, pages 51�62, New York, NY, USA,
2011. ACM.

9. Sven Bugiel, Stephen Heuser, and Ahmad-Reza Sadeghi. Flexible and �ne-grained
mandatory access control on android for diverse security and privacy policies. In
Presented as part of the 22nd USENIX Security Symposium (USENIX Security
13), pages 131�146, Washington, D.C., 2013. USENIX.

10. Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing
inter-application communication in android. In Proceedings of the 9th International
Conference on Mobile Systems, Applications, and Services, MobiSys '11, pages 239�
252, New York, NY, USA, 2011. ACM.

11. Mauro Conti, VuThienNga Nguyen, and Bruno Crispo. Crepe: Context-related
policy enforcement for android. In Mike Burmester, Gene Tsudik, Spyros Magliv-
eras, and Ivana IliÄ�, editors, Information Security, volume 6531 of Lecture Notes
in Computer Science, pages 331�345. Springer Berlin Heidelberg, 2011.

12. Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy.
Privilege escalation attacks on android. In Mike Burmester, Gene Tsudik, Spyros
Magliveras, and Ivana IliÄ�, editors, Information Security, volume 6531 of Lecture
Notes in Computer Science, pages 346�360. Springer Berlin Heidelberg, 2011.

13. Karim O Elish, Danfeng Daphne Yao, and Barbara G Ryder. On the need of
precise inter-app icc classi�cation for detecting android malware collusions. Pro-
ceedings of IEEE Mobile Security Technologies (MoST), in conjunction with the
IEEE Symposium on Security and Privacy, 2015.

14. William Enck, Machigar Ongtang, and Patrick Mcdaniel. Mitigating android soft-
ware misuse before it happens. 2008.

15. Adrienne Porter Felt, Steven Hanna, Erika Chin, Helen J. Wang, and Er Moshchuk.
Permission re-delegation: Attacks and defenses. In In 20th Usenix Security Sym-
posium, 2011.

16. Roee Hay, Omer Tripp, and Marco Pistoia. Dynamic detection of inter-application
communication vulnerabilities in android. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, pages 118�128, New
York, NY, USA, 2015. ACM.

17. Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi. Asm:
A programmable interface for extending android security. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 1005�1019, San Diego, CA, August 2014.
USENIX Association.

18. David Kantola, Erika Chin, Warren He, and David Wagner. Reducing at-
tack surfaces for intra-application communication in android. Technical Report
UCB/EECS-2012-182, EECS Department, University of California, Berkeley, Jul
2012.

18 Carter Yagemann et al.

19. Anthony Lineberry, David Luke Richardson, and Tim Wyatt. These arenâ��t the
permissions youâ��re looking for. DefCon, 18:2010, 2010.

20. Linux-PAM. A linux-pam page. http://www.linux-pam.org/. Accessed: 2015-12-
02.

21. Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: Statically
vetting android apps for component hijacking vulnerabilities. In Proceedings of
the 2012 ACM Conference on Computer and Communications Security, CCS '12,
pages 229�240, New York, NY, USA, 2012. ACM.

22. Adrian Ludwig. Android security state of the union. Black Hat USA 2015, 2015.
23. Amiya K. Maji, Fahad A. Arshad, Saurabh Bagchi, and Jan S. Rellermeyer. An

empirical study of the robustness of inter-component communication in android.
In Proceedings of the 2012 42Nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), DSN '12, pages 1�12, Washington, DC,
USA, 2012. IEEE Computer Society.

24. Adwait Nadkarni and William Enck. Preventing accidental data disclosure in mod-
ern operating systems. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, CCS '13, pages 1029�1042, New York,
NY, USA, 2013. ACM.

25. M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically rich
application-centric security in android. In Computer Security Applications Con-
ference, 2009. ACSAC '09. Annual, pages 340�349, Dec 2009.

26. OWASP. Web application �rewall. http://tinyurl.com/3cakwty. Accessed: 2015-
12-04.

27. Android Open Source Project. Android open source project
- issue tracker - issue 177223: Intent/bundle security issue.
https://code.google.com/p/android/issues/detail?id=177223. Accessed: 2015-11-
20.

28. Roman Schlegel, Kehuan Zhang, Xiao-yong Zhou, Mehool Intwala, Apu Kapadia,
and XiaoFeng Wang. Soundcomber: A stealthy and context-aware sound trojan
for smartphones. In NDSS, volume 11, pages 17�33, 2011.

29. Stephen Smalley and Robert Craig. Security enhanced (se) android: Bringing
�exible mac to android. In NDSS, volume 310, pages 20�38, 2013.

30. Chiachih Wu, Yajin Zhou, Kunal Patel, Zhenkai Liang, and Xuxian Jiang. Airbag:
Boosting smartphone resistance to malware infection. Proceedings of the Network
and Distributed System Security Symposium, 2014.

31. Qihui Zhou, Dan Wang, Yan Zhang, Bo Qin, Aimin Yu, and Baohua Zhao. Chain-
droid: Safe and �exible access to protected android resources based on call chain.
In Trust, Security and Privacy in Computing and Communications (TrustCom),
2013 12th IEEE International Conference on, pages 156�162, July 2013.

