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Abstract— Data publishing can provide enormous benefits to
the society. However, due to privacy concerns, data cannot be
published in their original forms. Two types of data publishing
can address the privacy issue: one is to publish the sanitized
version of the original data, and the other is to publish the
aggregate information from the original data, such as data mining
results. There have been extensive studies to understand the
privacy consequence in the first approach, but there is not
much investigation on the privacy consequence of publishing data
mining results, although, it is well believed that publishing data
mining results can lead to the disclosure of private information.

We propose a systematic method to study the privacy conse-
quence of data mining results. Based on a well-established theory,
the principle of maximum entropy, we have developed a method
to precisely quantify the privacy risk when data mining results
are published. We take the association rule mining as an example
in this paper, and demonstrate how we quantify the privacy risk
based on the published association rules. We have conducted
experiments to evaluate the effectiveness and performanceof our
method. We have drawn several interesting observations from our
experiments.

I. I NTRODUCTION

Unprecedented amounts of data are being collected on
individuals by government agencies, organizations, and indus-
tries. If these data can be shared or disseminated, they can
bring tremendous benefits to the society, such as improving
efficiency of government agencies, enabling us to identify
potential pandemic diseases, providing invaluable data for
scientific researches, and helping commercial industries to gain
a better understanding of the market and customers. For these
reasons, an increasing amounts of data are being disseminated.

Many of these data contain personal information, and a
daunting challenge faced by data publishing is how to protect
privacy, i.e., how to keep individual’s private information
from being disclosed. Such privacy concerns result in two
lines of approaches. One approach focuses on sanitizing the
original datasets before publishing them. Many sanitization
methods have been proposed, including randomization [1]–[4],
generalization [5]–[9], and bucketization [10].

Another way to publish data without disclosing too much
private information is to only publish data mining results,
instead of datasets. Because data mining results contain only
aggregate information, they can achieve better privacy protec-
tion; moreover, since data mining results are generated from
the original data, they are more accurate than those from

sanitized data. The downside of this approach is that users
cannot apply their own data mining or analysis methods on
the data; they have to take whatever is produced by the data
publishers.

The privacy consequence of the first approach has been
extensively studied in the literature [10]–[16]; however,there
is not much study on the privacy consequence of the second
approach. Although publishing mining results seems to be able
to achieve a better privacy protection than publishing datasets,
it is still widely believed that data mining results do contain
quite a significant amounts of information that has the potential
to compromise privacy. Several work has studied the privacy
consequence when frequent itemsets are published [17]–[19].
The approach is to reconstruct a dataset from the published
frequent itemsets, and then use the reconstructed dataset to
analyze privacy. This field is calledinverse frequent itemset
mining. Another related work is carried out by Kantarcioglu
et al., who try to answer when data mining results violate
privacy [20]. However, despite all these studies, there is a
lack of understanding on how much private information can
be disclosed by data mining results.

The objective of this paper is to develop a systematic
method to quantify privacy disclosure caused by the publishing
of data mining results.

A. Motivation and Challenges

In the field of privacy-preserving data publishing, it is a
convention to conceptually split datasets into two parts: Quasi-
identifier (QI) attributes and Sensitive Attributes (SA). The
QI part consists of the information that are not sensitive and
can usually be obtained from other sources; the SA part
consists of private information of individuals. The goal of
privacy-preserving data publishing is to prevent adversaries
from inferring any individual’s SA information, while making
the published information as useful as possible.

However, when some information about the original data is
published, such as sanitized data or data mining results, adver-
saries might be able to infer an individual’s SA information
based on the published information and the QI information of
the individuals that they have obtained from other sources.
This type of attacks is often referred to aslinking attack,
i.e., linking an individual’s QI to SA value [9]. The severity
of linking attacks is decided by the conditional probability



ID Education Gender Salary

1 Doctorate Male 50K−
2 Masters Female 50K−
3 Doctorate Female 50K+
4 Bachelors Male 50K−
5 Masters Female 50K+
6 Doctorate Male 50K+
7 Masters Female 50K+
8 Doctorate Female 50K+
9 Masters Female 50K+
10 Doctorate Female 50K+
11 Masters Female 50K+
12 Doctorate Female 50K+

(a) The data setD (“50K+” means the
salary is> 50K, and “50K-” means the
salary is≤ 50K)

Index Association Rule

Minimum Support: 0.3, Minimum Confidence: 0.8
1 Education = Doctorate =⇒ Salary = 50K+

confidence: (0.83), support: (0.42)
2 Education = Doctorate∧Gender = Female =⇒ Salary = 50K+

confidence: (1), support: (0.33)
3 Gender = Female =⇒ Salary = 50K+

confidence: (0.89), support: (0.67)

(b) Data mining results: association rules

Fig. 1. Dataset and association rules for Example 1.

P (SA | QI) derived from the published data. The closer
this probability is to1, the more certain adversaries can infer
the SA value of an individual withQI. To quantitatively
understand the privacy consequence of data publishing, we
need to put ourselves at the adversaries’ shoes and derive
P (SA | QI). Unfortunately, this is not an easy task. We use
two examples to illustrate this in the association-rule mining
scenario.

Example 1:Figure 1 depicts a dataset and the association
rules generated from it with support threshold0.3 and con-
fidence threshold0.8. In the dataset,Salary is the only SA
attribute. We assume that adversaries already know the QI part
of the data (they can get the information from other sources);
we also assume that adversaries know the domain ofSalary is
{50K+, 50K-}. Therefore, the useful association rules that
can help adversaries derive each individual’s SA value are
those of patternQI =⇒ SA (i.e., the right hand of the rules
consists of only sensitive attributes). We only focus on this
pattern.

If the association rules in Figure 1(b) are published, we can
directly deriveP (SA | QI) and P (QI, SA) for certain QI
and SA values. For example, from the third association rule,
we can get the following:

P (Gender = Female, Salary = 50K+) = 0.67,

P (Salary = 50K+ | Gender = Female) = 0.89.

Even if the exact confidence and support of each rule
is suppressed from the disclosure, we can still derive the
following inequalities:

P (Gender = Female, Salary = 50K+) ≥ 0.3.

P (Salary = 50K+ | Gender = Female) ≥ 0.8,

The above probability derivations are based on a single
association rule; adversaries can even combine the information

from several rules to make more derivations. For example,
from the first rule in Figure 1(b), we know that the percentage
(Pd) of doctorates who earn more than 50K is83%; from the
second rule, we know that100% of female doctorates earn
more than 50K. Putting these two rules together, we know
that the percentage (Pmd) of male doctorates who earn more
than 50K is less than83%. If we factor in the number of male
doctorates (2 people) and female doctorates (4 people), we can
even say that only one of the two male doctorates earn more
than 50K (i.e.Pmd = 0.5): if both had earned more than 50K,
Pd would have been100%.

The above example demonstrates that adversaries can gain
more accurate knowledge if they combine the information
from several rules. Obviously, we cannot use a combinatorial
approach to try all possible combinations, because the number
of combinations, which is exponential in the number of
association rules, can be too many.

To make the matter worse, it is not sufficient to only
consider the published association rules; the fact that a pattern
QI =⇒ SA is not an association rule also gives adversaries
useful information. We demonstrate this using the following
example.

Example 2:Figure 2 gives a simple dataset (the original
dataset). The owner of the dataset has published the following
association rule using0.6 as the support threshold and0.9 as
the confidence threshold:

Education = Doctorate =⇒ Salary = 50K+,

support = 0.67, confidence = 1.

ID Education Gender Salary

1 Doctorate Female 50K+

2 Doctorate Male 50K+

3 Masters Female 50K−

Fig. 2. Dataset for Example 2.

Suppose that adversaries know the QI part of the data set
and the domain of salary as Example 1. From the published
association rule, adversaries can immediately learn that the
salaries for the first and second records are “50K+”. However,
that is not all. Adversaries can derive more from the things
that are not published.

Knowing that the pattern “Gender = Female =⇒
Salary = 50K+” is not published as an association rule,
adversaries can conduct the following reasoning (we denote
the pattern asT ): If the third person’s salary were50K+,
the support ofT would be 0.67 and the confidence would
be 1 (note: from the published association rule, adversaries
have already known that the first record’s SA value is50K+);
therefore, the patternT would have satisfied both support and
confidence thresholds and should have been published as an
association rule. This contradicts to the fact, so clearly,the
third person’s salary is50K-.

For a large data set, many patterns do not become as-
sociation rules; trying to combine them with the published



association rules to derive useful information is computation-
ally infeasible. We need a more systematic way to combine
the information embedded in both published association rules
and unqualified patterns, and use the combined information to
deriveP (SA | QI).

B. Outline of Our Approach

We have developed a generic and systematic method to
deriveP (X | Q) from data mining results (we useX to denote
SA values andQ to denoteQI values) . We formulate the
derivation ofP (X | Q) as a non-linear programming problem.
We treatP (X | Q) as a variable for each combination of
X ∈ SA and Q ∈ QI. The goal of derivingP (X | Q) is
to assign probability values to these variables. As we have
said before, data mining results contain information about
P (X | Q), so the assignment of these probability variables
should be consistent with the information embedded in the
data mining results. Usually, the embedded information canbe
formulated as constraints, which are in the forms of equations
or inequalities. Therefore, the derivation ofP (X | Q) becomes
finding an assignment for these variables that satisfy the
constraints.

Many assignments might be possible (i.e., they are all
consistent with the published mining results); the question is
which one should be used. To understand our decision, we
need to go back to the actual meanings of the variables: these
variables are not abstract variables; they are probabilities, so
assigning values to these variables is actually called probability
estimate. It is well known that when conducting estimates, it
is desirable to be as unbiased as possible.

According to theprinciple of Maximum Entropy (ME), when
the entropy of these variables is maximized, the inference is the
most unbiased[21]. Therefore, applying the ME principle, our
problem becomes finding the maximum-entropy assignment
for those variables that satisfy the constraints formulated from
the published data mining results. The ME problem is a special
case of nonlinear programming problems, and many existing
numeric methods [22], [23] and software packages [24], [25]
can be used to solve this type of problem in a systematic way.

Our method can be applied to a variety of data mining
results, including association rules, classifiers (e.g., decision
trees, association-rule based classifiers), etc., as long as we
can derive the constraints from the information embedded in
the data mining results. In the scope of this paper, we focus on
demonstrating how to use our proposed method on association-
rule mining results.

C. Paper Organization

In Section II, we summarize related work. In Section III,
we formally formulate the privacy quantification as probability
estimation problem. In Section IV, we briefly describe the
Principle of Maximum Entropy, which is used as the theoretic
foundation of our method. In Section V, we describe how
to derive constraints from the published association rules. In
Section VI, we use experiments to study the effectiveness

and performance of our method. Finally, we conclude in
Section VII.

II. RELATED WORK

The general scope of the related studies is called privacy-
preserving data publishing, the goal of which is to publish data
without compromising privacy requirements. The majority of
the work has been focusing on how to sanitize data, so
they can be released without causing privacy breaches. A
number of data sanitization methods have been proposed,
including randomization [1]–[4], generalization [5]–[9], and
bucketization [10], [15]. For these methods, adversaries have
a sanitized version of the original data. Our work focuses on
a different type of data publishing, where only data mining
results are published, not datasets.

The effect of data mining results on privacy was studied by
Kantarcioglu et al. [20]. In this work, a classifier is modeled
as a “black box”, namely, adversaries can only request that an
instance be classified by the owner of a classifier; they can
get the classification results, but can get no other information
about the classifier. Although this model has its own merit
in the client/server model, where mining results are kept ata
sever, it is an unrealistic model for the scenario where data
mining results are indeed published. Our work treats data
mining results as “white boxes”, i.e., the mining results are
fully accessible to adversaries.

The privacy consequence of frequent itemset mining results
has been studied in [17]–[19]. Results of frequent itemset
mining can compromise privacy in several ways. First, some
frequent itemsets can contain private information, and should
not be published; although non-sensitive frequent itemsets do
not contain private information directly, they may be used
to derive information about the sensitive frequent itemsets.
This is calledinference channelsbetween sensitive and non-
sensitive itemsets in [18]. In this paper, Wang et al. give
some algorithms to block the inference channels using itemset
sanitization. Second, frequent itemset mining results canbe
used to construct a synthetic dataset that is consistent with
the original data [17], so adversaries can analyze the features
of original data using the synthetic data. In [19], Wang et al.
analyze the privacy consequence of such synthetic data con-
struction. They propose an approximate construction method.
The above studies are calledinverse frequent itemset mining;
they focus mainly on developing algorithms to construct the
synthetic dataset using the frequent itemset mining results, or
on publishing these frequent itemsets without compromising
privacy. There is a lack of study on understanding how much
privacy is compromised due to the published frequent itemsets.
Our paper tries to address this privacy measuring problem.

Applying the principle of maximum entropy to understand
privacy in privacy-preserving data publishing was first ex-
plored in our work [26], which focuses on understanding how
background knowledge affects the privacy if sanitized dataare
published. Although also based on the principle of maximum
entropy, this paper is significantly different from the work
in [26]. First, while the work in [26] focus on publishing



sanitized data, this paper focuses on another data publishing
approach, i.e., publishing data mining results. Therefore, the
information available to adversaries is different. Second, this
paper makes an interesting hypothesis, which states that not
only the published association rules contain private infor-
mation, the fact that certain patterns are not published as
association rules also contains a great deal of information.
This paper proposes an efficient algorithm to derive constraints
from all the information available to adversaries. On the other
hand, because this work and the work in [26] are both based
on the principle of maximum entropy, they can be combined
quite naturally to quantify privacy caused by the publishing
of data mining results, while assuming that adversaries know
a certain degree of background knowledge. All we need to
do is to put the constraints from both sources together, and
feed them into a nonlinear programming solver. Due to page
limitation, we will not pursue such an integration work in this
paper.

Another line of research that is quite relevant to our studies
is the derivation of private information based on the algorithms
that are used in data disguise. In [27], Wong et al. found thatall
former anonymization algorithms try to minimize information
loss during data disguising. This fact on optimization actually
provides useful information to adversaries. Attacks basedon
such facts are calledminimality attackin [27]. Similar attacks
are also described in [28]. These attacks are based on the
information that is not published, but is implied from the
published information. For example, in the minimality attack,
the fact that a specific version of sanitized data is not published
tells us that the version cannot achieve the optimal results. Our
work explores a similar types of information: the fact that a
pattern is not an association rule indicates that the pattern fails
to satisfy the minimum confidence or support thresholds.

III. PROBLEM FORMULATION

A. Assumptions

We make several assumptions in this paper.
• The original dataset consists of two parts: QI attributes

and SA attributes. The QI part consists of the information
that can also be obtained from other sources. The SA part
consists of the information that the data owner wants to
protect.

• For the sake of simplicity in this paper, we assume
that there is one SA attribute in the data set. However,
our method is not restricted to this assumption, it can
be easily extended to datasets that have multiple SA
attributes1.

• We assume that adversaries have all the data of the QI at-
tributes. This assumption is made because the information
in the QI part can be usually obtained via other means [9].
Although in practice, attackers might not know every QI
value, this assumption allows us to conduct analysis on
the worse-case scenario.

1If there are multiple categorical sensitive attributes, wecan enumerate all
the SA combinations. We assign a unique ID for each combination so that it
can be treated as a single SA.

• We assume that adversaries know the domain of the
sensitive attributes, i.e., they know all the possible values
of the sensitive attributes.

• We focus only on categorical data in this paper, because
association rule mining is mostly based on categorical
data.

B. Measuring Privacy

Quantifying privacy has been actively pursued by re-
searchers in the past few years. Several privacy metrics have
been proposed, includingK-anonymity [9],L-diversity [12],
(α, k)-anonymity [29], t-Closeness [13], etc. A common
thread behind these metrics can be described as the following:
using an individual’s QI information acquired from another
source, together with the other information provided to the
adversaries (such as anonymized datasets), adversaries might
be able to derive information about individual’s SA value. How
successful the adversaries can derive an individual’s correct SA
value depends on the intrinsic conditional probability between
QI and SA attributes, i.e.,P (SA | QI,O), whereO represents
all the information available to the adversaries.

In most of the existing studies,O consists of the information
from sanitized datasets [9], [10], [12], [13], [29]. In our study,
we focus on a different type of information that is availableto
adversaries, i.e., data mining results. For the sake of simplicity,
we omitO from our notation, and only useP (SA | QI) in
the rest of the paper. Our privacy quantification task can be
formally defined as the following:

Problem 3.1:Let D be the original data set that is used to
generate the data mining results (denoted asΩ). Let variableX
represent SA attributes, and variableQ represent QI attributes.
GivenΩ and the QI part of all the records inD, deriveP (X |
Q) for all the combinations ofQ andX values.

The value ofP (X | Q) is the primitive behind all the
existing privacy measures, i.e., as long as we can compute this
conditional probability, we can calculate the existing privacy
metrics, such asL-diversity [12], (α, k)-anonymity [29], etc.

IV. M AXIMUM ENTROPY MODELING

Directly computingP (X | Q) is quite complicated, es-
pecially when various sources of information have to be
considered. Instead of directly computingP (X | Q), we treat
P (X | Q) for each combination ofQ and X as a variable;
for example, if there are1000 combinations, we have1000
variables. Our goal is to assign probability values to these
variables, while ensuring that the assignment is consistent with
the information encoded in the published data mining results.

It is possible that many assignments ofP (X | Q) are
consistent with a given set of data mining results, with
some being biased toward certain particularX values. Being
biased means assuming some extra information that we do
not possess; therefore, the least biased assignment is the most
desirable. As E. T. Jaynes expounded in his theory, the least
biased assignment is achieved when the probability entropyis
maximized [21].



This is theMaximum Entropy (ME)principle. Applying this
principle, our problem becomes finding a distribution ofP (X |
Q), such that the following conditional entropyH(X | Q) is
maximized:

H(X | Q) = −
∑

Q,X

P (Q)P (X | Q) log P (X | Q). (1)

Sometimes, it is more convenient to use the ME method to
computeP (Q, X) first 2, then computeP (X | Q). In this
case, we maximize the following joint entropyH(Q, X):

H(Q, X) = −
∑

Q,X

P (Q, X) logP (Q, X). (2)

BecauseH(X | Q) = H(Q, X) − H(Q), when H(Q) is a
constant, maximizingH(X | Q) is equivalent to maximizing
H(Q, X). Since we have assumed that adversaries know the
QI part of the dataset, there is no uncertainty onQ, i.e.,H(Q)
is a constant. In the rest of this paper, for the sake of simplicity,
our discussion is mainly based onH(Q, X).

Without any constraint,H(Q, X) is maximized when
P (Q, X) has a uniform distribution. However, the values of
P (Q, X) are indeed subject to many constraints contained
in the data mining results. To apply the ME method, we
need to convert all the available knowledge into equations (or
inequalities) based onP (Q, X). Let these constraints bec1,
. . ., cw. Our problem can be formally defined as the following:

Definition 4.1: (Maximum Entropy Modeling) Finding an
assignment forP (Q, X) for each combination ofQ and X ,
such that the entropyH(Q, X) is maximized, while all the
constraintsc1, . . ., cw are satisfied.

This maximum entropy modeling problem is a special
case of the non-linear programming problem, which can be
solved using existing software, such as KNITRO [24] and the
TOMLAB/SOL toolbox [25].

V. DERIVING PRIVATE INFORMATION FROM ASSOCIATION

RULE M INING RESULTS

Based on the ME method described in the previous section,
to estimateP (X | Q) based on data mining results, all we need
to do is to convert the knowledge embedded in data mining
results into equations or inequalities usingP (X | Q) or
P (Q, X) as variables. We call these equations and inequalities
ME constraints. Once we have formulated constraints, we can
use the existing solutions to find the values ofP (X | Q), for
each instance ofQ and X . In this section, we describe how
to formulate ME constraints.

The difficulty of deriving constraints from data mining
results depends on the type of data mining results and the
algorithms used to generate data mining results. Accordingto
whether they are related to probabilities, data mining results
can be classified into two categories: probability-based and
nonprobability-based. For example, association rule mining is
probability-based, but most clustering algorithms are not. Our
method is suitable for probability-based mining results; it is

2This is mainly because formulating constraints usingP (Q, X) sometimes
is much easier than usingP (X | Q).

unclear how to extend it to nonprobability-based mining. In
this section, we describe how to formulate constraints from
the published association rules.

A. Deriving Constraints From Association Rules

We briefly review the basics of association rule mining, be-
fore discussing how to derive ME constraints from association
rules.

Association Rules Mining.An association rule is an expres-
sion S =⇒ T , whereS andT are sets of items. The goal of
association rule mining is to find out all the association rules
with support above a minimum thresholds and confidence
above a minimum thresholdc. For an association ruleS =⇒
T , the supportof a rule is defined as the fraction of records
that contain bothS andT , i.e., support is defined asP (S∧T );
the confidenceof a rule is a percentage value that shows how
frequentlyT occurs among all the groups containingS, i.e.,
confidence is defined asP (T | S). One of the most well-
known algorithms to generate association rules is the Apriori
algorithm [30].

In the context of our studies, data sets contain two types of
attributes, QI attributes and SA attributes. For this type of data
sets, the association patterns between QI and SA attributesare
the most interesting association rules that are worth publishing.
Therefore, when we say publishing association rules, we mean
publishing the rules of the typeQ =⇒ X , whereQ consists
of values of QI attributes andX contains of values of SA
attributes.

We use an example to illustrate the association rules con-
cept. Using a portion of the UCI Adult dataset [31], by setting
the support thresholds = 0.1 and the confidence threshold
c = 0.9, we can get the following association rule:

MaritalStatus = NeverMarried, Sex = Male,

=⇒ Salary = 50K−,

support = 0.168, confidence = 0.901.

This is a qualified association rule because the support value
is 0.168 > s and the confidence value is0.901 > c.

Deriving Constraints. Although association rules only con-
tain aggregate information about original datasets, they have
potentials to disclose the private information in the original
datasets. To use our ME method to quantify how much private
information is disclosed by these data mining results, we need
to derive constraints from these rules. These constraints should
be in the form ofP (Q, X). We call the constraints derived
from association rulesAR-constraints.

There are two potential scenarios when publishing associa-
tion rules. In the first scenario, data owners withhold the exact
support and confidence scores. That is, users (and adversaries)
only know the published association rules together with the
thresholds for support (s) and confidence (c). In this situation,
for an association ruleQ =⇒ X , we only know the following:

P (X | Q) ≥ c andP (Q, X) ≥ s.



Because our ME constraints need to be based onP (Q, X).
We rewrite the first inequality usingP (Q, X) = P (X |
Q) · P (Q); combining with the second inequality, we get the
following constraint (it should be noted that adversaries know
P (Q) based on our assumption3):

P (Q, X) ≥ max(s, c · P (Q)). (3)

In the second scenario, to give users more information
about the association rules, data owners also publish the exact
support and confidence scores for the association rules. That is,
when publishing an association ruleQ =⇒ X , the confidence
scorec′ = P (X | Q) and the support scores′ = P (Q, X)
are also published. Based on these scores, we can derive the
following constraints:

P (X | Q) = c′ andP (Q, X) = s′. (4)

SinceP (Q, X) = P (X | Q) ·P (Q) andP (Q) is also known,
one of the above equations is redundant. We keep the second
one as our ME constraint, i.e.,P (Q, X) = s′.

For each of our ME constraint, theQ part inP (Q, X) must
include all the quasi-identifier attributes. We call such anprob-
ability expression afull probability expression. Unfortunately,
in any association ruleQs =⇒ X , Qs usually does not include
all the QI attributes. Using the above derivation, we can only
derive AR-constraints based onP (Qs, X). If this is the case,
we can use the following theorem to extend eachP (Qs, X)
to a sum of several full probability expressions:

Theorem 1:Let Q represent the set of entire QI attributes
and Qs is a nonempty subset of Q. Let̄Qs = Q − Qs be
the difference betweenQ andQs. Therefore,P (Q, X) can be
written asP (Qs, Q̄s, X). By summing up the probability over
all possibleQ̄s values, we have the following:

∑

t∈Q̄s

P (Qs, t, X) = P (Qs, X). (5)

B. Deriving Constraints From Non-Association Rules

The published association rules are all the information
that is available to users and adversaries. We have used
ME constraints to capture the information revealed by these
association rules. An important question is whether that isall
the information revealed by the published data mining results.
The answer is no. We have only captured the knowledge from
positive information, i.e., the published association rules, but
we have not captured the knowledge fromnegative informa-
tion, i.e., those patterns that are disqualified as association
rules.

If a pattern Q =⇒ X is missing from the published
association rules, it actually tells us some information aboutQ
andX : this pattern fails to satisfy either the minimum support
thresholds or the minimum confidence thresholdc. This kind
of knowledge can be modeled as ME constraints too. We call
this pattern anon-association rule, and the constraints derived
from it the NAR-constraints.

3We assume that adversaries know the QI part of the data, i.e.,they already
know P (Q).

For any combination ofQ andX , if Q =⇒ X is not one of
the published association rules, we can derive the following
constraints:

P (X | Q) < c or P (Q, X) < s.

Unfortunately, the Maximum Entropy model cannot accom-
modate the above two constraints, because the model requires
all the constraints to haveand relationships, i.e., they should
all be satisfied. If two constraints have anor relationship,
we have to split them into two sets of ME constraints, each
has to be solved separately. If there are too manyor-related
constraints, the number of constraint sets will be exponentially
large, rendering the problem infeasible to solve.

Fortunately, the above two constraints can be merged into
one constraint. Based on the fact thatP (Q, X) = P (X |
Q) · P (Q), we can rewrite the first constraint asP (Q, X) <

c · P (Q); combining with the second one, we have a single
constraint:

P (Q, X) < max(s, c · P (Q)). (6)

Since s and c are both constants, the right hand of the
above inequality depends onP (Q), which is the knowledge
that adversaries already have (by knowing the QI part of the
data).

The Number of Constraints. Since any pattern that is not an
association rule can lead to a NAR-constraint, plus the AR-
constraints, there might be many of constraints. This can cause
a problem when we try to solve the nonlinear programming
problem based on the constraints, because the number of
constraints and the number of variables in these constraints
are the two important factors for performance and memory
usages.

We study the total number of constraints that might be
generated. For the sake of simplicity, we assume that there
arem QI attributes, each withk distinct values. We have the
following theorem:

Theorem 2:Let |SA| be the total number of distinct SA
values. The total number of constraints is the following:

|SA|·

m
∑

i=1

ki·

(

m

i

)

= |SA|· ((1 + k)m − 1). (7)

Proof: Let Q(i) be an i-itemset which consists ofi
QI attributes. LetX be a sensitive attribute assignment. For
Q(i), the number of patternsQ(i) =⇒ X is ki, because each
attribute inQ(i) can takek different values.

Since there are
(

m

i

)

different i-itemsets, the total number of
patternsQ =⇒ X (association rules or non-association rules)
is the following (whereQ is any i-itemset):

ki·

(

m

i

)

.

Multiplying the above expression with|SA|, the number of
distinct SA values, and sum it overi = 1 . . .m, we can get
Equation (7).



For the UCI Adult dataset, which has 30162 records and 8
QI attributes after preprocessing, there are about700, 000 con-
straints (including both AR-constraints and NAR-constraints),
most of which are actually NAR-constraints because the num-
ber of AR-constraints is the same as the number of published
association rules, which is small in practice. Many Non-Linear
programming solvers can handle this amount of constraints,
if they are short, i.e., not containing too many variables.
However, this is not true in our case, as there are more than
3, 900, 000 variables among these constraints, including the
duplicates (some variables occur in several constraints, and
they are counted based on their occurrences). An insight in
how Non-Linear Programming solvers are implemented tells
us that the amount of memories used by the solvers depend on
the number of variables. If the number is too large, the solvers
can run out of memories. We have indeed tried several solvers
(KNITRO [24] and TOMLAB [25]) on this scale, and none
of the solvers that we have tried can handle a problem of this
scale. Therefore, it is very essential to reduce the number of
constraints, so the total number of variables can be reduced.

C. An Efficient Algorithm to Derive NAR-Constraints

We have observed that not all the NAR-constraints are
necessary, some of them are actually redundant. A constraint
is said to beredundantif it can be derived from one or more of
other constraints. Let us see an example. Suppose that we have
found two patternsQ =⇒ X and Q ∧ q =⇒ X that are not
association rules, where q contains another QI attribute that
does not exist in Q. We might end up having the following
two constraints corresponding to these patterns:P (Q, X) < s

andP (Q ∧ q, X) < s. The second one is actually redundant,
because it can be derived from the first one using the fact that
P (Q ∧ q, X) is always less than or equal toP (Q, X).

The above reasoning is used by the Apriori algorithm [30]
when generating the itemsets for association rules. It takes
advantage of the fact that ifP (Q, X) < s, thenP (Q∧q, X) <

s. In this way, we can exclude(Q∧ q, X) from the candidate
itemset, if(Q, X) is not in the candidate itemset. Our process
of generating NAR-constraints is quite similar to the process
of generating frequent itemsets. Therefore, it is desirable if
we can apply the same technique to prune those redundant
NAR-constraints during the constraint generation process.

Unfortunately, we cannot directly apply the same reasoning
to generate NAR-constraints. The key difference between our
process and the Apriori process is the right hand of the
inequalities. Let us still use the patternsQ =⇒ X and
Q∧q =⇒ X as an example. In the Apriori algorithm, the right
hands ofP (Q, X) < s and P (Q ∧ q, X) < s are the same
number, so the first one implies the second one. In our process,
according to Equation (6), our constraints areP (Q, X) <

max(s, c ·P (Q)) andP (Q∧q, X) < max(s, c ·P (Q∧q)); the
right hands of these two inequalities are different numbers, so
the first one does not necessarily imply the second one.

However, under certain condition, the second NAR-
constraint can be pruned if we already have the first NAR-
constraint. We have the following theorem:

Theorem 3:Suppose that we have two NAR-constraints
P (Q, X) < max(s, c · P (Q)) andP (Q ∧ q, X) < max(s, c ·
P (Q∧q)). If c ·P (Q) ≤ s, the second constraint is redundant.

Proof: To prove this theorem, we just need to show that
the second constraint can be derived from the first one.

From c · P (Q) ≤ s, we can derive thatc · P (Q ∧ q) ≤
s, becauseP (Q ∧ q) ≤ P (Q). Therefore, these two NAR-
constraints can be rewritten as the following:

P (Q, X) < s andP (Q ∧ q, X) < s.

Clearly, the second constraint can be derived from the first
one, becauseP (Q ∧ q, X) < P (Q, X).

What Theorem 3 tells us is that if we have derived a
NAR-constraint from a patternQ =⇒ X , and if we know
c·P (Q) ≤ s, the NAR-constraint derived from any pattern
Q ∧ Q′ =⇒ X is redundant, whereQ′ consists of a set of
QI attributes (and their values) that are not inQ. Therefore,
all these NAR-constraints can be pruned in the process of
constraint generation.

Based on Theorem 3, we can derive an efficient algorithm
to generate NAR-constraints (it actually generates both AR-
and NAR- constraints). The algorithm is depicted in Figure 3,
and it is similar to the Apriori algorithm, but using different
pruning criterion. In the algorithm,Lk−1 is the set of qualified
(k − 1)-itemsets which is to be extended tok-itemset. An
itemsetIe is said to be aone-extensionof another itemsetI
if Ie = I ∧ q where q consists of a single attribute that is
not in I. For example, the 3-itemsetRace = White∧ Sex =
Male∧MaritalStatus = Divorced is a one-extension of the
2-itemsetRace = White∧ Sex = Male.

The generation of NAR-constraints for k-itemset is based on
the AR-constraints and NAR-constraints of(k − 1)-itemset.
Initially, we put all the one-itemset intoL1 and generate
the AR-constraints and NAR-constraints accordingly. We then
iteratively extend the(k − 1)-itemsetLk−1 to k-itemsetLk

using a procedure similar to the Apriori algorithm, i.e., for
each one-extension itemsetI of an element inLk−1, if I =⇒
X is not an association rule, we check whether the condition
in Theorem 3 is satisfied. If it does, the itemsetI will be
pruned; otherwise, it will be added toLk.

The algorithm is quite effective; it reduces the number
of NAR-constraints from700, 000 to less than1, 000 in our
experiments using the UCI adult data set.

D. Deriving Constraints from Quasi-Identifiers

In addition to the constraints derived from the association
rules and non-association rules, there is another set of con-
straints that have not been captured. These constraints aredue
to the fact thatP (Q, X)’s are probabilities, and they should
satisfy all the constraints imposed on probabilities; a trivial
example is that the sum of all these probabilities should be1.
It should be noted that Non-Linear Programming solvers do
not recognize the variables in the constraints as probabilities,
so it has no responsibility to ensure all the constraints related
to probabilities. We have to specifically formulate them.



Input: The QI part of the dataset Dqi, threshold s and c

Output: Φk, set of AR-constraints for k-itemset,
and Ψk, set of NAR-constraints for k-itemset
L1 = {1-itemset};
// Initialize step;
foreach itemset I ∈ L1 do

for x ∈ X do

if I ⇒ x is an association rule then
generate an AR-constraint and put it in Φ1;

end

if I ⇒ x is not an association rule then
generate a NAR-constraint and put it in Ψ1;

end

end

end

// Iteration step;
for k ← 2 to m do

foreach itemset Ik−1 ∈ Lk−1 do

foreach I, one-extension of Ik−1 do

for x ∈ X do

if I ⇒ x is an association rule then
generate an AR-constraint and put it in Φk;
add I into Lk;

end

if I ⇒ x is not an association rule then
optimize-gen(Ψk, Φk−1, Ψk−1, I, x, Lk−1, s, c);

end

end

end

end

end

procedure optimize-gen(Ψk, Φk−1, Ψk−1, I, x, Lk−1, s, c)

1: if (Ik−1 ⇒ x) ∈ Ψk−1 ∧ c·P (Ik−1) ≤ s then

2: return (I ⇒ x is pruned based on Theorem 3)
3: else

4: add the NAR-constraint for the pattern I ⇒ x into Ψk;
5: add I into Lk;
6: end if

Fig. 3. An efficient algorithm to generate NAR-constraints.

There are three types of constraints that should be imposed
on joint probabilitiesP (Q, X)’s. First, if we sumP (Q, X)’s
over all possibleX values, the result should beP (Q). Let m

represent the total number of distinct values for the sensitive
attribute, and letx1, . . . , xm be these values. We have the
following constraint for each QI valueq:

m
∑

i=1

P (Q = q, X = xi) = P (Q = q), (8)

whereP (Q = q) is the probability ofq in the original data
set. Since we assume that the adversaries know the QI part of
the data set,P (Q = q) is known to the adversaries. We call
the above constraintQI-constraints.

Second, similar to the QI-constraints, if we sumP (Q, X)’s
over all possibleQ values, the result should beP (X). Let
n represent the total number of distinct values for the QI
attributes, and letq1, . . . , qn be these values. We have the
following constraint for each SA valuex:

n
∑

i=1

P (qi, X = x) = P (X = x), (9)

whereP (X = x) is the probability ofx in the original data set.

We call the above constraintSA-constraints. If the distribution
of SA values are also published along with the association
rules, adversaries will knowP (X = x), so the above SA-
constraints should be included. However, if the data owners
decide to withhold this piece of information, adversaries will
not know P (X = x), and these constraints should not be
included.

The third type of constraint is that if we sumP (Q, X)’s
over all the possible QI and SA values, the result should be
1. However, this constraint is redundant, because if we add all
the QI-constraints or all the SA-constraints, the result will be
the same as this constraint.

We show an example of the QI-constraint here. For the
dataset depicted in Figure 1(a), we can get the following
QI-constraint.P (Education = Doctorate ∧ Gender =
Female, Salary = 50K+) +P (Education = Doctorate ∧
Gender = Female, Salary = 50K-) = 4

12 = 1
3 .

VI. EXPERIMENTS

To demonstrate how much sensitive information the asso-
ciation rule mining results disclose, we conduct a series of
experiments. We use the Adults dataset from the UC Irvine
Machine Learning Repository [31]. We use the following
configuration: (1) We remove the records with “?” entries (i.e.,
incomplete entries). (2) We select the categorical attributes
from the dataset, and they are shown in Figure 4. (3) We use
the “Salary” attribute as the sensitive attribute. As results, the
datasetD has30162 records, with7722 distinct QI values and
2 distinct SA values.

Attribute Distinct Values

1 Workclass 8

2 Marital status 7

3 Occupation 14

4 Relationship 6

5 Race 5

6 Sex 2

7 Native country 41

8 Education 16

9 Salary 2

Fig. 4. UCI Adults

We have implemented our ME method using C++ and Ora-
cle 9i. All experiments were run on an Intel(R) Pentium(R)-D
machine with 3.00 GHz CPU and 4GB physical memory. We
use the KNITRO software package [24] to solve our Maximum
Entropy Estimation problem, which is a special case of Non-
Linear Programming problems.

The output of our program is the estimate ofP (SA | QI)
for all the combinations of SA and QI values, given the
knowledge of the published association rules. We need to
measure how close this estimation is to the distribution in the
original dataset. The closer it is to the original distribution,
the more private information is disclosed via the published
association rule mining results.
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Fig. 5. The impact of association rules

We measure the closeness of the estimated distribution
(denoted asP ∗(X | Q)) to the original distribution (denoted
as P (X | Q)). We measure such closeness at two different
levels: individual level and overall level. For the individual
level, we focus on the estimation for each individualq value,
i.e., P ∗(X | Q = q) for a specificq value. We callP ∗(X |
Q = q) the estimated individual distribution. Its closeness to
the original distributionP (X | Q = q) reveals how much
private information of this specific individual is compromised
(it could be several individuals who share the same QI value).
We use the standard Kullback-Leibler (KL) Divergence [32]
to measure the closeness of these two distributions. We callit
Individual Divergence(denoted byDindividual):

Dindividual =
∑

x∈SA

P (x|q) log
P (x|q)

P ∗(x|q)
.

For the overall level, we average the KL-divergence over all
possibleQI values based on how frequently they appear in the
dataset. We call this measure theOverall Divergence(denoted
by Doverall):

Doverall =
∑

q∈QI

[P (q) ·
∑

x∈SA

P (x|q) log
P (x|q)

P ∗(x|q)
].

The above two divergence values allow us to understand in-
formation disclosure at two different levels. WithDindividual,
we can conduct privacy studies for the worst-case scenario,
because it allows us to see the result at the individual level;
with Doverall, we can conduct privacy studies for the average-
case scenario. As we will show in our experiments, they can
tell different things.

A. The impact of association rules

The parameters of thresholds andc play an important role
when generating association rules. The smaller they are, the
more association rules will be generated. To study how these
parameters affect privacy, we measure the overall divergence
Doverall for a variety of support and confidence values.
Figure 5 depicts the results.

In Figure 5(a), we increase the confidence threshold from
0.6 to 1.0. Without any surprise,Doverall increases with the
increase of confidence threshold, indicating that the overall
divergence between the estimated distribution and the original
distribution increases. This trend is quite easy to understand:

the set of association rules generated with a larger confidence
threshold is always a subset of that with a smaller confidence
threshold. Therefore, the higher the confidence threshold,the
less information will be contained in the published association
rules, and the better the privacy can get (i.e., the overall
divergence gets larger).

In Figure 5(b), we increase the support threshold from0.02
to 0.1, and we have observed a similar trend: the overall
divergence increases with the increase of the support threshold.
The reason of the increase is similar to that of confidence: the
higher the support threshold, the fewer association rules will
be generated, so, less information will be disclosed, and the
privacy will get better.

As we discussed above, the change of the confidence and
support thresholds leads to the increase or decrease of the
number of association rules. To understand how the num-
ber of association rules affect privacy, we plot the overall
divergence according to the number of association rules. In
this experiment, we fix the support threshold (0.02) and
confidence threshold (0.6), and we can get1337 association
rules (of patternQ ⇒ X). We sort the association rules by
their confidence values in descending order; we then choose
the first T association rules, and measure the corresponding
Doverall. We plot T and Doverall in Figure 5(c). We clearly
see that when the number of AR-constraint increases, the
overall divergence value decreases, indicating that the overall
privacy gets worse.

B. Publish or withhold exact confidence values

When data owners publish association rules generated from
their data, in addition to publishing the confidence and sup-
port thresholds, they are tempted to also publish the exact
support and confidence values, because they give users more
information about those association rules. Obviously, these
values contain more information about the original data, and
can potentially affect privacy. The question is how severe
such an impact is. To answer this question, we have designed
an experiment to compare these two situations. We focus
on confidence values only; the results for support values are
similar.

In the no-release situation, the data owners withhold the
exact confidence values; therefore, the AR-constraints gen-
erated from the published association rules consist of only



inequalities. The results are plotted as the solid line in Figure 6.
In the release situation, the data owners publish the exact con-
fidence values, so the corresponding AR-constraints become
equations. The results are plotted as the dotted line in Figure 6.
From the figure, we can see a significant difference between
these two situations. This interesting result tells us thatwhen
the threshold of confidence is small, the decision of whether
to publish the exact confidence value has a significant impact
on privacy. However, when the confidence threshold gets
higher, the impact gets smaller. This trend is quite reasonable,
because as the confidence threshold increases, the threshold
itself becomes more and more accurate (i.e., the difference
between the actual value and threshold becomes narrower);
therefore, whether to publish the actual values or not becomes
less important.

The results of this experiment give the data owners a useful
guideline to decide whether to publish the exact confidence
values. In practice, they need to weight the tradeoff between
the gain of utility and the loss of privacy. Our method enables
them to understand the loss of privacy.
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Fig. 6. Publishing or withholding the exact confidence values

C. The impact of NAR-constraints

As we described in Section V, we can derive constraints not
only from the published association rules, but also from the
non-association rules that are not published because they fail to
reach either the confidence or support threshold. We would like
to study how much these NAR-constraints affect the privacy
of association-rule publishing. To this end, we have conducted
two sets of experiments: in one experiment, we do not include
the NAR-constraints in our maximum entropy estimation; in
the other experiment, we include the NAR-constraints. We plot
the difference between these two estimations in Figure 7.

We first study the overall divergenceDoverall for these
two estimations. For each estimation, we calculate the overall
divergence between the estimated distribution and the original
distribution. We plot the results for both estimations in Fig-
ure 7(b). Quite interestingly, we do not see much difference
between the two curves, as they almost overlap with each
other. This is a surprising result, and it appears that the
non-association rules do not carry much information that is
detriment to privacy.

To completely understand this surprising result, we de-
cided to look at theindividual divergenceDindividual, which
measures the divergence between the estimated distribution
and the original distribution for each individualQI value.
We list the Top 10 largest difference of twoDindividual

values in Figure 7(a) (each row correspond to a different
QI value). In this dataset, we have two SA values (denoted
as SA1 and SA2). From the table, we can see the original
distribution P (SAi | QI), the estimated distribution with
NAR-constraints, and the estimated distribution without NAR-
constraints.

For the original distribution, if a QI valueq is unique, there
is no uncertainty onP (SAi | Q = q). That is why the original
probability ofP (SAi | Q = q) in the table is either1 or 0. For
these QI values, we can clearly see that with NAR-constraints,
the estimated probabilities on the original SA values are more
accurate than that without NAR-constraints. For instance,let
us take a look at the first row, i.e., the one with the highest
difference. We can see that the probability ofP (SA1 | QI)
without NAR-constraints is0.762, whereas it is is0.870 if
considering NAR-constraints; this is a14% increase. This
difference is also reflected in the KL-divergence.

To gain a more complete understanding of how NAR-
constraints affect the privacy at individual level, we average the
top K largest differences between theDindividual’s obtained
with and without NAR-constraints. We letK range from1 to
500, and the results are plotted in Figure 7(c), which shows
that when k becomes large, the average impact of NAR-
constraints becomes less significant. From these experiment
results, we can say that the impact of NAR-constraints on the
overall privacy is not significant, but it can cause a significant
difference on certain individuals.

D. Performance Study

Our method consists of two steps: generating constraints,
and conducting Non-Linear Programming. To demonstrate
the importance of optimization (i.e. pruning) algorithm, we
conduct two different experiments, one using the optimization
algorithm and the other without.

We find out that without using the optimization, the com-
putation cannot perform in our machine. The Non-Linear
programming solver software runs for about 30 seconds,
before it reports an “out of memory” error. The main reason
is that the memory is not enough due to the large number of
variables (3,900,000) in the constraints.

The optimization can decrease the number of variables
dramatically. For our dataset, without optimization, we have
about 766,000 NAR-constraints (s=0.1, c=0.6); after optimiza-
tion, there are only 449 NAR-constraints, which have 281,014
variables in total. After the optimization, the solver software
can successfully finish. The running time is plotted in Figure 8.
The figure is generated with the support threshold0.1. We
choose the confidence thresholds from0.6 to 0.9. We plot the
running time against the number of variables in all constraints,
which varies when the confidence changes. In the same figure,



Top-K Difference of KL1 KL2 Original Original P (SA1 | QI) P (SA2 | QI) P (SA1 | QI) P (SA2 | QI)
KL1 and KL2 P (SA1 | QI) P (SA2 | QI) with NARC with NARC without NARC without NARC

1 0.133 0.139 0.272 1 0 0.870 0.130 0.762 0.238
2 0.132 0.147 0.279 1 0 0.863 0.137 0.757 0.243
3 0.131 0.155 0.286 1 0 0.856 0.144 0.751 0.249
4 0.131 0.159 0.290 1 0 0.853 0.147 0.748 0.252
5 0.130 0.164 0.294 1 0 0.849 0.151 0.745 0.255
6 0.130 0.164 0.294 1 0 0.848 0.152 0.745 0.255
7 0.130 0.165 0.294 1 0 0.850 0.152 0.745 0.255
8 0.129 0.172 0.301 1 0 0.842 0.158 0.740 0.260
9 0.129 0.165 0.294 1 0 0.848 0.152 0.745 0.255
10 0.129 0.172 0.301 1 0 0.842 0.158 0.740 0.260

(a) The Top-10 largest KL-divergences
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Fig. 7. The impact of NAR-constraints on privacy measure

we also plot the running time if only the AR-constraints are
used.

From Figure 8, we can see that the computation with
NAR-constraints consumes much more time than that without
NAR-constraints. Figure 8 also shows that the running time
increases when the number of variables increases. But for the
case without NAR-constraints, it increases slower than that
with NAR-constraints. These observations are consistent with
the inherent characteristics of the NLP programming because
the search space for inequalities (introduced by the NAR-
constraints) is usually larger than that for equalities, and the
more constraints and variables we have, the more time it takes
to solve the non-linear programming problem.
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Fig. 8. Running Time

VII. C ONCLUSION AND FUTURE WORK

We propose a systematic and quantitative analysis for the
information disclosure of data mining results. Our method is

based on a well-established principle, the Maximum Entropy
Principle. We model both association rules and non-association
rules as constraints. We then feed these constraints to a non-
linear programming software to find the maximum entropy
result. To reduce the running time and memory usage, we
propose an optimization algorithm to prune all the unnecessary
constraints. Our experiment shows that the proposed method
is quite effective and efficient.

Several directions of the future work can be followed. One
direction is to extend this method to deal with other data
mining results, such as decision trees. Another interesting
direction is to develop methods to disguise the associationrule
mining results, such that the privacy requirements are satisfied,
while at the same time, the utility of the published results are
not compromised too much.
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