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Abstract— The randomized response (RR) technique is a  Privacy and utility of the randomized response technique
promising technique to disguise private categorical data in depend on RR matrices. However, although a number of RR-
Privacy-Preserving Data Mining (PPDM). Although a number of - paqcaq schemes have been proposed for various data mining
RR-based methods have been proposed for various data mining .
computations, no study has systematically compared them to find ComDUIat'ons [3]_[6]’ not much effort has been Pl%t on the se-
optimal RR schemes. The difficulty of comparison lies in the fact lection of M. It is not even clear how to compare different RR
that to compare two PPDM schemes, one needs to consider twomatrices, much less finding an optim@a for the randomized
conflicting metrics: privacy and utility. An optimal scheme based response technique. The difficulty is caused by the confiicti
on one metric is usually the worst based on the other metric. nature of privacy and utility; it is not fair to compare diféat

In this paper, we first describe a method to quantify privacy . . -
and utility. We formulate the quantification as estimate problems, KR matrices only based on privacy or utility. Both aspects

and use estimate theories to derive quantification. We then use an Neéed to be considered.
evolutionary multi-objective optimization method to find optimal We formulate the above problem as a multi-objective opti-

disgui.se matrices for the randomized response technique. The mization problem. Unlike a single-objective optimizatiomb-
Experlmental results have shown that our scheme has a much o, \ve have two objectives: privacy and utility. A solutiisn
etter performance than the existing RR schemes. . o . .
optimal if it is notdominatedby any other solutions; namely
|. INTRODUCTION no other solutions are better than an optimal solution. Such
The increasing concerns over privacy have introduced ma@gtimal solutions are not unique; we can have a set of optimal
challenges in data mining. In most scenarios, data are figslutions, each corresponding to a different RR matrix. We
collected from individuals or different data owners, andadacall these matrices optimal RR matricdhe objective of this
mining technologies are then applied to these data to axtraaper is to find an optimal set of RR matricédoreover,
useful knowledge. However, due to privacy concerns, mote satisfy diversified requirements (application depeit)den
and more data owners become unwilling to share their dapsivacy (or utility), we would like the optimal set toover a
This new challenge motivates a field called Privacy-Presgrv broad range of privacy (or utility)
Data Mining (PPDM). To find optimal solutions, we need to first quantify pri-
Randomization is one of the promising approaches iacy and utility. We consider the quantification as estiorati
privacy-preserving data mining. With this approach, ovadi problems. For privacy, we quantify how accurately adveesar
data are first disguised before being released to data tmec can estimate the original data (individual data items) fitbe
Randomization-based disguise protects the private irdiom  disguised data. We prove that the best adversaries can do is
of individuals, while still allowing the aggregated infoatipn to use Bayes estimate. We then use the Bayes estimate to
(e.g., data distribution and patterns) to be preserved wignantify privacy. For utility, we quantify how accuratelyew
reasonable accuracy. We usevacy to refer to the degree of can estimate the distribution (aggregate information) hef t
preservation on individual information; the higher the &g original data, also from the disguised data. There are a Bumb
the worse the privacy. We usdility to refer to the degree of ways to measure such an estimate. We choose to use the
of preservation on the aggregated information; the higher tMean Square Error (MSE), which is the same as the variance
degree, the better the utility. Both privacy and utility aref the estimate in randomized response.
critically important for PPDM. Based on our metrics, we can search for optimal RR
Randomized response (RR) is one of the randomizatiomatrices. The brute-force method is infeasible due to tigela
techniques that have been extensively studied in the PPDBarch space even for a categorical attribute with as fewdas 1
community. The RR technique for binary data was first intrezategories. We use an improved Evolutionary Multi-Objexti
duced by Warner [1] in 1965; it can be extended to gener@ptimization (EMOO) method to find optimal RR matrices.
categorical data [2]. In the RR technique, each sensiti@ur solutions have shown a significant improvement over the
data item is probabilistically replaced by another valuke T RR matrices used by existing work.
probability of replacing a value; with another valuec; is The rest of this paper is organized as follows. In Section Il,
captured by a transformation matrid; M is called anRR we review the related work. We then formulate our problem
matrix in this paper. in Section Ill. After describing how to quantify privacy and



utility in Section IV, we describe our solution in Section VA. The General RR Technique

conclusions and outline the future work in Section VII. replace each; in the original data set with another valag
with a certain probability. We us# ; to denote the probability
Il. RELATED WORK that a category; is randomized ta:;, wherei, j = 1,...,n.

Randomization is one of the approaches in achievir}]ge use P*(c;) to represent the probability of; in the

privacy-preserving data mining. Two classes of randorigrat . sguised data, andP(c;) to represent the probability of;

methods have been extensively studied in the literature: RA" the (m)glnal data. T —
Let P* = (P*(¢1),P*(c),...,P*(cy))*, and P =

dom Perturbation and Randomized Response. T X -
Random perturbation is primarily used for quantitativép(cl)’ P(ez),..., Plea))”. Let M be the following matrix:
data, first explored by Agrawal and Srikant [7]. Agrawal 011 ... Obin
and Aggarwal later improve the distribution reconstructio M= ) .
method using Expectation Maximization (EM) algorithm [8]. 9' ' 9'
Kargupta et al. [9] and Huang et al. [10] point out that agigr mnloeee Unen
randomization can reveal significant amount of informatiowe can easily derive the following equation:
under certain conditions, especially when the attribufetata — —
are highly correlated. Pr=MP. @)
Randomized Response (RR) is primarily used for cate-In the above equationP, the distribution in the original
gorical data. Its basic idea was proposed by Warner [Hata set, is what we are trying to find oditt, the distribution
RR disguises data by probabilistically changing the valug the disguised data, can be estimated using the frequeincy o
of a sensitive attribute to another value. Similar to randoghch category in the disguised data. Net(i = 1, ..., n) be the
perturbation, the distribution of the original data canoalshumber ofc;’s in the disguised data an¥l be the total number
be reconstructed using the disguised data. Based on §ierecords in the data set. We have the MLE (Maximum
RR technique, Rizvi and Haritsa propose a scheme to mi[;ﬁ%enhood Estimate) of*, which is P* — (X1, Na)T f
association rules from disguised data [3]; Evfimievski et al = N N
propose a different approach to conduct privacy-presgrvid/ is invertible, we substituté* for P*_jn Equation (1), solve
association rule mining [4]; Du and Zhan propose a schemett® equation and get the estimate Bf The estimate is an
conduct privacy-preserving decision tree building [5]régal unbiased MLE. These are ensured by the following theérem
et al. study how to optimize the efficiency of the distribntio Theorem 1:The MLE (Maximum Likelihood Estimate) of

reconstruction process [6]. Pris PP = (&1, N2)T If M is invertible, the unbiased
There is a lack of effort in finding the optimal randomizeq, £ of B is

response matrices. Agrawal and Haritsa took an initial step — —~

towards this direction [11]. They discuss how to find optimal P =MP. @)

RR matrices. However, the proposed scheme only tries to findintuitively speaking, the above theorem indicates thatrwhe

optimal RR matrices among symmetric matrices. Moreovehe number of records in the disguised data is large enough,

when comparing different RR matrices, it only chooses athe estimated distribution derived from Equation (2) isyver

curacy as the comparison criterion. Our work is different iglose to the original distribution.

two aspects: first, we search among both symmetric matricesthe above estimation approach uses matrix inversion and is

and asymmetric matrices; second, we use both accuracy @mgs called thénversion approachAgrawal et al. proposed an

privacy as our criteria when comparing two different RRerative approachto estimate the original distribution [2]: let

matrices. We formulate the problem as a multi-objective initial distribution P(X = ¢;)° for i = 1,...,n be some

optimization problem. More importantly, our solution a&¥gs non-negative values buf;_, P(X = ¢;)° = 1 (at step0)

better results than that in [11]. and run the following iterative process (at step

0i; P(X = ¢c;)*
i1 05 g P(X = cj)F

1. RANDOMIZED RESPONSE(RR) P(X = Ci)]H_l = ZP*(X =c) (3)
The Randomized Response (RR) technique is mainly used i=1 2

for randomizing categorical data. In this paper, we Gs¢o
represent the domain of the data attribute that needs to

disguised. This attribute domain containsdifferent values 1. nis the estimated distribution.

(or categories), denoted bfci,cz,...,c,}. Note that the  \ye gecide to use the inversion approach in our optimization
randomized response technique can be extended 0 Muliisorithm for the following reason: the inversion approgére
dimensional, i.e., the techniques are applied to several g 5 close-form formula to quantify the estimation errot, bu

mensions altogether. However, in this paper, for the sake @ the jterative approach, getting the errors takes a much
simplicity, we focus on one-dimensional RR; namely, we gppl

RR for each dimension independently. 1The proofs of all theorems are omitted due to the page limitation

The above iteration stops until two consecutiRgX) are close
ugh. If it stops after step, the P(X = ¢;)*! for i =



longer time, because we have to finish the iterative process\M; is the Identity matrix; it does not disguise data at all,
before we can calculate the errors. Our optimization methad., neither individual information nor aggregate infation
is based on genetic algorithms, and optimal solutions sarfas lost. Therefore the privacy is the worst, but the utility i
after many generations, so being able to compute error fastle best. On the other hand/, changes any original value
each generation is essential. into one of the three possible values witl8 probability each.
_ . This basically turns any information into uniformly distuted

B. Different RR Matrices random data, regardless of what individual and aggregation

Several specific RR matrices have been proposed in tgrmation is. Therefore, both individual information dan
literature. The first one is the Warner scheme [1], which W%gregate information of the origina| data are lost, which
originally developed for binary data. It can be easily edt&h means that privacy is perfectly preserved, but the datarbeco
for categorical data. It assigpdo all the diagonal elements of totally worthless. This example indicates that if we simpée
the matrix and2—% to all the non-diagonal elements. Anothepne criterion (either privacy or utility) to compare randaed
type of RR matrix is proposed by Agrawal et al. [2]. It is céllle response schemes(; and M/, are optimal for their respective
Uniform Perturbation (UP), in which each category value igiteria. They are obviously not what we are looking for.
retained with a probability; and replaced, with a probability | et P(M) represent the privacy of an RR matrid and
1 — g, by a value selected from a uniform distribution on ther(17) represent the utility ofi/. We define optimality as the
domain of category values. The third scheme is called FRARB|owing:
proposed by Agrawal and Haritsa [11]. Its diagonal elementspefinition 3.1: (Optimal RR Matrix) An RR matrix\/ is

are chosen according to the privacy requirement. The neatrigptimal if for any matrix)/’, one of the following conditions
of all these three schemes are described in the following: holds:

p = 1) P(M)= P(M') andU(M) = U(M");

M in the Warner scheme — H P , 2) Es\t}/least one ofP(M) andU (M) is better than that of
: Optimal RR matrices are not unique, and actually, there
1— 1—g should be many optimal RR matrices. For example, both
qJ{_qT T_q M, and M, in the above example are optimal. For these
M in UP = o a+ =5 ], two optimal solutions, it is obvious that they are useless
: : : for privacy-preserving data mining. However, for other RR
matrices, whether they are useful or not is less obvious. In
1 Al fact, the usefulness of an optimal solution depends on users
M in FRAPP = — «f 1A requirements on privacy and utility. It is more desirable to

provide a range of optimal matrices for users to choosegerath
i . i o than providing a single optimal matrix.

With all these different matrices, it is important to know gyen if the users need a single optimal RR matrix for certain
which one is better. More importantly, we would like to knowivacy or utility, they still need to find a set of optimal RR
whether any of these matrices is optimal, and if not, how Wgatrices. The reason is that it is difficult to decide all #hos
can find optimal RR matrices. The main objective of this papgir matrices with fixed privacy (or utility). Thus, we can not
is to answer these questions. search the set of RR matrices with fixed privacy (or utility) f
C. Finding Optimal RR Matrices an optimal RR matrix with the best utility (or privacy). lesid,
e have to search the set of RR matrices covering the whole

gtility (privacy) range for a set of optimal RR matrices and
then pick the optimal RR matrix with certain privacy (ugiit

The performances of privacy-preserving data mini
schemes are usually measured using two metpiggacy and

utility. Privacy measures how much oidividual information Therefore, we formulate the following probler@iven a
is protected, while utility measures how muchagjgregated data setD, ’find a set of optimal RR matrices that provide

;Wr!fohrma_tlon (e.ga d?ﬁl dlstrlbutlctm)bls tpreservizlq.t_Acmgvl a diversified coverage of privacy (or utilityyWe present our
'gh privacy :and Uutiity seems o be two COntlicing goaisq,) oy 1o this problem in the rest of this paper.

if one wants to increase utility, privacy usually gets worse It should be noted that the existing schemes described in
and vice versa. Therefore, it is unreasonable just to use Qe

iterion t giff t ori ing datani ction 11I-B do provide a diversified coverage (although no
g::lheerrlr?gso compare ditierent privacy-preserving datanimg necessarily optimal). For example, for the Warner scheme,

. - whenp = 1, we get the Identity matrix (the same a4,);
The following example demonstrates the conflicting natuwhenp — 1 we getM,. By changing the variableg,(q, and
. age . - 3, . ) ’
of r;rlwac;; and dUt;“ty'ttL.et;d\t/[l ar;;}:i f\h@ . t\t/vo d{ﬁerent RR M), each of the three schemes produces a set of solutions with
matrices for a data attribute wi ree categories. different privacy and utility. A closer look at these sotuti

1 00 % % % sets reveals the following theorem:
Mi=|( 01 0|, M= 7 33 Theorem 2:The solution sets for the Warner, UP, and
0 0 1 3 3 3 FRAPP schemes are identical.



IV. QUANTIFYING PRIVACY AND UTILITY Y, adversaries would like to find an (consistent) estimate
For each attribute of a data set, we u¥eto represent Xy, such that the expected accuracy score is maximized. The

the attribute variable of the original data; and we G5eo expected accuracy score can be computed using the following
represent the attribute variable of the disguised data. ¥ee dormula:

lower caser andy to represent an instance of these variables. g [G()/(;,X) Y] = Z G()/(;,X) -P(X|Y). (5)
Since we only consider one-dimensional RR schemes (i.e.,we Xeo

only co_nsider one attribyte at a tim_e), we can consider thatthis is actually theBayes Estimatethe theory of which
our entire data set consists of one single attribute. Theegal | only provides optimal estimates for a variety of accyrac

of this data set are instances of the attribute variablesuste functions@, but also provides a methodology to derive optimal

Xs =A{z1,...,on} andYs = {y1,...,yn} to represent the ggtimates for an arbitrargs. In this paper, we study one
original and disguised data sets, respectively, whéris the specific accuracy function:

number of records in each data set. We Gséo represent R

the domains ofX andY, whereC consists ofn categorical G()A( X) = 1, whenX = X;

values, represented ky, ..., c,. ’ 0, otherwise. (6)
As we have mentioned before, privacy measures how muc

of individual information can bestimatedrom the disguised

data, and utility measures how much of the original da%n

distribution (aggregate information) can estimatedrom the Theorem 3:For the accuracy functiod defined in Equa-

disguised data. We base our privacy and utility definition on . =L : :
estimation theories. tion (6), the optimal estimat&y for a givenY is the MAP

(maximum a posteriori) estimate, i.e.,

hThe intuitive meaning of the above function says that when
estimate is correct, the scorelisotherwise, the score is

A. Privacy Xy = argmazxcoP(X |Y) ()
Privacy quantification can be considered as the following Theorem 3 indicates that the MAP estimate is the best that
estimation problem: adversaries can achieve when their estimation is consisten
Problem 1: Given a disguised data s&t = {v1,...,yn} However, adversaries do not need to follow the consistency
and certain prior knowledge of the original d&fa adversaries constraints. For two data recordsand j with the same
would like to estimate the original value, from y;, for i = disguised valuey, the adversaries can usg to estimate
1,...,N. How accurate can their estimates be? the original value for record, and then use a different

The less accurate their estimates are, the higher privacyvislue z; to estimate that for record. We call such an
Therefore, to quantify privacy, we just need to quantify thestimationinconsistent estimatiomhe question is whether the
accuracy of the estimates. We define an accuracy functionadversaries can achieve a better expected accuracy vatue wi
to represent the accuracy score of an estimate (denotég)) byinconsistent estimation. The following theorem rules dnis t
against the actual value;,. G can be defined based on thepossibility:
nature of the data, as well as on the privacy requirements ofTheorem 4:Given the same prior information abodt, the
applications. With this function, the average accuracyescd inconsistent estimation is no better than the MAP estimate.

all the estimates can be computed in the following: From Theorem 3 and Theorem 4, we know that the MAP
N estimate is optimal. In other words, MAP estimate gives an
_ 1 ~ upper bound on what adversaries can achieve. Therefore, MAP
N &~ o estimate can be used to quantify the privacy.

We will derive th imal value ford which In Equation (5), the expected accuracy value is computed for
e will derive the optimal value forl, which represents , o icyjary over all X € C. To consider ally € C from

the best estimates that can be achieved by adversaries.lWelW disguised data set, we compute another expected value

then use this optimal result to quantify privacy. but this time, overY. This is the expected accuracy value

For the simplicity of explanation, we first consider consis . e entire disguised data. Namely, the valiefined in
tent estimates defined below. Later we extend to incon$isteéhuation (4) can be computed using the following formula

estimates. , L _rather than using the sample means:
Definition 4.1: (Consistent Estimation) We call an estima- -

tion is consistentif for any two observed datd = y; and A = Ey{Ex[G(Xy,X)|Y]}

Y =y;, y; = y;, their respective estimatas andz; are also = Z p()/(; |Y)- P(Y),

the same. yec

When estimates are consistent, for all the records that

share the same disguised vallie the estimates are always'/nereé Xy is the MAP estimate for an givert”. Using

the same. We us&y to represent this estimate. HoweverBayes rules, we can further simplify the above formula to
according to the randomized response technique, the sdhi following:

valueY” might be the disguised results of different values from A = Z P(Y | Xy) P(Xy).

C = {cy,...,c,}. To maximize accuracy, given a specific Yveo

4



The value ofA represents the average estimation accuracyTheorem 6:The Mean Squared Error (MSE) between

from adversary’s perspective; the largéris, the worse for P(X =¢;) and P(X = c¢;) can be computed by the fol-
privacy. Therefore, we define the privacy bs- A4, i.e., lowing:

Privacy =1— Y P(Y | Xy)- P(Xy). ®) MSE(X =c¢;) = E(P(X =c)— P(X =c))?
ree " 52 var(Y: 2 Cov( X, N
It should be noted that the above equation is an avera@ez BraVar(p) + _ Z o Brilg Covlrs 37 )
metric: in addition to the average privacy, data owners are S
often concerned about worst-case scenarios. To deal with tWhere 8y, is the g-th row andh-th column element of the
concern, we set an upper bound for the estimation accura(k%/_l’ and

n

of each data \f\l\ue as the following: Var(%) _ % P(Y = e)(1— P(Y =),
P(Xy |Y)<d for0<d <1 9) N: N, 1
Cov(5H =) = =~ - P(Y =) - P(Y = ¢;).

The smaller the upper bound is, the harder it takes they, mejgsure the utllity using the average MSE for all
adversaries to correctly estimate the original data. Hewev

this upper bound cannot be set to an arbitrary small value!
For example, if a value:, appears in the original data set Lo
with the_ probability 0f99%, no matter how the data_s_et IS Utility = — ZE(P(X = o) — P(X = ). (10)
randomized, the adversaries can always guess the origiteal d ni

values t(.) becy; therefore, th_e probab|lllty O.f being correct is It should be noted that since utility is defined based on mean
99%. This means that the highest estimation accuracy by t:rs]euared errors. the larger its value. the worse the utilit
adversaries cannot be less tHéx¥%. Actually, the upper bound q ' 9 ' Y-

O -

d (maxy P(Xy | Y)) is always larger than or equal to the V. EVOLUTIONARY MULTI-OBJECTIVE
prior distribution of X: - ) ) OPTIMIZATION L
Theorem 5:1f Xy is MAP estimatejnazy P(Xy | Y) > Equipped with Fhe privacy apd utility qganhﬂcatlon, we
maz x {P(X)}. search for the optimal RR matrices for a given data set. The
most straightforward search method is brute-force; namely
B. Utility we exhaustively compare all possible RR matrices. Let us

see how expensive it is: assume that a single-attribute data
t hasn category values, so there aré elements in an
R matrix. These elements have to satisfy two constraints:
) each element is betwedh and 1, and (2) the sum of
e elements in each column is If the range is discretized

In privacy-preserving data mining, data utility quantifie
how much of data distribution can be reconstructed.
consider this quantification also as an estimation proble
However, unlike the privacy quantification, we do not tr
to estimate individual values of the original data; instea L
we estimate aggregate information (i.e., distribution)ttod to O,bl_/d,t_Q/d,...f,llfor atposlltlve _mtegeFrzdF,z thetr?“mbe_r of .
original data. The estimation method used by the randomizt %mfollT:in?]r;ngct? ement values in an matrix 1S given in
response technique is already given by Equation (2). } : .

Let P(X) represent the distribution of the original data\lla:zaecé I:II:I{ (I)f le/‘zcg /Zlemelr}:t tcr)lfe?gtallQr?urr:l?grDéfC;nmE?n;?gnsf
X, and let P(X) represent the estimated distribution &f A

o d+n—1\"
based on the disguised data. From Theorem 1, we know tfeit the RR matrix is +Z .

the estimation method based on Equation (2) is an unbiasetthe number of combinations ‘can be very large even for
MLE estimate. Namely, the mean of the estim&teX) is the  an attribute with a small number of categories. For example,
same as the original distributidn(.X'). However, each specific jf ;, — 10 andd = 100, the number of combinations can be

estimateP(X) deviates fromP(X) to a certain degree. The1.98+10'26, which is infeasible to search. To reduce the search

—

closer P(X) is to P(X), the better the utility. Therefore, space, we resort to genetic algorithms.

we can use thélean Squared Errors (MSH)etweenP(X) Genetic algorithms define a scalar fitness function for each
and P(X) to quantify utility. MSE can be computed in thesolution; the ones with the best fitness value are optimat Th
following: approach is quite natural for a single-objective optinmarat
_ problem, but has difficulty dealing with multiple objects/e
MSE = E(P(X) - P(X))>. especially when these objectives are conflicting, suchibiy ut
— and privacy. A simple solution to extend a genetic algoritom

h Because thﬁ est_ima;re Is unbiellse.d, the meanr}]?(oXt)) Is a multiple-objective problem is to combine all the objeesv
the same as the origin&!(X). ReplacingP(XX) of the above . 5 single fitness function. However, there are a number

equation with the mean de(X.)’ we basigally getthe Yarianceof problems with this approach: first, it is difficult to find a
of P(X). Therefore, by applying the variance operation on thginction to combine these different objectives that refteet
both sides of Equation (2), we can get the following theoremature of the problem; second, it has been shown that the



approach cannot generate proper members of the optimal set  L: maximum number of iterations,
if the optimal front is concave [12]. Nq: size of the optimal set.
Evolutionary Multi-Objective Optimization (EMOQ) algo- Output: the optimal sef2

rithms have been developed to deal with multiple objectivekitialization: Generate an initial populatio@,

A comparison study has shown that SPEA2 outperforms and setly = Q = (.

other recent approaches in many well-known problems [1Repeat:

Therefore, we choose to use SPEA2. We customized it for our 1. Fitness assignmentCalculate fitness values of

search problem; moreover, we slightly modified the algarith RR matrices inQ; andV;

to improve the performance for our specific problem. 2. Environmental selection Select RR matrices
in @; andV; and copy them td/..

01d population Q, 01d archive V, 3. Mating selection Select promising RR matrices
certion © from V;,, for later evolution.
> 4. Crossover and mutation Apply crossover and
Environmental Selection . .. .
mutation operators to those promising RR matrices

iteration t+
o o \Mating selection, /o Ca i i
ri‘ssffffﬁflm and store the resulting RR matrices@h, ;.
° Meet the bound, 0

New population O o New archive Vs, 5. Meeting the bound Make each RR matrix
Op“mal s in the resulting populatiod);,; meet the bound
oo oo ’ maz{P(X|Y)} <=94.

6. Updating the three sets Update the resulting
population@:.1, archiveV;,; and the optimal set

Q. Increment the generation counter (t =t + 1).

A. Outline of Our SPEA2-based Algorithm 7. Termination: If the stopping criterion is _satisfied,

Similar to the evolution in the nature, SPEA2 iteratively stop and output the optimal sg% otherwise, go to
searches the optimal RR matrices using two sets of RR 1€ next iteration.
matrices: archive and population Archive is the initial set B. Fitness Assignment
for a generation (generated from the previous generatthe);  The quality of an RR matrix in a set can be quantified using
RR matrices in the archive set will evolve during the curremt fithess value, which is based on ttheminancerelationship
generation via crossover and mutation. The evolution tesutlefined below:
are put in a set calledopulation The archive set and the new Definition 5.1: (Dominance) An RR matrix\/; dominates
population set will be used to generate a new archive for tagother)M; if none of the properties (privacy and utility) of;
next generation. is worse than the corresponding properties)df; moreover,

To keep computation manageable, the sizes of populatidhleast one property a¥/; is better than the corresponding
and archive are fixed, so computation cannot grow out Bfoperty ofM;. We uselM; - M; to denote thab/; dominates
control. As a consequence, some good RR matrices will Bé;-
thrown away during the evolution when the population and When an RR matrix is dominated by another RR matrix,
archive sets become too “crowded”. To deal with this problerfhe former has a worse fitness value (higher quality) than the
we introduce a new set calleptimal sef which stores those latter. Accordingly, if an RR matrix is dominated by more
good RR matrices that are thrown away from each iteratioRR matrices, it also has a worse fitness value. When two RR
This set does not participate in the costly evolution precegnatrices are dominated by the same number of RR matrices,
instead, it is only used at the end of an iteration, in whible, t according to SPEA2, the RR matrices dominating the two RR
archive set (or the population set) and optimal set are usednatrices are further considered to discriminate the qaalif
update each other. This last step is quite efficient, contpari@e two. Among the two RR matrices, if one is dominated by
to the evolution process, so the size of the optimal set c@@me RR matrices, which dominate more RR matrices, and
be much larger than the sizes of population and archive. Adhg other is dominated by some RR matrices, which dominate
result, many good RR matrices can still be kept. The procdéyver RR matrices, the former has a worse fitness value than
of our SPEA2-based algorithm is illustrated in Figure 1. the latter.

We use@; and V; to represent the population and the Based on dominance relationship, SPEA2 definesmwa
archive of the'-th iteration or generation, respectively. We als§tnessfor each RR matrix in the archive and population sets.
use( to represent the optimal set. The initial populatiQp The calculation of raw fithess consists of two steps: firsthea
consists of a collection of randomly-generated RR matrice¥/; in the archiveV; and the populatior?); is assigned a
The initial archived, and optimal sef) are set to be empty. Strength values (A1), representing the number of RR matrices

Fig. 1. Our SPEA2-based algorithm

The iteration step is described in the following: dominated byM;, i.e.,

Algorithm Optimization for RR Matrices S(M;) = [{M;[M; € (Q¢ + V) and M; - M;},

Input: Ng: population size, where|.| is the cardinality of a set} means multiset union.
Ny : archive size, Second, based ofl values, the raw fithesg” (i) of an M; is



the sum of the strength of the RR matrices that domiddte matrices (the fithess values of which are less thiaare copied
from the archive and population sets to the new archiva:
F'(M;) = > S(M;).

M;eQ¢+Vy,M; =M,

When two RR matrices have the same raw fitness values, Vi1 = {M;|M; € (Q¢+ V;) andF(M;) < 1} (12)
another important factodiversity, is used to further discrim-
inate them. The use of diversity is based on the following Second, if|V;1| (the size of the new archive) is equal to
observation: users’ requirements on privacy (or utilitye a Ny, (the limit on archive size), the environmental selection
often diversified, so we would like the set of solutions tgtep is finished; otherwise, there can be two cases:

coveramde_range of pnvacy_(or utility). In ot.herworQS,tlrre 1) If |Visa| < Ny (ie., we do not have enough non-
search algorithm, we do not like to always pick solutionsrfro dominated RR matrices)y Viy1| dominated RR

H : YV t+1
a dense area. SPEA2 measures the dens_lty of ea(_:h solution. matrices with the best fitness values are copied from the
The density for an RR matrix is a (decreasing) function of the archive and population sets to the new archive
distance to the k-th nearest data point, denotedagk is 2) If [Via| > Ny (ie., we have too many non-dominated

usually set tol in practice): RR matrices), some non-dominated RR matrices will
d(M;) = 1 be removed iteratively from the new archive, ; until
Yk 2 [Vi41] = Ny. At each iteration, to maintain diversity,

. . . an RR matrix is removed if, among all the RR matrices
where 2 is added to ensure that the denominator value is . . . .
in Vi41, it has the shortest distance to its nearest

greater than zero and thét)/;) < 1 (this ensures that density . .
only makes a difference when two RR matrices have the  (ETROT B SirE R MOIEES BAVE 8 SEEE SR
same raw fitness value, because the difference of two differe ! 9

are considered, and so on.

fitness values is always greater than or equal)to
Figure 2 illustrates the use of density using an example.The worst run-time complexity of the environmental selec-

In the figure, three RR matricedls, M, and M; have the tion is dominated by the removal process, whiclDi§ N +
same raw fitness (they are not dominated by any solution)Nv)?).

Because\/; has a shorter distance to its nearest neighbor than

M, and Mj, it has a higher density value; thereford; has Mating Selection

a worse fitness value thal, and M5.
After the new archive is constructed, RR matrices are

selected from the archive to fill a pool calledating pool

% At each selection step, two RR matrices are randomly picked

3 » from the new archive, the one with the better (lower) fithess

i Ul”ﬂ S value wins and is copied to the mating pool. This procedure,

= & calledbinary tournament selectiois repeated until the mating

= pool is full. If the size of mating pool isVy,, the run-time

=] . . o ) .
Privacy (> Better ) complexity of mating selection i©(N;,). All the matrices in

the mating pool are callegarents
Fig. 2. Compare the quality aifs, Ma, Ms
] ) ) ] E. Crossover
Based on dominance and diversity, the fitn€%d/;) of an

RR matrix M; is defined as the sum of densityM/;) and raw To mimic the mating in evolution, a crossover operator
fitnessF’(M;): is applied to the mating pool. Before we do crossover, we

, randomly pair the RR matrices in the mating pool; each pair
F(M;) = F'(M;) + d(M;). (11) is then used as parents to produce two new RR matrices

From the above computations, the lower fitness an RR matff@!led children) using crossover, i.e., the parents exchange

has, the higher quality it has. The running time for assignir?ome columns qf their matrices. .S.ince the sum of elements
fitness to all RR matrices is dominated by the density calclit each column id, not every position can be chosen as the

i 2 crossover position. Instead, we randomly pick a line deiigi
lation O((Ng + Nv)*log(Ng + Nv))- two neighbporing columns. all elements gnpthe right sidengf th
C. Environmental Selection line are swapped (between the two parent RR matrices). The

After each RR matrix is assigned a fitness value, highwo resulting RR matrices become the children. For example,
guality RR matrices are selected from the old population aimd Figure 3, after the crossover, the two parehfs and M,
archive sets, and they are stored in a new archive of the nprbduce two children/; and M. The run-time complexity
generation. This process is calledvironmental selectiomhe is O(n?), wheren is the number of columns (or rows) in an
process consists of two steps: first, all hon-dominated RFR matrix.



L Pl of the population and archive sets have to be limited. Conse-
" I II I " I IH H quently, when the population and archive become “crowded”,
— - o e many good RR matrices will be discarded during the evolution
Column1 | Comy'n__y Cofima 1 Cotunn To deal with the problem, we us@ to store those good
H HH H Crosover H HI I RR matrices that are discarded in each iteratidrdoes not
M,
M,

Column Column Column Column

participate in the costly environmental selection procéss
involved only in the updating process depicted below.

In 2, those good RR matrices are indexed by their privacy
values. For example, if the size @&® is 1000, the good
RR matrix with privacy value0.1523 can be stored in the
152th element. According to the indexing, after the mutation
E Mutation operation, each RR matrix iQ;, 1 andV,, is compared with

After the crossover, we apply the mutation operator s corresponding RR matrix iff. The RR matrices with better
modify RR matrices. Mutation changes small parts of autility values in one set are used to update the correspgndin
RR matrix according to a given mutation rate. In generadRR matrices in the other set. The updating tal&7o + Ny )
mutation only changes an arbitrary bit in a genetic sequerit@e.

(RR matrix) with a small probability; however, to ensurettha Because the run-time complexity does not depend on the
a mutated matrix is still an RR matrix, our mutation operataize of(2, we can sef? as large as the memory allows, such
changes a column, rather than a bit. We first randomly selébat as many good RR matrices as possible can be stored. After
a column, and then add (or subtract) a small random positivedating$2, Q.1 or V41, we can always use the good RR
value 1) to an arbitrary element (denoted By ;) in the matrices to evolve (selecting, mating, crossover and nauat
selected column. Because all elements in an RR matrix shoMhen(2 is output as the set of optimal RR matrices, the users
be non-negative, the added value should be less than or eq#l get more detailed spectrum of the optimal RR matrices
to 1 — 6, ; while the subtracted value should be less than r making choices.

equal to; ;. To satisfy the RR matrix constraint (i.e., the sum Using €2 to store a wider spectrum of the optimal RR
of each column in any RR matrix i), certain values should matrices can only be employed for problems with a few
be subtracted from or added to other elements of the sant@ectives, because the number of optimal RR matrices will
column. increase exponentially with the increment of the number of

Because we consider that a characteristic of a good RRjectives, i.e., the size of the needed memory to store the
matrix is represented by the correlations among the elesmeaptimal matrices will increase exponentially.
of a column in the RR matrix, we do not want the mutatio? Terminati
to destroy the characteristic. To maintain it, we change all ermination
other elements in the column in the following way: if the first There are several ways to decide the termination criterion.
changed element is obtained by addition, the subtractettgalOne way is to set a limit on the number of generations
from all other elements are proportional to the correspogdithat RR matrices can evolve. Another way is to specify a
element values. If it is obtained by subtraction, the addéareshold for the number of consecutive generations that do
values to all other elements are proportionallteninus the Not modify 2 (i.e., the evolution makes no progress during
corresponding element values. The run-time complexityhef tthese generations). When the criterion is met, the optintal se

Crossover line

Fig. 3. Crossover operation dhparent RR matrices

mutation isO(n). Q2 is output as the set of optimal RR matrices.
. ] Our scheme is based on SPEA2 but differs from it in three
G. Meeting the Privacy Bound aspects. First, our scheme adopts the optimafsehich can

After the mutation step, we want to make sure that tg,en much more optimal RR matrices than SPEA2 without
largest posterior probability>(X[Y) is less than the UpPerncreasing the computation complexity. Second, our chaEso

boundd. What we do is similar to that in the mutation. Wenethod is specific for RR matrices because of the constraints
decrease the elements which make #eX|Y') too large in @ ot our problem. Third, we use a novel mutation approach

column and increase the other elements in the same CO'“’H{)'which the correlations among most elements could be
The increased value is proportional to the maximal valyg,intained when an RR matrix is mutated.

added to the element to achieve the bound~or example,
if the current element; ; can be changed t6; ; to make VI. EXPERIMENTS
P(X = ¢|Y = ¢;) = 6, the added value t; ; is proportional A, Using Pareto Fronts

: ;o7 .
to the differencé; ; — ;. The updating cost for one column multi-objective optimization, the set of optimal satuts

is O(n). is called thePareto optimal sef14]. The Pareto optimal set is
H. Updating the Three Sets often plotted in the objective space (e.g. in our case, theep
Because the run-time complexity of the environmental seensists of utility and privacy), and the plot is called fPareto
lection is cubic of the size of the population and the archivéont. By plotting the Pareto fronts for different schemes on
to prevent computation costs from getting too high, thessizéhe same figure, we can compare which schemes are better.
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Fig. 4. For normal distribution with different

In our optimization problem, each RR-matrix-generatioiVe use DELL precision 340 (2.65Ghz CPU and 512M RAM)
scheme decides a Pareto front in a two-dimensional space ta&onduct our experiments. It takes aboRtminutes to finish
use the privacy objective as the x-axis and the utility ofijec each experiment.
as the y-axis). We can draw a Pareto froqt for each of thel) For Different Privacy Bounds: We first show the
Warner, FRAPP, UP, and our schemes. Difference of these’ . o

experimental results for data sets from normal distrilutio

schemes can be illustrated by their Pareto fronts. For ebamp . . . T )
if a Pareto front of schemel is consistently below that of using different privacy bounds in Figure 4. From the figure,

- ) . with the increment ofd, the Pareto fronts of our results
schemel within a privacy range, we can tell thal is better cover a larger range of the privacy than the Warner scheme
than B in that range, because to achieve the same degre Y g 9 P y ’

privacy within the ranged always has a smaller mean squar amely, when the worst-case bound on privacy 1s set_to
error, the metrics used for measuring utility g: 0.620.7, 0.8,0.9, Warner scheme cannot f|nd.an RR m_atrlx
' ' with privacy less thar0.6,0.5,0.4,0.22, respectively, while

our scheme can find an RR matrix with privacy close to
. 0.4,0.3,0.22,0.17. Moreover, our scheme achieves a lower

We would like to compare th.e Warner [1], FRAPP [11]y,qe (better utility) than the Warner scheme when the RR
UP [2] schemes with ours using Pareto fronts. HOWeVeh ices are compared in the same privacy range. Therefore,
Theorem 2 indicates that the Pareto fronts for the' Vyarnarf LH% matter whats we choose, our scheme always achieves
and FRAPP schemes are the same. Therefore, it is suffiCigler performance than the Warner scheme. Although we only
to just compare our scheme with the Warner scheme. g,y the results for normal distribution, the trends witspet

For the Warner scheme, we let th_e diagonal element valygSyitterent s are similar for other distributions.
(denoted byp) change from0 to 1 with a small step length
of 0.001; accordingly we set the non-diagonal element values2) For Different Distribution: To study how different data
(based on the Warner scheme, these valueglarep)/(n — distributions affect our results, we sét= 0.75 and conduct
1), wheren is the number of categories). This way, we cafxperiments using the gamma and uniform distributions. We
generatel 001 different RR matrices. For a given dataset, WgO not show the results with othérvalues because the trends
can calculate the utility and privacy values for each of ¢hed@re similar to those for normal distribution in Figure 4.

RR matrices. After removing those non-optimal solutions, w,

n(%) Gamma Distribution For the gamma distribution, we have
can plot a Pareto front for the Warner scheme. For our sche . .
cohducted experiments for differentand 5 values ¢ and

we conduct the SPEA2-based algorithm for the same datagreé parameters of the gamma distribution). We only depit th

to obtain an optimal set of RR matrices. We let the iteratiolgareto fronts using: = 1.0 and 3 = 2.0 in Figure 5(a); other

stops after_|t loop20, 000 times. We also plot the Pareto fronta andg values have similar results. The figure shows that, for
for our optimal set.

. data based on gamma distribution, our scheme outperforms
We have conducted our experiments for two types of datt : g ' P

. : ‘e Warner scheme in the entire privacy range. In particular
synthetic and real data. The synthetic data sets are geder%t . .
. A . ur scheme has about two times larger privacy range than the
from various distributions. The real data set is #hdult data gerp y rang

set from the UCI Machine Learning Repository [15]. wk?ér;etrh(ic;r?vrggya:/r;?uga}z Ing:eL:Ctu a?gtzter performance than it

B. Methodology

C. Experiments On Synthetic Dataset (c) Uniform Distribution For the uniform distribution, the

To study how different distributions affect the performancPareto fronts of the Warner scheme and ours are plotted in
of the Warner scheme and our scheme, we randomly genefi@igure 5(b). Similar to other distributions, our scheme can
a single-dimensional data set td, 000 records. There aré0  find much better RR matrices than the Warner scheme. An
different category values in these records; the probghift exception is that our scheme covers the same privacy range as
the categories in the data set follows a specific distrilputiothe Warner scheme.
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D. Experiments On Real Data

Learning Repository [15]. The Adult data set hasattributes,

including both categorical and continuous attributes. Wée d

Utility (Mean Square Error)

(c) For the first attributes
of Adult data set
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(d) Using the estima-
tion error by iterative ap-
proaches as utility

For synthetic data and real data, and for the itexadpproach.

work, we plan to extend our approach to the multi-dimendiona
For real data, we use the Adult data from the UCI Machirf@ndomized response technique.

cretize those continuous attributes in order to apply the ra
domized response technique. Because of the page limitation
we only show the results for the first attributes in Figure)5(c
the results for the other attributes have shown a similar

trend. The results clearly show that our scheme consigtentis]

outperforms the Warner scheme for all the attributes in the

Adult data set. With the same DELL computer, it takes abouy]

10 minutes to finish the experiment.

E. Use the Iterative Approach

. . . [5]
In this experiment, we want to see whether the optimal set

found in our scheme outperforms the Warner matrices if the
iterative approach [2] is used to estimate the original dat
distribution. We use the same data set from gamma distoibuti
of « = 1.0 and 8 = 2.0 and the same optimal set of RR

matrices as those in Figure 5(a). Instead of using the yutilit
defined in Equation (10), we conduct the iterative approac
to estimate the original distribution, and then calculdte t
mean square error (MSE) between the estimation and tﬂse]
original distribution. The results are plotted in Figured}s(

The figure shows that our scheme still outperforms Warner

i . i 19
scheme; namely our scheme has a wider privacy range al

a much lower MSE (or higher accuracy) than the Warner

scheme. Using other data sets, we get the similar results.

VIl. CONCLUSION

In this paper, based on estimate theories, we provide[ia]

(10]

method to quantify privacy and utility for the randomized

response technique. We then apply an evolutionary mulﬂz]

objective optimization technique to search for optimal RR

matrices. We have conducted an extensive evaluation on our
method. The evaluation shows that our scheme achieves mygh

‘17]
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