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Abstract

Privacy-Preserving Data Re-publishing (PPDR) deals
with publishing microdata in dynamic scenarios. Due to
privacy concerns, data must be disguised before being pub-
lished. Research in privacy-preserving data publishing
(PPDP) has proposed many such methods on static data.
In PPDR, multiple appeared records can be used to infer
private information of other records. Therefore, inference
channels exist among different releases. To understand the
privacy property of data re-publishing, we need to analyze
the impact of these inference channels. Previous studies
show such analysis when data are updated or disguised in
special ways, however, no general method has been pro-
posed.

Using the Maximum Entropy Modeling method, we have
developed a general solution. Our method can conduct in-
ference analysis when data are arbitrarily updated or ar-
bitrarily disguised using either generalization or bucketi-
zation, two most common data disguise methods in PPDR.
Through analysis and experiments, we demonstrate the ad-
vantage and the effectiveness of our method.

1. Introduction

Privacy-preserving data publishing draws great attention
of the community in recent years because of the concerns
about privacy breaching issues in data publication process.
To prevent linking attack, a primary attack in data publish-
ing, quite a few PPDP methods have been proposed, includ-
ing Bucketization [15], Generalization [3, 9, 11, 12], and
Randomization [1, 2]. Most of them focus on static one-
time dataset publishing and will disclose sensitive informa-
tion when data is re-published. For example, Figures 1(a)
and 1(c) depict a datasetD1 and its updated versionD2.
Records (7,10,13) are deleted while (14,15) are added. Fig-
ures 1(b) and 1(d) are the published versions (D′

1 andD′
2)

using bucketization. Due to data disguising, neitherD′
1 nor
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D′
2 itself provides adversaries absolute certainty on the dis-

ease of each patient. However, when putting them together,
we know that Patient10 hasLung Cancer.

Therefore, by studying two disguised data sets together,
one can discover extra knowledge that is unavailable from
each individual data set, even if each version of microdata
is well disguised. Such extra knowledge among multiple
disguised data sets is referred to as theinference channels
[5]. Understanding how these inference channels affect the
privacy of each individual in the published data sets is called
inference analysis, which is a very challenging work. We
use an example to show the difficulty.

Example 1 From the first two buckets inD′
2 of Figure 1(d),

one cannot identify the diseases of Patients 14 and 15. How-
ever, with both disguised data setsD′

1 andD′
2, we can learn

more. Let us assume that Patient 14 hasFlu, then fromD′
2,

we can tell that Patient 1 and 2 should havePneumonia

andDiabetes; therefore, from the first bucket ofD′
1, we

can tell that Patient 3 and 4 should both haveFlu. This con-
clusion conflicts with the information in the second bucket
of D′

2, because there is only oneFlu in that bucket, and
thus only one person among Patients 3, 4, and 15 in the
bucket can haveFlu. Therefore, our assumption on Patient
14 is incorrect, so the disease of Patient 14 should be ei-
ther Pneumonia or Diabetes, not Flu. We can conduct
this kind of inference in a simple data set; however, when
there are thousands of records in hundreds of buckets orQI

groups, such an analysis becomes quite difficult.

Outline of Our Approach. The goal of inference analy-
sis in PPDR is to find out potential privacy breaches from
all the published data sets. From statistical perspective,in-
ference analysis basically tries to identify if the inference
channels among the published data sets can reduce the un-
certainty of certain individuals’ SA values to a level that
can lead to privacy breaches. We model such uncertainty
by a conditional probabilityP (S | I). Therefore, if we can
deriveP (S | I) for any I andS from all the published
data sets, inference analysis becomes straightforward: sim-
ply examinate which conditional probabilities reach a dan-
gerous level.
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Name Pseudonym Gender Zip Code Disease

Allen 1 male 13115 Flu

Brian 2 male 13120 Pneumonia

Cathy 3 female 13210 Diabetes

Daliy 4 female 13228 Flu

Ethan 5 male 13315 Flu

Frank 6 male 13471 Pneumonia

Grace 7 female 13520 Diabetes

Helen 8 female 13347 HIV

Irwan 9 male 13428 Flu

James 10 male 13451 Lung Cancer

Katey 11 female 13359 Pneumonia

Liman 12 male 13427 HIV

Milin 13 female 13530 Diabetes

(a) The original data setD1

Pseudonym Gender Zip Code Disease

1 male 13115

2 male 13120 {Diabetes, Flu

3 female 13210 Flu, Pneumonia}
4 female 13228

5 male 13315

6 male 13471 {Diabetes, Flu

7 female 13520 Pneumonia}

8 female 13347

9 male 13428 {Flu, HIV,

10 male 13451 Lung cancer}

11 female 13359

12 male 13427 {Pneumonia, Diabetes,

13 female 13530 HIV}

(b) D
′

1
: The disguised version ofD1

Name Pseudonym Gender Zip Code Disease

Allen 1 male 13115 Flu

Brian 2 male 13120 Pneumonia

Cathy 3 female 13210 Diabetes

Daliy 4 female 13228 Flu

Ethan 5 male 13315 Flu

Frank 6 male 13471 Pneumonia

Helen 8 female 13347 HIV

Irwan 9 male 13428 Flu

Katey 11 female 13359 Pneumonia

Liman 12 male 13427 HIV

Nikon 14 male 13119 Diabetes

Olice 15 female 13244 Pneumonia

(c) The original data setD2

Pseudonym Gender Zip Code Disease

1 male 13115

2 male 13120 {Diabetes, Flu

14 male 13119 Pneumonia}

3 female 13210

4 female 13228 { Diabetes, Flu

15 female 13244 Pneumonia}

5 male 13315

8 female 13347 {Flu, HIV

11 female 13359 Pneumonia}

6 male 13471

9 male 13428 {Flu, HIV,

12 male 13427 Pneumonia}

(d) D
′

2
: The disguised version ofD2

Figure 1. The data example used throughout this paper

Deriving a complete distribution ofP (S | I) from
a single published data sets is not so difficult; most of
the existing work on PPDP have provided methods to do
so [12, 13, 15]. However, no existing work has shown how
to deriveP (S | I) from multiple (related) published data
sets. This task is quite challenging (see Example 1), espe-
cially when the original data sets can be arbitrarily updated
and disguised.

We develop a general method to deriveP (S | I) in
PPDR. We considerP (S | I) for each combination ofS
andI as a variable. Each published data set provides cer-
tain “clues” about these variables. We model these clues
as linear equations of these variables. We pool together the
equations from all the published databases and try to find
a solution to them. In most cases, the variables outnumber
the equations, meaning that we will have many solutions for
these variables; we have to choose one. Knowing that these
variables represent probabilities, according to theprinciple
of maximum entropy[10], the most unbiased solution is the
one that maximizes the entropy. Therefore, we reduce our
problem to a maximum entropy estimation problem, a well-
established problem that has been extensively studied.

Related Work. PPDR problem has been studied by several
groups recently [5, 6, 8, 16]. They focus on how to conduct
PPDR to minimize the data disclosure risk. To be able to
conduct inference analysis, they either put restrictions on
how data can be updated, or on how data can be disguised.
We lift these restrictions in our work. Our goal is not to pro-
pose another PPDR method; instead, we focus on providing

a general inference analysis method for PPDR.
Wang and Fung propose another inference analysis ap-

proach [14]; it focuses on a different data re-publishing sce-
nario. They suppose that data owners have a static data set
with QI andSAvalues. Initially, the owners publish a subset
of QI with SAvalues. Later, they release another subset of
QI values, but withoutSAvalues. They show that in order to
prevent inference attacks using the two releases, the second
version should be anonymized properly.

In this paper, we use the maximum entropy (ME) estima-
tion method to conduct inference analysis. The ME method
has been used by Du et al. in integrating background knowl-
edge in the quantification of privacy [7]. Although our pro-
posed scheme also uses the ME method, we use it to solve
a different problem.

2. Problem Formulation

Let Di be a dataset to be published. We callD1, . . ., Dt

a series ofsequentially updated data setsif Di is an updated
version ofDi−1 through deletions and additions. We make
some basic assumptions here:

We consider modification to the data set as a combina-
tion of deletion and addition. If the same person appears
multiple times in different releases with different SA val-
ues, we treat them as different persons.

Definition 2.1 (Privacy-Preserving Data Republishing)
Let D1, . . ., Dt−1 be a series of sequentially updated
data sets; they have already been published using certain
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data disguising schemes, such as generalization and buck-
etization. LetDt be an updated version ofDt−1. The
Privacy-Preserving Data Republishing (PPDR) problem is
to publish the data setDt in a way that satisfies the pre-
determined privacy requirements.

Definition 2.2 (Inference Channel) LetS represent SA val-
ues andI be pseudonym. LetPu(S | I) be the conditional
probability derived from a published data setD′

u, and Let
Pu,v(S | I) be the conditional probability derived from the
published data setsD′

u andD′
v. If Pu(S | I) 6= Pu,v(S |

I), we say that there are inference channels betweenD′
u

andD′
v. Finding inference channels or the impact of infer-

ence channels is called inference analysis.

If we can derive all the conditional probabilitiesP (S |
I) for each personI and for each SA valueS, we can ac-
curately measure the privacy impact of data re-publishing.
Therefore, we formulate the inference analysis problem as
the following probability estimate problem:

Problem 2.1 (Inference Analysis) LetD1, . . ., Dt be a
series of sequentially updated data sets. LetD′

1, . . ., D′
t

be their respective disguised versions that have been pub-
lished. LetD = D1 ∪ D2 ∪ . . . ∪ Dt be the union of the
original data set, andD′ = D′

1 ∪ D′
2 ∪ . . . ∪ D′

t be the
union of the published data sets. Let variableS represent
SA attributes, and letI represent the pseudonym attribute.
GivenD′, deriveP (S | I) for all the combinations ofI
andS values.

This is the main problem that we are going to solve in
this paper. We have developed a general method to derive
P (S | I). Our method allows data to be arbitrarily updated.
More importantly, our method allows data publishers to use
any arbitrary combination of the two popular data disguise
methods, bucketization and generalization; moreover, data
publishers do not need to follow any specific pattern when
they conduct data disguising. For the sake of simplicity, we
only focus our discussions on bucketization in this paper,
understanding that the same method that we have developed
also applies to generalization.

3. A Complete Inference Analysis in PPDR

As we have discussed in the previous section, our infer-
ence analysis task is to deriveP (S | I) for each personI
and each SA valueS. In this section, we describe a system-
atic method to estimateP (S | I) in data re-publishing.

3.1. Directly deriving P (S | I)

Deriving P (S | I) for one-time data publishing is easy.
For example, from the first bucket of Figure 1(b), We can

easily infer thatP (Flu | I = 1) = 1
2 , because there are

two out of four people in that bucket haveFlu. 1

In data re-publishing, we cannot use the same strategy to
deriveP (S | I). Let us see an example. From Figure 1(d)
alone, we can see thatP (Pneumonia | I = 11) = 1

3 ,
and P (Flu | I = 11) = 1

3 , too. However, if we
put these two published data sets together, we know that
P (Flu | I = 11) = 0, andP (Pneumonia | I = 11) =
1
2 . Namely, without the first data set, we only know that
P (Pneumonia | I = 11) = 1

3 ; however, with the in-
formation provided in the first data set, our inference can
become more accurate.

In data re-publishing, anything published has a potential
ability to affect the derivation ofP (S | I). When data
sets are not so complicated, like the one in Figure 1, we
might be able to figure out all the dependence among all
the records, and deriveP (S | I) directly. However, when
there are many versions of the published data, and when the
bucketization (or generalization) used in different versions
are quite different from one data set to another, deriving
P (S | I) directly becomes an infeasible task.

3.2. Indirectly deriving P (S | I)

We switch to an indirect approach to deriveP (S | I).
For each combination ofS andI, we assign a variable to
P (S | I). Therefore, if we havem differentS values, and
n different people (i.e.I values), we havem · n different
variables. We use a vector~x to represent these variables.

These variables are not independent to each other. Ac-
tually, we can formulate their relationships as equations.
For example, from the second bucket in Figure 1(b), we
can derive the following:P (Diabetes | I = 5) ∗ P (I =
5) + P (Diabetes | I = 6) ∗ P (I = 6) + P (Diabetes |
I = 7) ∗ P (I = 7) = 1

13 , where1 is the total number
of Diabetes and13 is the total number of records inD′

1.
We can formulate a number of equations like this; they are
linear equations of the variables in~x.

If we can formulate all the existing knowledge from the
published data sets as linear equations, derivingP (S | I)
basically becomes finding an assignment for all the vari-
ables in~x, such that all these linear equations are satisfied.
Our task now becomes solving those linear equations.

Unfortunately, in most cases, we have more variables
than equations, i.e., we will end up having many solutions.
The question is which solution we should choose.

3.3. Using Maximum Entropy Principle

To decide which solution to choose, we have to step
back and understand the meaning of these variables in~x.
They are not arbitrary variables but probabilities. By solv-
ing these equations, we are trying to derive aninference

1Here, we assume that there is no background knowledge; with back-
ground knowledge, we cannot say that these four people have the same
probability of havingFlu.
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for these probabilities. When deriving inference, the most
important criterion that we need to follow is to be unbi-
ased. Although there are many solutions for those equa-
tions, some are biased. Being biased means assuming some
extra information that we do not possess; therefore, the least
biased assignment is the most desirable [10].

This is theMaximum Entropy (ME)principle, apply-
ing which, our problem becomes deriving the distribution
of P (S | I), such that the following conditional entropy
H(S | I) is maximized:

H(S | I) = −
∑

I,S

P (I)P (S | I) log P (S | I) (1)

We assume thatI is unique across the data set, and each
personI only has one entry in the original data set (the
same entry may be published several times, and thus appear
multiple times in the published data). Therefore,P (I) is a
constant for allI values. As results, maximizingH(S | I)
is equivalent to maximizing the following:

−
∑

I,S

P (S | I) log P (S | I). (2)

Without any constraint,H(S | I) is maximized when
P (S | I) has an uniform distribution. However, the values
of P (S | I) are indeed subject to many constraints con-
tained in the data sets. To apply the ME method, we need
to convert all the available knowledge into equations (or in-
equalities) based onP (S | I). Let these constraints beh1,
. . ., hw. Our problem is formally defined as the following:

Definition 3.1 (Maximum Entropy Modeling) Finding an
assignment forP (S | I) for each combination ofS and
I, such that the entropyH(S | I) is maximized, while all
the constraintsh1, . . ., hw are satisfied.

3.4. Constraints from each data set

To treat the inference analysis as a maximum entropy
problem, we need to formulate all the knowledge that can be
derived from the published data sets as linear equations. We
refer to these equations as constraints. Before we describe
the constraints, we define the following term:

Definition 3.2 (Maximum Common Subset) LetSAi(id)
represent the set of possible SA values that might be as-
signed toid from the published data setD′

i. In bucketiza-
tion, this is the set of sensitive attributes contained inid’s
bucket. The Maximum Common Subset (MCS) ofid is the
intersection ofSA1(id), . . ., SAt(id).

(a) Zero Constraints. MCS(id) includes all possible SA
values that are likely associated with thisid. For any SA
values outsideMCS(id), the probability for thisid to have
s is zero. We call the following equation aZero constraint:

P (s | I = id) = 0, for ∀s 6∈ MCS(id). (3)

For example, from D′
1 in Figure 1(b), we can

derive SA1(5) = {Diabetes, Pneumonia, F lu};
from D′

2 in Figure 1(d), we can deriveSA2(5) =
{HIV, Pneumonia, F lu}. CombiningD′

1 andD′
2, we get

MCS(5) = SA1(5) ∩ SA2(5) = {Pneumonia, F lu}.
Therefore, we have the following Zero constraints:
P (HIV | I = 5) = 0, P (Diabetes | I = 5) = 0, and
P (LungCancer | I = 5) = 0.

To simplify the computation of maximum entropy esti-
mation, we actually remove the variableP (S | I) from our
variable set ifP (S | I) = 0. This can reduce the total num-
ber of variables in the computation, and can thus improve
the computation.
(b) One Constraints. From the properties of conditional
probability, we know that the sum ofP (s | id) should be
one for all possible SA values that might be associated toid.
Therefore, we call the following equation aOne constraint:

∑

s∈MCS(id)

P (s | I = id) = 1. (4)

For example, from the previous example, we know that
MCS(5) = {Pneumonia, F lu}; even though we do not
know how likely Patient 5 getsPneumonia or Flu, we do
know that the total probability of getting these diseases is1,
i.e.,P (Pneumonia | I = 5)+ P (Flu | I = 5) = 1.
(c) Relation Constraints. Zero constraints and One con-
straints only depict the relationship of the conditional prob-
abilities of each singleid. Relationships among different
id’s are not captured. However, putting several people’s
records in the same bucket does somehow make them re-
lated. For example, from the first bucket of Figure 1(b), we
know two people among{1, 2, 3, 4} haveFlu, although we
do not know which two from this bucket. This information
basically makes Patients1, 2, 3, and4 related, and such re-
lationship should be formulated into linear equations in our
maximum entropy modeling.

Let I(b) be the set ofid’s in bucketb, Pb(id) the prob-
ability of id in bucketb, andPb(s) the probability of SA
values in bucketb. We have following equation:
∑

id∈I(b)

P (s | I = id) ∗ Pb(id) = Pb(s), for ∀s in bucketb. (5)

Because eachid appears in each published data set only
once, we knowPb(id) = 1

|b| , where|b| is the number of

records in bucketb. We also knowPb(s) = #b(s)
|b| . where,

#b(s) represents the number ofs in bucketb. Therefore,
Eq. (5) becomes the following:

∑

id∈I(b)

P (s | I = id) = #b(s), for ∀s in bucket b. (6)
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We call the above equation aRelation constraint. For
each bucketb in a published data set, we can formulate as
many constraints as the number of SA values in the bucket.
An example of such a constraint for the first bucket in Fig-
ure 1(b) isP (Flu | I = 1) + P (Flu | I = 2) + P (Flu |
I = 3) + P (Flu | I = 4) = 2.

3.5. Combining constraints

We have discussed how to derive constraints from each
individually published data set. We now show how to com-
bine them together to deriveP (S | I) for a series published
data setsD′

1, . . . ,D
′
t. We letCi represent the set of con-

straints derived fromD′
i.

If an individual I appears in a data setD′
i, all his/her

conditional probabilitiesP (S | I) must satisfy the con-
straints inCi. Intuitively speaking, these constraints rule
out many values forP (S | I), because they cannot sat-
isfy the constraints. When the same individual appears in
another data set, the additional constraints from the new
data set might rule out more values forP (S | I). There-
fore, all the inference channels are actually already embed-
ded in these constraints. Based on this observation, to es-
timate the value ofP (S | I) for a series published data
setsD′

1, . . . ,D
′
t, we just need to pool all the constraints to-

gether, and create a joint constraint setC = C1 ∪ . . . ∪ Ct.
Then, we need to find the assignment forP (S | I) for each
combination ofS andI, such that the entropyH(S | I) is
maximized, while all the constraints inC are satisfied.

4. Evaluation

We use the categorical attributes of Adults data set from
the UC Irvine Machine Learning Repository to perform our
numerical analysis. All experiments were run on an Intel
Pentium-D machine with 3.00 GHz CPU and 4GB physical
memory. We use the Knitro software package [4] as non-
linear programming problem solver.

4.1. Inference analysis in various scenarios

In our experiments, we use two data setsD1 and D2,
each with7200 records.D2 is an updated version ofD1.
We letD

′

1 be the bucketized version ofD1, andD
′

2 be the
bucketized version ofD2. D1 is already published using
the conventional bucketization method [15]. We use two
different strategies to publishD2.

(1) Independent re-publishing. When we bucketizeD2

here, we do not take the bucketized result ofD1 into con-
sideration. As results, records in the same bucket inD

′

1

may be in different buckets inD
′

2. This “independent” re-
publishing creates the most complicated inference channels.
None of the existing work can conduct inference analysis
for this scenario. We apply our method onD1 andD2 to

show the privacy impact of data re-publishing. For each
individual data set, we bucketize it to achieve 2-, 3-, and 5-
diversity, respectively. For each diversity, we compare the
maximum entropy obtained from the single release with that
from all the published data. Figure 2 shows the result.
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Figure 2. Independent re-bucketization

Compared to the results from single release, the maxi-
mum entropy from the combined data sets is20% to 25%
lower, which indicates that the uncertainty ofP (S | I)
is lower. This is the consequence caused by the inference
channels betweenD′

1 andD′
2. The inference channels are

introduced by the common records betweenD′
1 andD′

2.

(2) History-guided re-publishing. To compare, we let
the bucketization ofD2 depend on that ofD1. We call
it history-guided data re-publishing. Most existing re-
publishing schemes fall into this category. Among many
ways to conduct history-guided data re-publishing, we try
to preserve the similarity of buckets inD′

1 andD′
2.

We use the bucket structure ofD′
1 as our basis. If a

record is deleted fromD′
1, we create an empty slot in its

previews position. We then randomly pick a newly added
record with the same SA value to fill this slot. However, if
we cannot find such a record, we leave the empty slot there.
Finally, for the rest of the new records, we use independent
bucketization to generate new buckets inD

′

2.
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Figure 3. History-guided re-bucketization
Figure 3 depicts the results of history-guided method.

From the figure, we can see that the maximum entropy re-
sults derived from the combined data are just slightly lower
than the ones derived from a single release. This indicates
that there are not many inference channels betweenD′

1 and
D′

2. This slight difference is caused by our failing to fill the
empty slots when we cannot find a record with the match-
ing SA value. If we happen to fill every empty slot with a
new record (or, likem-invariance, with counterfeit records),
the maximum entropy from the combined data sets will be
exactly the same as that from the single release.

5



The above experiment shows that the history-guided re-
publishing is better than independent re-publishing regard-
ing privacy preserving. How to develop optimal history-
guided data re-publishing methods is beyond the scope of
this paper.

(3) The impact of overlapping records
The common records shared between two data releases

are the causes of inference channels. Here, we study how
the number of common records inD1 andD2 affect the in-
ference analysis when datasets are independently disguised.
We fix the number of records in bothD1 andD2 to 7200.
We set the number of records shared betweenD1 andD2

to 6000, 4800, 3600, 2400, 1200, and0, respectively. To
make the comparison of entropy meaningful, we letD2 re-
main the same throughout this experiment and changeD1

according to the number of shared records betweenD1 and
D2. Figure 4 plots the entropy ofH(S | I) for all I ’s that
appear inD2. The trend of entropy shows the impact of the
number of shared records betweenD1 andD2.
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Figure 4. The impact of shared records be-
tween D1 and D2.

4.2. Performance

To demonstrate the scalability of our method, we record
the performance data in Figure 5, including the running time
and memory usages. We also show the relationship between
the performance and the number of records, variables, and
constraints.

For the sake of simplicity, we let the number of records in
D1 andD2 be the same, i.e., the number of deleted records
is the same as the number of new records. We publish the
disguised data using independent bucketization. Finally,we
conduct the inference analysis for these releases. Our re-
sults are shown in Figure 5.

Num of Records 1200 2400 3600 4800 6000 7200

Memory Usage (M) 33 73 116 76 103 134
Running Time (Min) 32 43 49 57 233 221

Num of Variable 11237 30437 49637 23617 29575 34852
Num of Constraints 2921 5841 9036 12101 15601 19121

Figure 5. Performance data

5. Conclusion and Future Work

We describe a generic method to conduct inference anal-
ysis across multiple published datasets in PPDR. We formu-

late the problem as a well-studied maximum entropy esti-
mation problem, and use standard non-linear programming
tool to solve it. Experimental results demonstrate the effec-
tiveness of this approach.

The techniques we propose for privacy quantification
is general. Following this line, we can develop practical
PPDR algorithms to ensure that privacy requirements are
satisfied at each releasing point. Also, we can integrate
background knowledge (the prior information that adver-
saries might know about the original data) in privacy analy-
sis of PPDR.
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