Inference Analysis in Privacy-Preserving Data Re-publishing

Guan Wang, Zutao Zhu, Wenliang Du, and Zhouxuan Teng
Department of Electrical Engineering and Computer Science
Syracuse University, Syracuse, NY 13244, USA
{gwang07, zuzhu, wedu, zhtey@syr.edu

Abstract D), itself provides adversaries absolute certainty on the dis-
ease of each patient. However, when putting them together,
Privacy-Preserving Data Re-publishing (PPDR) deals we know that Patient0 hasLung Cancer .
with publishing microdata in dynamic scenarios. Due to  Therefore, by studying two disguised data sets together,
privacy concerns, data must be disguised before being pub-one can discover extra knowledge that is unavailable from
lished. Research in privacy-preserving data publishing each individual data set, even if each version of microdata
(PPDP) has proposed many such methods on static datais well disguised. Such extra knowledge among multiple
In PPDR, multiple appeared records can be used to infer disguised data sets is referred to asitiference channels
private information of other records. Therefore, inferenc [5]. Understanding how these inference channels affect the
channels exist among different releases. To understand theorivacy of each individual in the published data sets isechll
privacy property of data re-publishing, we need to analyze inference analysiswhich is a very challenging work. We
the impact of these inference channels. Previous studiesuse an example to show the difficulty.
show such analysis when data are updated or disguised i”ExampIe 1 From the first two buckets i}, of Figure 1(d),
special ways, however, no general method has been propne cannot identify the diseases of Patients 14 and 15. How-
posed. _ _ ever, with both disguised data sé¥ and DY, we can learn
Using the Maximum Entropy Modeling method, we have more, Let us assume that Patient 14 Ras, then fromDy,
developed a general solution. Our method can conduct in-\ye can tell that Patient 1 and 2 should haRecumonia
fgrenpe analysls Whgn da@a are arbltra.nly 'updated Orar- and Diabetes; therefore, from the first bucket dp}, we
bitrarily disguised using either generalization or budket g tell that Patient 3 and 4 should both h&a. This con-
zation, two most common data disguise methods in PPDR ¢|ysijon conflicts with the information in the second bucket
Through analysis and experiments, we demonstrate the ad¢ D}, because there is only orfélu in that bucket, and
vantage and the effectiveness of our method. thus only one person among Patients 3, 4, and 15 in the
bucket can havé'lu. Therefore, our assumption on Patient
14 is incorrect, so the disease of Patient 14 should be ei-
ther Pneumonia or Diabetes, not Flu. We can conduct
Privacy-preserving data publishing draws great attentionthis kind of inference in a simple data set; however, when
of the community in recent years because of the concernsthere are thousands of records in hundreds of buckefd or
about privacy breaching issues in data publication processgroups, such an analysis becomes quite difficult.
To preyent linking attack, a primary attack in data pul_)Iish- Outline of Our Approach. The goal of inference analy-
ing, quite a few PPDP methods have been proposed, includs;s jn PPDR is to find out potential privacy breaches from
ing Bucketization [15], Generalization [3,9, 11, 12], and 4| the published data sets. From statistical perspedtive,
Randomization [1, 2]. Most of them focus on static one- ference analysis basically tries to identify if the infezen
time dataset publishing and will disclose sensitive infafm = channels among the published data sets can reduce the un-
tion when data is re-published. For example, Figures 1(a)certainty of certain individuals’ SA values to a level that
and 1(c) depict a datasél, and its updated versioD;. can |ead to privacy breaches. We model such uncertainty
Records (7,10,13) are deleted while (14,15) are added. Figyy 5 conditional probability?(S | T). Therefore, if we can
ures 1(b) and 1(d) are the published versiaR¢ @nd D) gerive P(S | Z) for any Z and S from all the published
using bucketization. Due to data disguising, neithemor  gata sets, inference analysis becomes straightforward: si
“This work was supported by Awards No. 0312366, 0430252, and Ply examinate which conditional probabilities reach a dan-
0618680 from the United States National Science Foundation gerous level.
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Name | Pseudonym || Gender | Zip Code Disease Pseudonym || Gender | Zip Code Disease
Allen 1 male 13115 Flu 1 male 13115

Brian 2 male 13120 Pneumonia 2 male 13120 {Diabetes, Flu
Cathy 3 female 13210 Diabetes 3 female 13210 Flu, Pneumonia}
Daliy 4 female 13228 Flu 4 female 13228

Ethan 5 male 13315 Flu 5 male 13315

Frank 6 male 13471 Pneumonia 6 male 13471 {Diabetes, Flu
Grace 7 female 13520 Diabetes 7 female 13520 Pneumonia}
Helen 8 female 13347 HIV 8 female 13347

Irwan 9 male 13428 Flu 9 male 13428 {Flu, HIV,
James 10 male 13451 Lung Cancer 10 male 13451 Lung cancer}
Katey 11 female 13359 Pneumonia 11 female 13359

Liman 12 male 13427 HIV 12 male 13427 {Pneumonia, Diabetes,
Milin 13 female 13530 Diabetes 13 female 13530 HIV}

(a) The original data s€D; (b) D7: The disguised version db;

Name | Pseudonym || Gender | Zip Code Disease Pseudonym || Gender | Zip Code Disease
Allen 1 male 13115 Flu 1 male 13115

Brian 2 male 13120 Pneumonia 2 male 13120 {Diabetes, Flu
Cathy 3 female 13210 Diabetes 14 male 13119 Pneumonia}
Daliy 4 female 13228 Flu 3 female 13210

Ethan 5 male 13315 Flu 4 female 13228 { Diabetes, Flu
Frank 6 male 13471 Pneumonia 15 female 13244 Pneumonia}
Helen 8 female 13347 HIV 5 male 13315

Trwan 9 male 13428 Flu 3 female 13347 {Flu, HIV
Katey 11 female 13359 Pneumonia 11 female 13359 Pneumonia}
Liman 12 male 13427 HIV 6 male 13471

Nikon 14 male 13119 Diabetes 9 male 13428 {Flu, HIV,
Olice 15 female 13244 Pneumonia 12 male 13427 Pneumonia}

(c) The original data seb» (d) Dj: The disguised version db,

Figure 1. The data example used throughout this paper

Deriving a complete distribution oP(S | Z) from a general inference analysis method for PPDR.

a single published data sets is not so difficult; most of  Wang and Fung propose another inference analysis ap-
the existing work on PPDP have provided methods to do proach [14]; it focuses on a different data re-publishings sc

so [12,13,15]. However, no existing work has shown how nario. They suppose that data owners have a static data set
to derive P(S | 7) from multiple (related) published data with Ql andSAvalues. Initially, the owners publish a subset
sets. This task is quite challenging (see Example 1), espe-of QI with SAvalues. Later, they release another subset of
cially when the original data sets can be arbitrarily update QI values, but withouSAvalues. They show that in order to
and disguised. prevent inference attacks using the two releases, the decon

We develop a general method to deri&S | 7) in version should be anonymized properly.

PPDR. We consideP(S | Z) for each combination of _ Inthis paper, we use the maximum entropy (ME) estima-
andZ as a variable. Each published data set provides certion method to conduct inference analysis. The ME method

tain “clues” about these variables. We model these cluesh@s beenused by Du etal. in integrating background knowl-

as linear equations of these variables. We pool together thé?d9€ in the quantification of privacy [7]. Although our pro-
equations from all the published databases and try to findP2S€d scheme also uses the ME method, we use it to solve

a solution to them. In most cases, the variables outnumber® different problem.
the equations, meaning that we will have many solutions for
these variables; we have to choose one. Knowing that thes® Problem Formulation
variables represent probabilities, according toghaciple
of maximum entropfl 0], the most unbiased solution is the Let D, be a dataset to be published. We dall, . . ., D,
one that maximizes the entropy. Therefore, we reduce oura series ofequentially updated data sét<D; is an updated
problem to a maximum entropy estimation problem, a well- version ofD;_; through deletions and additions. We make
established problem that has been extensively studied. some basic assumptions here:

) We consider modification to the data set as a combina-
Related Work. PPDR problem has been studied by several (jo of deletion and addition. If the same person appears

groups recently [5, 6,8, 16]. They focus on how to conduct y, iple times in different releases with different SA val-
PPDR to minimize the data disclosure risk. To be able to ;o5 \ve treat them as different persons.

conduct inference analysis, they either put restrictioms o

how data can be updated, or on how data can be disguisedDefinition 2.1 (Privacy-Preserving Data Republishing)
We lift these restrictions in our work. Our goal is notto pro- Let Dy, ..., D;_; be a series of sequentially updated
pose another PPDR method; instead, we focus on providingdata sets; they have already been published using certain



data disguising schemes, such as generalization and buckeasily infer thatP(Flu | Z = 1) = % because there are

etization. LetD, be an updated version db;, ;. The
Privacy-Preserving Data Republishing (PPDR) problem is
to publish the data sebD; in a way that satisfies the pre-
determined privacy requirements.

Definition 2.2 (Inference Channel) L& represent SA val-
ues and! be pseudonym. Le&,(S | I) be the conditional
probability derived from a published data sBf,, and Let
P, (S | I) be the conditional probability derived from the
published data set®; and D). If P,(S | I) # P, (S |
I), we say that there are inference channels betwBén
and D/ . Finding inference channels or the impact of infer-
ence channels is called inference analysis.

If we can derive all the conditional probabilitig3(S |
7) for each persod and for each SA valu$, we can ac-
curately measure the privacy impact of data re-publishing.

Therefore, we formulate the inference analysis problem as

the following probability estimate problem:

Problem 2.1 (Inference Analysis) LeD,, ..., D; be a
series of sequentially updated data sets. ¥t ..., D,

be their respective disguised versions that have been pub-F

lished. LetD = Dy U Dy U ... U D, be the union of the
original data set, andD’ = D} U D, U ... U D; be the
union of the published data sets. Let varialSleepresent
SA attributes, and lef represent the pseudonym attribute.
Given D', derive P(S | Z) for all the combinations of
and S values.

This is the main problem that we are going to solve in

this paper. We have developed a general method to derive; _ 7)« P(T = 7)

P(S| Z). Our method allows data to be arbitrarily updated.

More importantly, our method allows data publishers to use
any arbitrary combination of the two popular data disguise
methods, bucketization and generalization; moreoveg dat
publishers do not need to follow any specific pattern when
they conduct data disguising. For the sake of simplicity, we
only focus our discussions on bucketization in this paper,

two out of four people in that bucket ha# u. *

In data re-publishing, we cannot use the same strategy to
derive P(S | 7). Let us see an example. From Figure 1(d)
alone, we can see th&(Pneumonia | T = 11) = £,
and P(Flu | T = 11) %, too. However, if we
put these two published data sets together, we know that
P(Flu | T = 11) = 0, andP(Pneumonia | T = 11) =
. Namely, without the first data set, we only know that
P(Pneumonia | T = 11) = %; however, with the in-
formation provided in the first data set, our inference can
become more accurate.

In data re-publishing, anything published has a potential
ability to affect the derivation of?(S | Z). When data
sets are not so complicated, like the one in Figure 1, we
might be able to figure out all the dependence among all
the records, and derivB(S | Z) directly. However, when
there are many versions of the published data, and when the
bucketization (or generalization) used in different vensi
are quite different from one data set to another, deriving
P(S | Z) directly becomes an infeasible task.

3.2. Indirectly deriving P(S |Z)

We switch to an indirect approach to derit®S | 7).
or each combination of andZ, we assign a variable to
P(S | 7). Therefore, if we haven different.S values, and
n different people (i.eZ values), we haven - n different
variables. We use a vectarto represent these variables.
These variables are not independent to each other. Ac-
tually, we can formulate their relationships as equations.
For example, from the second bucket in Figure 1(b), we
can derive the following:P(Diabetes | T = 5) « P(T =
5) + P(Diabetes | T = 6) x P(Z = 6) + P(Diabetes |
= <5, wherel is the total number
of Diabetes and13 is the total number of records iB}.
We can formulate a number of equations like this; they are
linear equations of the variables:in
If we can formulate all the existing knowledge from the
published data sets as linear equations, derivi§ | Z)
basically becomes finding an assignment for all the vari-
ables in¥, such that all these linear equations are satisfied.

N[

understanding that the same method that we have developeg; task now becomes solving those linear equations.

also applies to generalization.

3. A Complete Inference Analysis in PPDR

Unfortunately, in most cases, we have more variables
than equations, i.e., we will end up having many solutions.
The question is which solution we should choose.

As we have discussed in the previous section, our infer-3.3. Using Maximum Entropy Principle

ence analysis task is to deriv&.S | 7) for each persod
and each SA valu$. In this section, we describe a system-
atic method to estimat®(.S | Z) in data re-publishing.

3.1. Directly deriving P(S | I)

Deriving P(S | Z) for one-time data publishing is easy.
For example, from the first bucket of Figure 1(b), We can

To decide which solution to choose, we have to step
back and understand the meaning of these variablés in
They are not arbitrary variables but probabilities. By solv
ing these equations, we are trying to deriveiaference

IHere, we assume that there is no background knowledge; witk- ba
ground knowledge, we cannot say that these four people Iheveame
probability of havingFl u.



for these probabilities. When deriving inference, the most P(s|Z =id) =0, forVs &€ MCS(id). 3
important criterion that we need to follow is to be unbi-
ased. Although there are many solutions for those equa- FoOr example, fromDj in Figure 1(b), we can
tions, some are biased. Being biased means assuming sonfé€rive  SAi(5) = {Diabetes, Pneumonia, Flu};
extra information that we do not possess; therefore, that lea from D3 in Figure 1(d), we can deriveSAy(5) =
biased assignment is the most desirable [10]. {H1V, Pneumonia, Flu}. CombiningD; andDj, we get
This is the Maximum Entropy (MErinciple, apply- ~ MCS(5) = SAi(5) N SA2(5) = {Pneumonia, Flu}.
ing which, our problem becomes deriving the distribution Therefore, we have the following Zero constraints:
of P(S | Z), such that the following conditional entropy P(HIV | I =5) = 0, P(Diabetes | T = 5) = 0, and
H(S | ) is maximized: P(LungCancer | T =5) = 0.
To simplify the computation of maximum entropy esti-
H(S|I)=-> PI)P(S|T)logP(S|ZI) (1)  mation, we actually remove the varialdS | Z) from our
z,8 variable setifP(S | Z) = 0. This can reduce the total num-
ber of variables in the computation, and can thus improve
the computation.

b) One Constraints. From the properties of conditional
robability, we know that the sum d?(s | id) should be
one for all possible SA values that might be associated.to

Therefore, we call the following equatiorCGne constraint

We assume thdf is unique across the data set, and each
personZ only has one entry in the original data set (the
same entry may be published several times, and thus appe
multiple times in the published data). TherefoRd7) is a
constant for allZ values. As results, maximizing (S | 7)

is equivalent to maximizing the following:

—Y P(S|T)log P(S | T). @) S Ps|T=id)=1. @)
7,8 sEMCS(id)

Without any constraint/ (S | Z) is maximized when
P(S | 7) has an uniform distribution. However, the values
of P(S | Z) are indeed subject to many constraints con-
tained in the data sets. To apply the ME method, we need
to convert all the available knowledge into equations (er in
equalities) based oR(S | Z). Let these constraints bg,

..+, hy,. Our problem is formally defined as the following:

For example, from the previous example, we know that
MCS(5) = {Pneumonia, Flu}; even though we do not
know how likely Patient 5 get®neumonia or Flu, we do
know that the total probability of getting these diseasds is
i.e., P(Pneumonia | Z =5)+ P(Flu|Z =5)=1.

(c) Relation Constraints. Zero constraints and One con-
straints only depict the relationship of the conditionadlpr
Definition 3.1 (Maximum Entropy Modeling) Finding an abilities of each singléd. Relationships among different
assignment foP(S | Z) for each combination of and id’s are not captured. However, putting several people’s
Z, such that the entropyZ (S | Z) is maximized, while all  records in the same bucket does somehow make them re-

the constraints:q, . . ., h,, are satisfied. lated. For example, from the first bucket of Figure 1(b), we
know two people amongl, 2, 3, 4} haveF! u, although we
3.4. Constraints from each data set do not know which two from this bucket. This information

basically makes Patients2, 3, and4 related, and such re-
lationship should be formulated into linear equations in ou

To treat the inference analysis as a maximum entropy . .
maximum entropy modeling.

problem, we need to formulate all the knowledge that can be be th id's in buck ) th b
derived from the published data sets as linear equations. We LetZ(b) be the set ofd's in bucketb, I, (id) the prob-

refer to these equations as constraints. Before we describ@PIity ‘?f id in bucketb, and Pb(s),the probgbil.ity of SA
the constraints, we define the following term: values in bucketb. We have following equation:

Definition 3.2 (Maximum Common Subset) L&t (id) > P(s| I =id)x Pyid) = Py(s), for s in bucketh. (5)
represent the set of possible SA values that might be as#¢€Z(b)

signed toid from the published data sé?.. In bucketiza- B chi . h published d |
tion, this is the set of sensitive attributes containedd's ecause ea gppearsl In each published data set only
bucket. The Maximum Common Subset (MCS) @ the once, we knowps (id) = Tol’ where|b] is the number of
intersection ofS A, (id), ..., SA:(id). records in bucket. We also knowP;(s) = #lbb(‘s). where,
#,(s) represents the number efin bucketd. Therefore,
Eg. (5) becomes the following:

(a) Zero Constraints. M CS(id) includes all possible SA
values that are likely associated with thi& For any SA
values outsideM C'S(id), the probability for thigd to have Z P(s|Z =1d) = #(s), forVsinbucketb (6)
s is zero. We call the following equationZero constraint ideT(b)



) ) ) show the privacy impact of data re-publishing. For each
We call the above equation Relation constraint For  jyqividual data set, we bucketize it to achieve 2-, 3-, and 5-
each buckeb in a published data set, we can formulate as diversity, respectively. For each diversity, we compa th

many constraints as the numb.er of SA vglues in the.buc'ket.maximum entropy obtained from the single release with that
An example of such a constraint for the first bucket in Fig- trom al the published data. Figure 2 shows the result.

ure 1(b) |SP(FZU | T = 1) + P(FZU | 1= 2) + P(FZU ‘ Inference analysis for independent re-bucketization
I=3)+PFlu|l=4)=2.

3.5. Combining constraints

8000
7000

Maximum Entropy

We have discussed how to derive constraints from each
individually published data set. We now show how to com- R R S
bine them together to deriM@(S | Z) for a series published Irdversit

/ /
gsﬁn‘:’stj;li(/éd %rlg;D}/.Ve let; represent the set of con Figure 2. Independent re-bucketization

If an individual Z z;ppears in a data sé, all his/her Compared to the results from single release, the maxi-
conditional probabilitiesP(S | Z) must satisfy the con- mum entropy from the combined data set20: to 25%
straints inC;. Intuitively speaking, these constraints rule lower, which indicates that the uncertainty 8{S | )
out many values folP(S | Z), because they cannot sat- is lower. This is the consequence caused by the inference
isfy the constraints. When the same individual appears inchannels betweed; and Dj. The inference channels are
another data set, the additional constraints from the newintroduced by the common records betwdghand Ds.
data set might rule out more values B(S | 7). There-  (2) History-guided re-publishing. To compare, we let
fore, all the inference channels are actually already embed the bucketization ofD, depend on that oD;. We call
ded in these constraints. Based on this observation, to esit history-guided data re-publishing Most existing re-
timate the value ofP(S | Z) for a series published data publishing schemes fall into this category. Among many

5000

4000,

setsDy, ..., Dj, we just need to pool all the constraints to- ways to conduct history-guided data re-publishing, we try
gether, and create a joint constraint6et C1 U...UC;.  to preserve the similarity of buckets iY, and D.

Then, we need to find the assignment RS | Z) for each We use the bucket structure ¥ as our basis. If a
combination ofS andZ, such that the entrop$f (S | Z) is record is deleted fronD}, we create an empty slot in its
maximized, while all the constraints (i are satisfied. previews position. We then randomly pick a newly added

record with the same SA value to fill this slot. However, if

we cannot find such a record, we leave the empty slot there.
We use the categorical attributes of Adults data set from Finally, for the rest of the new records, we use independent

the UC Irvine Machine Learning Repository to perform our bucketization to generate new buckets .

numerical analysis. All experiments were run on an Intel sosrence apelysis or history-gulded re-bucketizaton

Pentium-D machine with 3.00 GHz CPU and 4GB physical

memory. We use the Knitro software package [4] as hon-

linear programming problem solver.

4. Evaluation

Maximum Entropy

4.1. Inference analysis in various scenarios

3 35 4
|-diversify

In our experiments, we use two data séts and D,
each with7200 records. D, is an updated version ab;. Figure 3. History-guided re-bucketization
We let D, be the bucketized version @f,, and D, be the Figure 3 depicts the results of history-guided method.
bucketized version oD,. D; is already published using  £rom the figure, we can see that the maximum entropy re-
the conventional bucketization method [15]. We use tWo gy ts derived from the combined data are just slightly lower
different strategies to publish. than the ones derived from a single release. This indicates
(1) Independent re-publishing. When we bucketizeD, that there are not many inference channels betw&eand
here, we do not take the bucketized result’f into con- D). This slight difference is caused by our failing to fill the
sideration. As results, records in the same buckeDin empty slots when we cannot find a record with the match-
may be in different buckets iﬁ);. This “independent” re-  ing SA value. If we happen to fill every empty slot with a
publishing creates the most complicated inference channel new record (or, liken-invariance, with counterfeit records),
None of the existing work can conduct inference analysis the maximum entropy from the combined data sets will be
for this scenario. We apply our method éh and D- to exactly the same as that from the single release.



The above experiment shows that the history-guided re-late the problem as a well-studied maximum entropy esti-
publishing is better than independent re-publishing rgar mation problem, and use standard non-linear programming
ing privacy preserving. How to develop optimal history- tool to solve it. Experimental results demonstrate theceffe
guided data re-publishing methods is beyond the scope oftiveness of this approach.
this paper. The techniques we propose for privacy quantification
(3) The impact of overlapping records is general. Following this line, we can develop practical

The common records shared between two data release§ PPR algorithms to ensure that privacy requirements are
are the causes of inference channels. Here, we study howatisfied at each releasing point. Also, we can integrate
the number of common records I, and D, affect the in- bac_kgrognd knowledge (the prior |nforma_t|0n _that adver-
ference analysis when datasets are independently disguise S21€S might know about the original data) in privacy analy-
We fix the number of records in both; and D, to 7200. sis of PPDR.

We set the number of records shared betwBgrand Dy
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5. Conclusion and Future Work

We describe a generic method to conduct inference anal-
ysis across multiple published datasets in PPDR. We formu-



