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Abstract— Data publishing can provide enormous benefits to sanitized data. The downside of this approach is that users
the society. However, due to privacy concerns, data cannoteb cannot apply their own data mining or analysis methods on

published in their original forms. Two types of data publishing e gata; they have to take whatever is produced by the data
can address the privacy issue: one is to publish the sanitide publishe’rs

version of the original data, and the other is to publish the ; .
aggregate information from the original data, such as data rining The privacy consequence of the first approach has been
results. There have been extensive studies to understand e¢h extensively studied in the literature [10]-[16]; howeuwbere

privacy consequence in the first approach, but there is not js not much study on the privacy consequence of the second
much investigation on the privacy consequence of publishindata approach. Although publishing mining results seems to be ab

mining results, although, it is well believed that publishhg data . . . .
mining results can lead to the disclosure of private informaon. to achieve a better privacy protection than publishing sttt

We propose a systematic method to study the privacy conse- it is still widely believed that data mining results do cdnta
quence of data mining results. Based on a well-establisheddory, —quite a significant amounts of information that has the piaén
the principle of maximum entropy, we have developed a method to compromise privacy. Several work has studied the privacy
to precisely quantify the privacy risk when data mining resuts  5ngequence when frequent itemsets are published [17]-[19
are published. We take the association rule mining as an exgple The approach is to reconstruct a dataset from the published
in this paper, and demonstrate how we quantify the privacy rsk .
based on the published association rules. We have conductedfrequent itemsets, and then use the reconstructed dataset t
experiments to evaluate the effectiveness and performana# our analyze privacy. This field is calleshverse frequent itemset
methqd. We have drawn several interesting observations fra our  mining Another related work is carried out by Kantarcioglu
experiments. et al., who try to answer when data mining results violate
privacy [20]. However, despite all these studies, there is a
lack of understanding on how much private information can

Unprecedented amounts of data are being collected & disclosed by data mining results.
individuals by government agencies, organizations, addsn  The objective of this paper is to develop a systematic
tries. If these data can be shared or disseminated, they @agthod to quantify privacy disclosure caused by the puisigsh
bring tremendous benefits to the society, such as improvipfidata mining results.
efficiency of government agencies, enabling us to identif o
potential pandemic diseases, providing invaluable data f0- Motivation and Challenges
scientific researches, and helping commercial indusiigsin In the field of privacy-preserving data publishing, it is a
a better understanding of the market and customers. Foe thesnvention to conceptually split datasets into two partsag)
reasons, an increasing amounts of data are being disseshingtlentifier (Ql) attributes and Sensitive Attributes (SAer

Many of these data contain personal information, and @l part consists of the information that are not sensitivd an
daunting challenge faced by data publishing is how to ptotezan usually be obtained from other sources; the SA part
privacy, i.e., how to keep individual's private informatio consists of private information of individuals. The goal of
from being disclosed. Such privacy concerns result in twarivacy-preserving data publishing is to prevent advéesar
lines of approaches. One approach focuses on sanitizing fiwm inferring any individual's SA information, while makg
original datasets before publishing them. Many sanitirati the published information as useful as possible.
methods have been proposed, including randomization4l]-[ However, when some information about the original data is
generalization [5]—-[9], and bucketization [10]. published, such as sanitized data or data mining resulerad

Another way to publish data without disclosing too muckaries might be able to infer an individual's SA information
private information is to only publish data mining resultshased on the published information and the QI information of
instead of datasets. Because data mining results cont§yn ahe individuals that they have obtained from other sources.
aggregate information, they can achieve better privacyepro This type of attacks is often referred to &sking attack
tion; moreover, since data mining results are generatead fra.e., linking an individual's QI to SA value [9]. The sevarit
the original data, they are more accurate than those frarhlinking attacks is decided by the conditional probatilit
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ID | Education | Gender || Salary from several rules to make more derivations. For example,
1| Doctorate | Male | K- from the first rule in Figure 1(b), we know that the percentage
3 | Doctorate | Female || 50K+ (P,) of doctorates who earn more than 50K8%%; from the
4 | Bachelors | Male || 50K second rule, we know that00% of female doctorates earn
5 Masters Female 50K+ .
6 | Doctorate | Male || 50K+ more than 50K. Putting these two rules together, we know
7 | Masters | Female | 50K+ that the percentage?,;) of male doctorates who earn more
8 Doctorate Female 50K+ . .
9 T Mustors | Fomale | 50K than 50K is less thaR3%. If we factor in the number of male
10 | Doctorate | Female | 50K+ doctorates (2 people) and female doctorates (4 people)awe ¢
11 Masters Female 50K+
T3 T Doctorate | Fomale I 50K+ even say t_hat only one of the two male doctorates earn more
(a) The data seD ("50K+" means the than 50K (i.e.P,,4 = 0.5): if both had earned more than 50K,
salary is> 50K, and “50K-" means the
salary is< 50K) P,; would have beerni00%. _ .
The above example demonstrates that adversaries can gain
Index | Association Rule more accurate knowledge if they combine the information
Minimum Support: 0.3, Minimum Confidence: 0.8 . . .
1 Education = Doctorate — Salary = 50K+ from several rules. Obviously, we cannot use a combindtoria
confidence: (0.83), support: (0.42) approach to try all possible combinations, because the rumb
2 Education = Doctorate \ Gender = Female = Salary = 50K+ of combinations, which is exponential in the number of
confidence: (1), support: (0.33) Lo
3 Gender = Female —> Salary — 50K+ association rules, can be too many.
confidence: (0.89), support: (0.67) _ To make the matter worse, it is not sufficient to only
(b) Data mining results: association rules . . L
consider the published association rules; the fact thattenpa
Fig. 1. Dataset and association rules for Example 1. QI = SA is not an association rule also gives adversaries
useful information. We demonstrate this using the follayvin
xample.

P(SA | QI) derived from the published data. The closer
this probability is tol, the more certain adversaries can infer Example 2:Figure 2 gives a simple dataset (the original
the SA value of an individual withQI. To quantitatively dataset). The owner of the dataset has published the foltpwi
understand the privacy consequence of data publishing, wssociation rule using.6 as the support threshold afd) as
need to put ourselves at the adversaries’ shoes and detive confidence threshold:

P(SA | QI). Unfortunately, this is not an easy task. We use

two examples to illustrate this in the association-rule ingn FEducation = Doctorate = Salary = 50K+,
scenario. . . o support = 0.67, confidence = 1.
Example 1:Figure 1 depicts a dataset and the association
rules generated from it with support threshéld and con- TD | Education | Gender || Salary
fidence threshold).8. In the datasetSalaryis the only SA 1 | Doctorate | Female | 50K+
. . 2 Doctorate Male 50K+
attribute. We assume that adversaries already know the QI pa 3 Masters | Fomale | 50K

of the data (they can get the information from other sources)
we also assume that adversaries know the domaBuatHryis Fig. 2. Dataset for Example 2.

{50K+, 50K- }. Therefore, the useful association rules that

can help adversaries derive each individual's SA value aresyppose that adversaries know the QI part of the data set
those of patter)l —- SA (i.e., the right hand of the rulesand the domain of salary as Example 1. From the published
consists of only sensitive attributes). We only focus ors thissociation rule, adversaries can immediately learn that t
pattern. salaries for the first and second records &@K+”. However,

If the association rules in Figure 1(b) are published, we cgfat is not all. Adversaries can derive more from the things
directly derive P(SA | QI) and P(QI,SA) for certain QI that are not published.

and SA values. For e_xample, from the third association ““e’Knowing that the pattern Gender = Female =—>
we can get the following: Salary = BOK+” is not published as an association rule,
P(Gender = Female, Salary = 50K+) = 0.67, adversaries can conduct the following reasoning (we denote

the pattern asl’): If the third person’s salary werB0K+,
the support ofT” would be 0.67 and the confidence would
Even if the exact confidence and support of each rulg 1 (note: from the published association rule, adversaries
is suppressed from the disclosure, we can still derive th@ve already known that the first record’s SA valug®<+);
following inequalities: therefore, the patterii would have satisfied both support and
P(Gender = Female, Salary = 50K+) > 0.3. confid_en_ce threshole and shc_)uld have been published as an
association rule. This contradicts to the fact, so cleaHsg,
P(Salary = 50K+ | Gender = Female) > 0.8, third person’s salary i§0K- .
The above probability derivations are based on a singleFor a large data set, many patterns do not become as-
association rule; adversaries can even combine the infama sociation rules; trying to combine them with the published

P(Salary = 50K+ | Gender = Female) = 0.89.



association rules to derive useful information is comparat and performance of our method. Finally, we conclude in
ally infeasible. We need a more systematic way to combisection VII.
the information embedded in both published associatiogsrul

and unqualified patterns, and use the combined information t Il. RELATED WORK

derive P(SA | QI). The general scope of the related studies is called privacy-
preserving data publishing, the goal of which is to publiated
B. Outline of Our Approach without compromising privacy requirements. The majorify o

tl?g work has been focusing on how to sanitize data, so

We have developed a generic and systematic methodth b | d without X . b h A
derive P(X | Q) from data mining results (we us€ to denote €y can be released without causing privacy breaches.
number of data sanitization methods have been proposed,

S A values and@ to denoteQI values) . We formulate the .

L . : luding randomization [1]-[4], generalization [5]-[%nd
derivation of P(X as a non-linear programming problem!"c4diNg I ;
We treatP(X(| C|2)Q;s a variable forpea?ch comt?ir?ation 01buckeuzatlon [10], [15]. For these methods, adversarash

X € SA andQ € QI. The goal of derivingP(X | Q) is a sanitized version of the original data. Our work focuses on

to assign probability values to these variables. As we ha\E}eO“fferent type of data publishing, where only data mining

said before, data mining results contain information abo{ﬁsuns are published, .n(.)t datasets. . .
P(X | Q), so the assignment of these probability variabl The effect of data mining results on privacy was studied by

should be consistent with the information embedded in t ntarcioglu et al. [20]. In this work, a classifier is modile

data mining results. Usually, the embedded informationkzan asa black box", namely, adversaries can only request that a

formulated as constraints, which are in the forms of equatioInStance be classified by the owner of a classifier; they can

or inequalities. Therefore, the derivationB{X | Q) becomes get the classification results, but can get no other infoonat

finding an assignment for these variables that satisfy tﬁgom the classifier. Although this mpdel has its own merit
constraints. In the client/server model, where mining results are ke at

Many assignments might be possible (i.e., they are as|(?ver, it is an unrealistic model for the scenario where data

consistent with the published mining results); the questio mining results are indeed published. Our work treats data

which one should be used. To understand our decision, %%nlnfcézzgilésleii ;er\v;?sgﬁégs » 1€, the mining results ar

need to go back to the actual meanings of the variables: thes : : -
variables are not abstract variables; they are probasiigo he privacy consequence of frequent itemset mining results
' has been studied in [17]-[19]. Results of frequent itemset

assigning values to these variables is actually calledaiitiby - . . . .

. ) . i mining can compromise privacy in several ways. First, some
estimate. It is well known that when conducting estimates, . . ) ) k
is desirable to be as unbiased as possible. frequent |temsets can contain pr|vate_ _mformatlon, gndtho

According to theprinciple of Maximum Entropy (MEhen not be publlshgd; alt_hough n_on-se_nsmve frequent itesndet
the entropy of these variables is maximized, the inferentieei not contain private information directly, they may be used
most unbiase{21]. Therefore, applying the ME finciole Ourto derive information about the sensitive frequent itemiset

e » aPpyIng P P'€, OUl1is is calledinference channelbetween sensitive and non-
problem becomes finding the maximum-entropy f;lSSlgnmesnetnsitive itemsets in [18]. In this paper, Wang et al. give
for those variables that satisfy the constraints formualétem . N ’ oo
some algorithms to block the inference channels using #éms

the published data mining results. The ME problem is a Speclsa};mitization. Second, frequent itemset mining results loan

Eair(\ee?]; r:r?gtl;]noec?sr [F;rg]grég]n’;:g Eg?tblzr::’ :(r:]l?ameasnflzz]x 'Tg%fed to construct a synthetic dataset that is consisteht wit
umert ' ware p 9 ' e original data [17], so adversaries can analyze the rfestu

can be used to solve this type of problem in a systematic wa ‘original data using the synthetic data. In [19], Wang et al

Our methOd. can be _ap_plled to a varu_et_y of data_ mlnlngnalyze the privacy consequence of such synthetic data con-
results, '”C'”_d'ng association rules,_ f:lassmers (e-ggiglon struction. They propose an approximate construction naetho
trees, a_ssomanon-rule_based cIassnjers), etp., as lengea The above studies are call@u/erse frequent itemset mining
can derive the constraints from the information embedded t’l’?ey focus mainly on developing algorithms to construct the

the data mif“”g results. In the scope of this paper, we fon.us.%nthetic dataset using the frequent itemset mining resait
demonstrating how to use our proposed method on associatig publishing these frequent itemsets without comprorgisin

rule mining results. privacy. There is a lack of study on understanding how much
privacy is compromised due to the published frequent itésnse
Our paper tries to address this privacy measuring problem.
In Section Il, we summarize related work. In Section Ill, Applying the principle of maximum entropy to understand
we formally formulate the privacy quantification as prolliépi privacy in privacy-preserving data publishing was first ex-
estimation problem. In Section IV, we briefly describe thplored in our work [26], which focuses on understanding how
Principle of Maximum Entropy, which is used as the theoretizackground knowledge affects the privacy if sanitized data
foundation of our method. In Section V, we describe hopwublished. Although also based on the principle of maximum
to derive constraints from the published association rules entropy, this paper is significantly different from the work
Section VI, we use experiments to study the effectiveneiss [26]. First, while the work in [26] focus on publishing

C. Paper Organization



sanitized data, this paper focuses on another data puidishi « We assume that adversaries know the domain of the
approach, i.e., publishing data mining results. Thereftre sensitive attributes, i.e., they know all the possible &alu
information available to adversaries is different. Segahds of the sensitive attributes.

paper makes an interesting hypothesis, which states that na We focus only on categorical data in this paper, because
only the published association rules contain private infor  association rule mining is mostly based on categorical
mation, the fact that certain patterns are not published as data.

association rules also contains a great deal of information

This paper proposes an efficient algorithm to derive comgra B. Measuring Privacy

from all the information available to adversaries. On theeot Quantifying privacy has been actively pursued by re-

hand, be‘?a“_se this Wor_k and the work in [26] are both b_asgéjarchers in the past few years. Several privacy metrics hav
on the principle of maximum entropy, they can be combinggl,., proposed, including-anonymity [9], L-diversity [12],
quite natu_rglly to quantify.privacy c.aused by the pu_bligwin(a’k)_anonymity [29], -Closeness [13], etc. A common
of data mining results, while assuming that adversarieskng, eaq hehind these metrics can be described as the fofjowin
a certain degree of background knowledge. All we need {pyn 4 individual's QI information acquired from another
do is to put the constraints from bOth sources together, aggurce, together with the other information provided to the
f_ee_d t_hem Into a nonlinear programming sol\_/er. Due to PadGversaries (such as anonymized datasets), adversags mi
limitation, we will not pursue such an integration work insth p apje 1o derive information about individual's SA valuewid
paper. . . , _successful the adversaries can derive an individual'®co8A
Another line of research that is quite relevant to our stsidi¢, depends on the intrinsic conditional probabilityvzgn

is the derivation of private information based on the aldponis QI and SA attributes, i.eP(SA | QI, 0), whereO represents
that are used in data disguise. In [27], Wong et al. foundadhat all the information available to the7adversaries.

former qnonymiza_tion _al_gorithnjs try to minir_ni;e "?for”m“ In most of the existing studieg) consists of the information
loss during data disguising. This fact on optimization atiyu from sanitized datasets [9], [10], [12], [13], [29]. In ouudy,

provides useful mformgﬂon_ to adve.rsarles. A.‘tt‘f"CkS bawed we focus on a different type of information that is availatie
such facts are callechinimality attackin [27]. Similar attacks dversaries, i.e., data mining results. For the sake ofliittyp

are also described in [28]. These attacks are based on € omit © from our notation. and only us(SA | QI) in

infor_matior_l that is_ not published, b.Ut s im_pl_ied _from th(?he rest of the paper. Our privacy quantification task can be
published information. For example, in the minimality akta formally defined as the following:

the fact that a specific version of sanitized data is not ghktfi Problem 3.1:Let D be the original data set that is used to

tells us that the version cannot achieve the optimal redDlis enerate the data mining results (denotefag et variableX

work explores a S|m|Ia_r t_ypes of.|nf.ormat|on: the fact Fhat epresent SA attributes, and variali)eepresent QI attributes.
pattern is not an association rule indicates that the patéls GivenQ and the QI part of all the records i, derive P(X |

to satisfy the minimum confidence or support thresholds. Q) for all the combinations of) and X values.

I1l. PROBLEM FORMULATION The value of P(X | Q) is the primitive behind all the
A. Assumptions existing privacy measures, i.e., as long as we can compiste th
conditional probability, we can calculate the existingvpay

we makg ;everal assumpno-ns in this paper. .. metrics, such ad.-diversity [12], («, k)-anonymity [29], etc.
o The original dataset consists of two parts: QI attributes

and SA attributes. The QI part consists of the information
that can also be obtained from other sources. The SA part
consists of the information that the data owner wants to Directly computing P(X | Q) is quite complicated, es-
protect. pecially when various sources of information have to be
« For the sake of simplicity in this paper, we assumeonsidered. Instead of directly computiff X | @), we treat
that there is one SA attribute in the data set. Howevdr,(X | Q) for each combination of) and X as a variable;
our method is not restricted to this assumption, it cdier example, if there ara000 combinations, we have000
be easily extended to datasets that have multiple SAriables. Our goal is to assign probability values to these
attributes?. variables, while ensuring that the assignment is congistih
« We assume that adversaries have all the data of the QI % information encoded in the published data mining result
tributes. This assumption is made because the informatiorit is possible that many assignments B{X | Q) are
in the QI part can be usually obtained via other means [@jonsistent with a given set of data mining results, with
Although in practice, attackers might not know every Qdome being biased toward certain particukavalues. Being
value, this assumption allows us to conduct analysis diased means assuming some extra information that we do
the worse-case scenario. not possess; therefore, the least biased assignment isaste m
1 th . . . _ desirable. As E. T. Jaynes expounded in his theory, the least
ere are multiple categorical sensitive attributes, ca@ enumerate all

the SA combinations. We assign a unique ID for each combinatd that it blas_ed_a53|gnment is achieved when the probability entipy
can be treated as a single SA. maximized [21].

IV. MAXIMUM ENTROPY MODELING



This is theMaximum Entropy (MEprinciple. Applying this unclear how to extend it to nonprobability-based mining. In
principle, our problem becomes finding a distribution”4fX | this section, we describe how to formulate constraints from
@), such that the following conditional entrogy (X | Q) is the published association rules.
maximized:

HX|Q) =-> PQPX|QIlgP(X|Q). (1)
Q,X

A. Deriving Constraints From Association Rules

We briefly review the basics of association rule mining, be-

) o ) fore discussing how to derive ME constraints from assamiati
Sometimes, it is more convenient to use the ME method Qles.

compute P(Q, X) first 2, then computeP(X | Q). In this

case, we maximize the following joint entrogy(Q, X): Association Rules Mining.An association rule is an expres-
sion S = T, whereS andT are sets of items. The goal of

HQ,X) = — Z P(Q, X)log P(Q, X). (2)  association rule mining is to find out all the associatioresul

QX with supportabove a minimum threshold and confidence

BecauseH (X | Q) = H(Q,X) — H(Q), when H(Q) is a above a minimum threshold For an association rul§ —-

constant, maximizingZ (X | Q) is equivalent to maximizing 7', the supportof a rule is defined as the fraction of records

H(Q, X). Since we have assumed that adversaries know tifi@t contain botks and7’, i.e., support is defined &@(SAT);

QI part of the dataset, there is no uncertainty@ni.e., H(Q) theconfidenceof a rule is a percentage value that shows how

is a constant. In the rest of this paper, for the sake of siritpli frequentlyZ” occurs among all the groups containigi.e.,

our discussion is mainly based dh(Q, X). confidence is defined aB(T | S). One of the most well-
Without any constraint,H(Q, X) is maximized when known algorithms to generate association rules is the Aprio

P(Q, X) has a uniform distribution. However, the values o#lgorithm [30].

P(Q,X) are indeed subject to many constraints containedIn the context of our studies, data sets contain two types of

in the data mining results. To apply the ME method, wattributes, QI attributes and SA attributes. For this typdaia

need to convert all the available knowledge into equations (sets, the association patterns between QI and SA attribuges

inequalities) based o?(Q, X). Let these constraints bg, the mostinteresting association rules that are worth phiolg.

.. ., Cy. Our problem can be formally defined as the followingTherefore, when we say publishing association rules, wenmea
Definition 4.1: (Maximum Entropy Modeling) Finding an publishing the rules of the typ@ — X, where(@ consists

assignment forP(Q, X) for each combination of) and X, of values of QI attributes and’ contains of values of SA

such that the entropy/ (@, X) is maximized, while all the attributes.

constraintscy, ..., ¢, are satisfied. We use an example to illustrate the association rules con-
This maximum entropy modeling problem is a speciaept. Using a portion of the UCI Adult dataset [31], by sejtin

case of the non-linear programming problem, which can Itlee support threshold = 0.1 and the confidence threshold

solved using existing software, such as KNITRO [24] and the= 0.9, we can get the following association rule:

TOMLAB/SOL toolbox [25].

V. DERIVING PRIVATE INFORMATION FROM ASSOCIATION
RULE MINING RESULTS

Based on the ME method described in the previous section,
to estimateP (X | ) based on data mining results, all we neethis is a qualified association rule because the supporevalu
to do is to convert the knowledge embedded in data mining0.168 > s and the confidence value 8901 > c.
results into equations or inequalities usidX | Q) or . i .
P(Q, X) as variables. We call these equations and inequalitig§ving Constraints. Although association rules only con-
ME constraints. Once we have formulated constraints, we ¢ @ggregate information about original datasets, treyeh
use the existing solutions to find the valuesR(EX | Q), for potentials to disclose the private information in the aradi

each instance of) and X. In this section, we describe howdatasets. To use our ME method to quantify how much private
to formulate ME constraints. information is disclosed by these data mining results, wetine

The difficulty of deriving constraints from data miningto derive constraints from these rules. These constrdnatslg

results depends on the type of data mining results and #fe in the form of P(Q, X). We call the constraints derived
algorithms used to generate data mining results. AccorttingT0M association ruleAR-constraints o _
whether they are related to probabilities, data miningltesu 1here are two potential scenarios when publishing associa-
can be classified into two categories: probability-based aHon rules. In the first scenario, data owners withhold thacex
nonprobability-based. For example, association rule myiis  SUPPOrt and confidence scores. That is, users (and adessari
probability-based, but most clustering algorithms are Gotr only know the published association rules together with the

method is suitable for probability-based mining resultsisi thresholds for support) and confidencec]. In this situation,
for an association rul® — X, we only know the following:

MaritalStatus = NeverMarried, Sex = Male,
= Salary = 50K—,
support = 0.168, con fidence = 0.901.

2This is mainly because formulating constraints usif@?, X) sometimes
is much easier than using(X | Q). PX|Q)>candP(Q,X) > s.



Because our ME constraints need to be based® @, X). For any combination of) and X, if Q = X is not one of
We rewrite the first inequality usind®?(@Q,X) = P(X | the published association rules, we can derive the follgwin
Q) - P(Q); combining with the second inequality, we get theonstraints:
following constraint (it should be noted that adversariaewk
P(Q) based on our assumptidi PX Q) <corP(Q,X) <s.

P(Q,X) > max(s,c- P(Q)). (3) Unfortunately, the Maximum Entropy model cannot accom-
) ) _ _modate the above two constraints, because the model require

In the second scenario, to give users more informatigf the constraints to havend relationships, i.e., they should
about the association rules, data owners also publish #e exy)| pe satisfied. If two constraints have am relationship,
support and confidence scores for the association rulesiShaye nave to split them into two sets of ME constraints, each
when publishing an association rulg—> X, the confidence has to be solved separately. If there are too manyelated
scorec’ = P(X | @) and the support score = P(Q, X)  constraints, the number of constraint sets will be expdatit
are also published. Based on these scores, we can denveﬁlp&e, rendering the problem infeasible to solve.
following constraints: Fortunately, the above two constraints can be merged into

P(X|Q)=c andP(Q,X) = ¢ (4) one constraint. Based on the _fact thB(Q,_X) = P(X |
Q) - P(Q), we can rewrite the first constraint #&Q, X) <
Since P(Q, X) = P(X | Q)- P(Q) and P(Q) is also known, . P(Q); combining with the second one, we have a single
one of the above equations is redundant. We keep the secegdstraint:
one as our ME constraint, i.eB(Q, X) = s'.

For each of our ME constraint, th@ part in P(Q, X ) must P(Q, X) <maz(s,c- P(Q)). (6)
include all the quasi-identifier attributes. We call suchpaob-
ability expression dull probability expressionUnfortunately,
in any association rul®, — X, Q, usually does not include
all the QI attributes. Using the above derivation, we caryon
derive AR-constraints based di(Q,, X). If this is the case,

we can use the following theorem to extend ed¥{®),, X) The Number of Constraints. Since any pattern that is not an
to a sum of several full probability expressions: association rule can lead to a NAR-constraint, plus the AR-

Theorem 1:Let Q represent the set of entire QI attributegonstraints, there might be many of constraints. This casea
and @), is a nonempty subset of Q. L&}, = Q — Qs be 3 problem when we try to solve the nonlinear programming
the difference betwee and@,. Therefore, P(Q, X) can be problem based on the constraints, because the number of
written asP(Qs, Qs, X ). By summing up the probability over constraints and the number of variables in these conssraint
all possible@); values, we have the following: are the two important factors for performance and memory

_ usages.
tGXQ: P@Qs,t, X) = P(Qs, X). ®) We study the total number of constraints that might be
° generated. For the sake of simplicity, we assume that there
B. Deriving Constraints From Non-Association Rules arem QI attributes, each witft distinct values. We have the

The published association rules are all the informatidallowing theorem:
that is available to users and adversaries. We have usedheorem 2:Let [SA| be the total number of distinct SA
ME constraints to capture the information revealed by thegslues. The total number of constraints is the following:
association rules. An important question is whether thatlis m
the information revealed by the published data mining tesul |SA| Z kL. (m> =|SA- (1 + k)™ —1). (7)
The answer is no. We have only captured the knowledge from i—1 ¢
positive informationi.e., the published association rules, but  Proof: Let Q) be an i-itemset which consists of
we have not captured the knowledge fravagative informa- QI attributes. LetX be a sensitive attribute assignment. For
tion, i.e., those patterns that are disqualified as associatiQff’, the number of pattern® () — X is k’, because each
rules. attribute inQ? can takek different values.

If a pattern@Q = X is missing from the published Since there ar@?) different i-itemsets, the total number of
association rules, it actually tells us some informatioautld) patterns@) = X (association rules or non-association rules)
and X: this pattern fails to satisfy either the minimum suppoiit the following (whereQ is any i-itemset):
thresholds or the minimum confidence threshatdThis kind

Since s and ¢ are both constants, the right hand of the
above inequality depends aR(Q), which is the knowledge
]hat adversaries already have (by knowing the QI part of the
data).

of knowledge can be modeled as ME constraints too. We call kb <m)
this pattern aaon-association ruleand the constraints derived ¢
from it the NAR-constraints Multiplying the above expression witl$ A|, the number of

3We assume that adversaries know the QI part of the datathiey. already diStih(?t SA values, and sum it ovér=1...m, we can get
know P(Q). Equation (7). ]



For the UCI Adult dataset, which has 30162 records and 8 Theorem 3:Suppose that we have two NAR-constraints
QI attributes after preprocessing, there are alf601000 con- P(Q, X) < max(s,c- P(Q)) and P(Q A ¢, X) < max(s,c-
straints (including both AR-constraints and NAR-consttsl, P(QAgq)). If ¢- P(Q) < s, the second constraint is redundant.
most of which are actually NAR-constraints because the num- Proof: To prove this theorem, we just need to show that
ber of AR-constraints is the same as the number of publishig@ second constraint can be derived from the first one.
association rules, which is small in practice. Many Nondan Fromc - P(Q) < s, we can derive that - P(Q A q) <
programming solvers can handle this amount of constraints,becauseP(Q A q) < P(Q). Therefore, these two NAR-
if they are short, i.e., not containing too many variablegonstraints can be rewritten as the following:

However, this is not true in our case, as there are more than

3,900,000 variables among these constraints, including the P(Q,X) <sandP(QNgq,X) <s.

duplicates (some variables occur in several constraimd, . . .
they are counted based on their occurrences). An insight IJ1early, the second constraint can be derived from the first
how Non-Linear Programming solvers are implemented teffd'® becaus@(Q A g, X) < P(Q’X)' . ..

us that the amount of memories used by the solvers depen hat The(_)rem 3 tells us is that if we h?“’e derived a
the number of variables. If the number is too large, the $elvj\? -constraint from a patterld_g = X and if we know
can run out of memories. We have indeed tried several solv@d'§D (QI) = s th.e NAR-constraint de/rlved f.rom any patern
(KNITRO [24] and TOMLAB [25]) on this scale, and none® " @' == X is redundant, wher€)’ consists of a set of

of the solvers that we have tried can handle a problem of t)% attributes (and their values) that are notdn Therefore,
scale. Therefore, it is very essential to reduce the number

constraints, so the total number of variables can be reducegPnstraint generation. ) . )
Based on Theorem 3, we can derive an efficient algorithm

C. An Efficient Algorithm to Derive NAR-Constraints to generate NAR-constraints (it actually generates both AR

We have observed that not all the NAR-constraints af®d NAR- constraints). The algorithm is depicted in Figure 3
necessary, some of them are actually redundant. A constra&id it is similar to the Apriori algorithm, but using differe
is said to beedundanif it can be derived from one or more of Pruning criterion. In the algorithn, ., is the set of qualified
other constraints. Let us see an example. Suppose that we Hav— 1)-itemsets which is to be extended isitemset. An
found two patterng) =—> X andQ A ¢ => X that are not itemset/, is said to be ane-extensiomf another itemsef
association rules, where g contains another QI attribuae tif le = I A g whereq consists of a single attribute that is
does not exist in Q. We might end up having the followin§ot in . For example, the 3-itemsétace = White A Sex =
two constraints Corresponding to these patteﬁ(ﬁ, X) <s Male A Marital Status = Divorced is a one-extension of the
and P(Q A ¢, X) < s. The second one is actually redundang-ittmsetRace = White A Sex = Male.
because it can be derived from the first one using the fact thatl he generation of NAR-constraints for k-itemset is based on
P(Q A ¢, X) is always less than or equal #(Q, X). the AR-constraints and NAR-constraints @f — 1)-itemset.
The above reasoning is used by the Apriori algorithm [3dDitially, we put all the one-itemset intd; and generate
when generating the itemsets for association rules. Itstake AR-constraints and NAR-constraints accordingly. Wenth
advantage of the fact that #(Q, X) < s, thenP(QAq, X) < iteratively extend thelk — 1)-itemsetL;_; to k-itemsetL
5. In this way, we can exclud@ A ¢, X) from the candidate using a procedure similar to the Apriori algorithm, i.e.r fo
itemset, if(Q, X) is not in the candidate itemset. Our procesgach one-extension itemseof an element inL;,_,, if I =
of generating NAR-constraints is quite similar to the pssce X is not an association rule, we check whether the condition
of generating frequent itemsets. Therefore, it is desirabl in Theorem 3 is satisfied. If it does, the itemdewill be
we can apply the same technique to prune those redund@isned; otherwise, it will be added to.
NAR-constraints during the constraint generation pracess ~ The algorithm is quite effective; it reduces the number
Unfortunately, we cannot directly apply the same reasoni®f NAR-constraints froni700, 000 to less thani, 000 in our
to generate NAR-constraints. The key difference between g@kperiments using the UCI adult data set.
process and the Apriori process is the right hand of the
inequalities. Let us still use the patterig —> X and D. Deriving Constraints from Quasi-Identifiers

Q/Ng = X as an example. In the Apriori algorithm, the right |n addition to the constraints derived from the association
hands of P(Q, X) < s and P(Q A ¢,X) < s are the same ryles and non-association rules, there is another set of con
number, so the first one implies the second one. In our prpcesigaints that have not been captured. These constraintiuare
according to Equation (6), our constraints aP¢Q, X) < to the fact thatP(Q, X)'s are probabilities, and they should
max(s, c- P(Q)) andP(Q A\ g, X) < max(s,c- P(QAq)); the satisfy all the constraints imposed on probabilities; widti
right hands of these two inequalities are different numb®s example is that the sum of all these probabilities should.be
the first one does not necessarily imply the second one. |t should be noted that Non-Linear Programming solvers do
However, under certain condition, the second NARnot recognize the variables in the constraints as proliisili
constraint can be pruned if we already have the first NARp it has no responsibility to ensure all the constraintsteel
constraint. We have the following theorem: to probabilities. We have to specifically formulate them.

these NAR-constraints can be pruned in the process of



Input: The QI part of the dataset Dy;, threshold s and ¢

Output: @y, set of AR-constraints for k-itemset, We call the above constrai®A-constraintsif the distribution

and Uy, set of NAR-constraints for k-itemset of SA values are also published along with the association
Ly = {1-itemset}; rules, adversaries will know’(X = z), so the above SA-
1/’/ Initialize step; constraints should be included. However, if the data owners
oreach itemset I € L; do i . K . . R ..
for z € X do decide to withhold this piece of information, adversarigd w
if I = x is an association rule then not know P(X = z), and these constraints should not be
| generate an AR-constraint and put it in ®q; included
end B L. . ,
if I = x is not an association rule then The third type of constraint is that if we SUIﬁ(Q, X) S
| generate a NAR-constraint and put it in y; over all the possible QI and SA values, the result should be
dend 1. However, this constraint is redundant, because if we add al
en . . .
end the Ql-constraints or all the SA-constraints, the result be
// Tteration step; the same as this constraint.
for k <2 to m do We show an example of the Ql-constraint here. For the
foreach itemset Ij—1 € Ly do dataset depicted in Figure 1(a), we can get the following
foreach I, one-extension of Ir—1 do R A
for z € X do Ql-constraint. P(Education = Doctorate A Gender =
if I = x is an association rule then Female, Salary = 50K+) +P(Education = Doctorate A
generate an AR-constraint and put it in ®y; _ _ )y — 4 1
add I into L: Gender = Female, Salary = 50K- ) = 1 3
end VI. E
if I = x is not an association rule then ' XPERIMENTS
e'ﬂ(fpmmze‘gcn(% ®pts W, L, 2, Ly, 5, 0); To demonstrate how much sensitive information the asso-
end ciation rule mining results disclose, we conduct a series of
end experiments. We use the Adults dataset from the UC Irvine
end Machine Learning Repository [31]. We use the following
end configuration: (1) We remove the records with “?” entries.(i.
procedure optimize-gen(¥y, ®y_1, Vi 1,1,7,Lr_1,5,¢) incomplete entries). (2) We select the categorical attebu
1 if (Iy_1 = 2) € Up_y Ac- P(Ix_1) < s then from the dataset, and they are shown in Figure 4. (3) We use
2 1“3“1”1 (I = x is pruned based on Theorem 3) the “Salary” attribute as the sensitive attribute. As ressuhe
3: else . ..
4:  add the NAR-~constraint for the pattern I = z into Wy; datgs_etD has30162 records, with7722 distinct QI values and
5. add I into Ly; 2 distinct SA values.
6: end if
Attribute Distinct Values
Fig. 3. An efficient algorithm to generate NAR-constraints. 1 Workclass 3
2 | Marital status 7
There are three types of constraints that should be imposed i lg)‘ic‘tl,pamﬁ? 164
on joint probabilitiesP(Q, X)'s. First, if we sumP(Q, X)’s - © fi{onb 1P :
over all possibleX values, the result should b&(Q). Let m > Sace .
represent the total number of distinct values for the siesit —t o X 1
attribute, and letzy,...,z,, be these values. We have the < a]gge country o
following constraint for each QI valug: ucation
9 Salary 2
m
ZP(Q =q¢ X =)= P(Q=4q), (8) Fig. 4. UCI Adults
i=1

where P(Q = ¢) is the probability ofq in the original data  \yg have implemented our ME method using C++ and Ora-
set. Since we assume _that the adversaries knovx_/ the QI partafg; Al experiments were run on an Intel(R) Pentium(R)-D
the data setP(Q = q) is known to the adversaries. We cally,chine with 3.00 GHz CPU and 4GB physical memory. We
the above constrair@l-constraints _ use the KNITRO software package [24] to solve our Maximum
Second, similar to the Ql-constraints, if we sUMQ, X)'S  gniropy Estimation problem, which is a special case of Non-
over all possible) values, the result should bB(X). Let | inaar Programming problems.
n represent the total number of distinct values for the QI 1o output of our program is the estimate BfSA | Q1)
attrlbu_tes, and Ietll""’q" be these values. We have thg, 5 the combinations of SA and QI values, given the
following constraint for each SA value: knowledge of the published association rules. We need to
n measure how close this estimation is to the distributiorhan t
> P(gi, X =) = P(X =), (9) original dataset. The closer it is to the original distribat
i=1 the more private information is disclosed via the published
whereP (X = z) is the probability ofr in the original data set. association rule mining results.
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Fig. 5. The impact of association rules

We measure the closeness of the estimated distributithe set of association rules generated with a larger cordaen
(denoted asP*(X | Q)) to the original distribution (denoted threshold is always a subset of that with a smaller confidence
as P(X | @)). We measure such closeness at two differetiireshold. Therefore, the higher the confidence threstiloé,
levels: individual level and overall level. For the indivial less information will be contained in the published assimia
level, we focus on the estimation for each individgalalue, rules, and the better the privacy can get (i.e., the overall
i.e., P*(X | Q = q) for a specificq value. We callP*(X | divergence gets larger).

@ = q) the estimated individual distributianits closeness to  In Figure 5(b), we increase the support threshold ffbf2

the original distributionP(X | @ = ¢) reveals how much to 0.1, and we have observed a similar trend: the overall
private information of this specific individual is compraseil  divergence increases with the increase of the supporttbles

(it could be several individuals who share the same QI valu@he reason of the increase is similar to that of confidenee: th
We use the standard Kullback-Leibler (KL) Divergence [32higher the support threshold, the fewer association rulids w

to measure the closeness of these two distributions. Wetcalbe generated, so, less information will be disclosed, aed th

Individual Divergencgdenoted byD;,dividual): privacy will get better.
P(z|q) As we discussed above, the change of the confidence and
Dindividual = Z P(z|q) log W support thresholds leads to the increase or decrease of the
z€SA 4 number of association rules. To understand how the num-

For the overall level, we average the KL-divergence over dler of association rules affect privacy, we plot the overall
possibleQT values based on how frequently they appear in tifivergence according to the number of association rules. In
dataset. We call this measure Bgerall Divergencgdenoted this experiment, we fix the support threshold.0g) and

bY Doverall): confidence threshold)(6), and we can get337 association
P(zlq) rulgs (of patternQ = X)_. We sort t_he association rules by
Doverall = Z [P(q) - Z P(z|q)log ——%]. their confidence values in descending order; we then choose
q€QI z€SA P*(zq) the firstT" association rules, and measure the corresponding

iﬁgvemu. We plotT and D,,erqi; in Figure 5(c). We clearly
formation disclosure at two different levels. Withy,, gividual. see that when the number of AR-constraint increases, the

we can conduct privacy studies for the worst-case scenaﬁ&era” d|v<tergence value decreases, indicating that tieeadv
because it allows us to see the result at the individual ;IerIrIvaCy gets worse.

with Dyyerqi1, We can conduct privacy studies for the averages o jish or withhold exact confidence values
case scenario. As we will show in our experiments, they can

The above two divergence values allow us to understand

tell different things. When data owners publish association rules generated from
) o their data, in addition to publishing the confidence and sup-
A. The impact of association rules port thresholds, they are tempted to also publish the exact

The parameters of threshoidandc play an important role support and confidence values, because they give users more
when generating association rules. The smaller they aee, thformation about those association rules. Obviouslys¢he
more association rules will be generated. To study how thesgues contain more information about the original datal an
parameters affect privacy, we measure the overall divegjertan potentially affect privacy. The question is how severe
Doveran for a variety of support and confidence valuesuch an impact is. To answer this question, we have designed
Figure 5 depicts the results. an experiment to compare these two situations. We focus

In Figure 5(a), we increase the confidence threshold fromm confidence values only; the results for support values are
0.6 to 1.0. Without any surpriseD,e-qi; iNcreases with the similar.
increase of confidence threshold, indicating that the divera In the no-release situation, the data owners withhold the
divergence between the estimated distribution and theénalig exact confidence values; therefore, the AR-constraints gen
distribution increases. This trend is quite easy to undarkt erated from the published association rules consist of only



inequalities. The results are plotted as the solid line guFé 6. To completely understand this surprising result, we de-
In the release situation, the data owners publish the exact ccided to look at thendividual divergenceD,,,4ividual, Which
fidence values, so the corresponding AR-constraints becomeasures the divergence between the estimated distributio
equations. The results are plotted as the dotted line inr€i§u and the original distribution for each individu@)! value.
From the figure, we can see a significant difference betweWre list the Top 10 largest difference of twd;,qividuai
these two situations. This interesting result tells us Wia¢n values in Figure 7(a) (each row correspond to a different
the threshold of confidence is small, the decision of wheth& value). In this dataset, we have two SA values (denoted
to publish the exact confidence value has a significant impast SA; and SA,). From the table, we can see the original
on privacy. However, when the confidence threshold gedsstribution P(SA4; | QI), the estimated distribution with
higher, the impact gets smaller. This trend is quite redsiena NAR-constraints, and the estimated distribution witho AN
because as the confidence threshold increases, the tltesbohstraints.
itself becomes more and more accurate (i.e., the difference~or the original distribution, if a QI value is unigue, there
between the actual value and threshold becomes narrow& o uncertainty orP(SA; | Q = q). That is why the original
therefore, whether to publish the actual values or not besonprobability of P(SA; | @ = ) in the table is eithet or 0. For
less important. these QI values, we can clearly see that with NAR-conssaint
The results of this experiment give the data owners a usefhk estimated probabilities on the original SA values areemo
guideline to decide whether to publish the exact confidenaecurate than that without NAR-constraints. For instatete,
values. In practice, they need to weight the tradeoff betweas take a look at the first row, i.e., the one with the highest
the gain of utility and the loss of privacy. Our method enablalifference. We can see that the probability BfSA; | QI)

them to understand the loss of privacy. without NAR-constraints i9).762, whereas it is i90.870 if
considering NAR-constraints; this is 8% increase. This
05 ‘ ‘ ‘ difference is also reflected in the KL-divergence.
To gain a more complete understanding of how NAR-

- 8 -With exact confidence value
—e— Without exact confidence value

P constraints affect the privacy at individual level, we ags the

top K largest differences between t&,, 4;vi4.q:'S 0btained
with and without NAR-constraints. We |t range from1 to

500, and the results are plotted in Figure 7(c), which shows
that whenk becomes large, the average impact of NAR-
_ ] constraints becomes less significant. From these experimen

0.4r

Overall Divergence
o
w

Bo---oc mo-oTTT results, we can say that the impact of NAR-constraints on the
0-% 6 07 08 09 1 overall privacy is not significant, but it can cause a sigaific
Confidence (min sup = 0.1) difference on certain individuals.

Fig. 6. Publishing or withholding the exact confidence value D. Performance Study
Our method consists of two steps: generating constraints,
C. The impact of NAR-constraints and conducting Non-Linear Programming. To demonstrate
As we described in Section V, we can derive constraints rie importance of optimization (i.e. pruning) algorithme w
only from the published association rules, but also from th@nduct two different experiments, one using the optinizat
non-association rules that are not published becausediieg f algorithm and the other without.
reach either the confidence or support threshold. We woked li  We find out that without using the optimization, the com-
to study how much these NAR-constraints affect the privagutation cannot perform in our machine. The Non-Linear
of association-rule publishing. To this end, we have cotetlic programming solver software runs for about 30 seconds,
two sets of experiments: in one experiment, we do not inclutdefore it reports an “out of memory” error. The main reason
the NAR-constraints in our maximum entropy estimation; iis that the memory is not enough due to the large number of
the other experiment, we include the NAR-constraints. Vg plvariables (3,900,000) in the constraints.
the difference between these two estimations in Figure 7.  The optimization can decrease the number of variables
We first study the overall divergencB,,...;; for these dramatically. For our dataset, without optimization, wevéna
two estimations. For each estimation, we calculate theabverabout 766,000 NAR-constraints (s=0.1, c=0.6); after ojziam
divergence between the estimated distribution and thénadlig tion, there are only 449 NAR-constraints, which have 284,01
distribution. We plot the results for both estimations irg+i variables in total. After the optimization, the solver sadte
ure 7(b). Quite interestingly, we do not see much differen@an successfully finish. The running time is plotted in Feg&r
between the two curves, as they almost overlap with eathe figure is generated with the support thresh@ltl We
other. This is a surprising result, and it appears that tlehoose the confidence thresholds froré to 0.9. We plot the
non-association rules do not carry much information that isnning time against the number of variables in all constsai
detriment to privacy. which varies when the confidence changes. In the same figure,



Top-K | Difference of | KL, | KL, Original Original P(SA, | QI) | P(SA2|QI) P(SA, | QI) P(SA, | QI)
KL, and KL, P(SA, | QI) | P(SA2 | QI) | with NARC | with NARC | without NARC | without NARC
1 0.133 0.139 | 0.272 1 0 0.870 0.130 0.762 0.238
2 0.132 0.147 | 0.279 1 0 0.863 0.137 0.757 0.243
3 0.131 0.155 | 0.286 1 0 0.856 0.144 0.751 0.249
4 0.131 0.159 | 0.290 1 0 0.853 0.147 0.748 0.252
5 0.130 0.164 | 0.294 1 0 0.849 0.151 0.745 0.255
6 0.130 0.164 | 0.294 1 0 0.848 0.152 0.745 0.255
7 0.130 0.165 | 0.294 1 0 0.850 0.152 0.745 0.255
8 0.129 0.172 | 0.301 1 0 0.842 0.158 0.740 0.260
9 0.129 0.165 | 0.294 1 0 0.848 0.152 0.745 0.255
10 0.129 0.172 | 0.301 1 0 0.842 0.158 0.740 0.260

(a) The Top-10 largest KL-divergences
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Fig. 7. The impact of NAR-constraints on privacy measure

we also plot the running time if only the AR-constraints arbased on a well-established principle, the Maximum Entropy
used. Principle. We model both association rules and non-assogia
From Figure 8, we can see that the computation wittules as constraints. We then feed these constraints to-a non
NAR-constraints consumes much more time than that withdiriear programming software to find the maximum entropy
NAR-constraints. Figure 8 also shows that the running tinresult. To reduce the running time and memory usage, we
increases when the number of variables increases. But éor tiropose an optimization algorithm to prune all the unneagss
case without NAR-constraints, it increases slower thar theonstraints. Our experiment shows that the proposed method
with NAR-constraints. These observations are consistdtit wis quite effective and efficient.
the inherent characteristics of the NLP programming bezaus Several directions of the future work can be followed. One
the search space for inequalities (introduced by the NARirection is to extend this method to deal with other data
constraints) is usually larger than that for equalities] #me mining results, such as decision trees. Another intergstin
more constraints and variables we have, the more time istak#irection is to develop methods to disguise the associatiten

to solve the non-linear programming problem. mining results, such that the privacy requirements arefgedi,
while at the same time, the utility of the published resuits a
500 not compromised too much.
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