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Abstract— The randomized response (RR) technique is a
promising technique to disguise private categorical data in
Privacy-Preserving Data Mining (PPDM). Although a number of
RR-based methods have been proposed for various data mining
computations, no study has systematically compared them to find
optimal RR schemes. The difficulty of comparison lies in the fact
that to compare two PPDM schemes, one needs to consider two
conflicting metrics: privacy and utility. An optimal scheme based
on one metric is usually the worst based on the other metric.

In this paper, we first describe a method to quantify privacy
and utility. We formulate the quantification as estimate problems,
and use estimate theories to derive quantification. We then use an
evolutionary multi-objective optimization method to find optimal
disguise matrices for the randomized response technique. The
experimental results have shown that our scheme has a much
better performance than the existing RR schemes.

I. I NTRODUCTION

The increasing concerns over privacy have introduced many
challenges in data mining. In most scenarios, data are first
collected from individuals or different data owners, and data
mining technologies are then applied to these data to extract
useful knowledge. However, due to privacy concerns, more
and more data owners become unwilling to share their data.
This new challenge motivates a field called Privacy-Preserving
Data Mining (PPDM).

Randomization is one of the promising approaches in
privacy-preserving data mining. With this approach, original
data are first disguised before being released to data collectors.
Randomization-based disguise protects the private information
of individuals, while still allowing the aggregated information
(e.g., data distribution and patterns) to be preserved with
reasonable accuracy. We useprivacy to refer to the degree of
preservation on individual information; the higher the degree,
the worse the privacy. We useutility to refer to the degree
of preservation on the aggregated information; the higher the
degree, the better the utility. Both privacy and utility are
critically important for PPDM.

Randomized response (RR) is one of the randomization
techniques that have been extensively studied in the PPDM
community. The RR technique for binary data was first intro-
duced by Warner [1] in 1965; it can be extended to general
categorical data [2]. In the RR technique, each sensitive
data item is probabilistically replaced by another value. The
probability of replacing a valueci with another valuecj is
captured by a transformation matrixM ; M is called anRR
matrix in this paper.

Privacy and utility of the randomized response technique
depend on RR matrices. However, although a number of RR-
based schemes have been proposed for various data mining
computations [3]–[6], not much effort has been put on the se-
lection ofM . It is not even clear how to compare different RR
matrices, much less finding an optimalM for the randomized
response technique. The difficulty is caused by the conflicting
nature of privacy and utility; it is not fair to compare different
RR matrices only based on privacy or utility. Both aspects
need to be considered.

We formulate the above problem as a multi-objective opti-
mization problem. Unlike a single-objective optimizationprob-
lem, we have two objectives: privacy and utility. A solutionis
optimal if it is not dominatedby any other solutions; namely
no other solutions are better than an optimal solution. Such
optimal solutions are not unique; we can have a set of optimal
solutions, each corresponding to a different RR matrix. We
call these matrices optimal RR matrices.The objective of this
paper is to find an optimal set of RR matrices. Moreover,
to satisfy diversified requirements (application dependent) on
privacy (or utility), we would like the optimal set tocover a
broad range of privacy (or utility).

To find optimal solutions, we need to first quantify pri-
vacy and utility. We consider the quantification as estimation
problems. For privacy, we quantify how accurately adversaries
can estimate the original data (individual data items) fromthe
disguised data. We prove that the best adversaries can do is
to use Bayes estimate. We then use the Bayes estimate to
quantify privacy. For utility, we quantify how accurately we
can estimate the distribution (aggregate information) of the
original data, also from the disguised data. There are a number
of ways to measure such an estimate. We choose to use the
Mean Square Error (MSE), which is the same as the variance
of the estimate in randomized response.

Based on our metrics, we can search for optimal RR
matrices. The brute-force method is infeasible due to the large
search space even for a categorical attribute with as few as 10
categories. We use an improved Evolutionary Multi-Objective
Optimization (EMOO) method to find optimal RR matrices.
Our solutions have shown a significant improvement over the
RR matrices used by existing work.

The rest of this paper is organized as follows. In Section II,
we review the related work. We then formulate our problem
in Section III. After describing how to quantify privacy and
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utility in Section IV, we describe our solution in Section V
and our evaluation results in Section VI. Finally, we draw the
conclusions and outline the future work in Section VII.

II. RELATED WORK

Randomization is one of the approaches in achieving
privacy-preserving data mining. Two classes of randomization
methods have been extensively studied in the literature: Ran-
dom Perturbation and Randomized Response.

Random perturbation is primarily used for quantitative
data, first explored by Agrawal and Srikant [7]. Agrawal
and Aggarwal later improve the distribution reconstruction
method using Expectation Maximization (EM) algorithm [8].
Kargupta et al. [9] and Huang et al. [10] point out that arbitrary
randomization can reveal significant amount of information
under certain conditions, especially when the attributes of data
are highly correlated.

Randomized Response (RR) is primarily used for cate-
gorical data. Its basic idea was proposed by Warner [1].
RR disguises data by probabilistically changing the value
of a sensitive attribute to another value. Similar to random
perturbation, the distribution of the original data can also
be reconstructed using the disguised data. Based on the
RR technique, Rizvi and Haritsa propose a scheme to mine
association rules from disguised data [3]; Evfimievski et al.
propose a different approach to conduct privacy-preserving
association rule mining [4]; Du and Zhan propose a scheme to
conduct privacy-preserving decision tree building [5]. Agrawal
et al. study how to optimize the efficiency of the distribution
reconstruction process [6].

There is a lack of effort in finding the optimal randomized
response matrices. Agrawal and Haritsa took an initial step
towards this direction [11]. They discuss how to find optimal
RR matrices. However, the proposed scheme only tries to find
optimal RR matrices among symmetric matrices. Moreover,
when comparing different RR matrices, it only chooses ac-
curacy as the comparison criterion. Our work is different in
two aspects: first, we search among both symmetric matrices
and asymmetric matrices; second, we use both accuracy and
privacy as our criteria when comparing two different RR
matrices. We formulate the problem as a multi-objective
optimization problem. More importantly, our solution achieves
better results than that in [11].

III. R ANDOMIZED RESPONSE(RR)
The Randomized Response (RR) technique is mainly used

for randomizing categorical data. In this paper, we useC to
represent the domain of the data attribute that needs to be
disguised. This attribute domain containsn different values
(or categories), denoted by{c1, c2, . . . , cn}. Note that the
randomized response technique can be extended to multi-
dimensional, i.e., the techniques are applied to several di-
mensions altogether. However, in this paper, for the sake of
simplicity, we focus on one-dimensional RR; namely, we apply
RR for each dimension independently.

A. The General RR Technique

The basic idea of the randomized response technique is to
replace eachci in the original data set with another valuecj

with a certain probability. We useθj,i to denote the probability
that a categoryci is randomized tocj , wherei, j = 1, . . . , n.
We use P ∗(ci) to represent the probability ofci in the
disguised data, andP (ci) to represent the probability ofci

in the original data.
Let

−→
P ∗ = (P ∗(c1), P

∗(c2), . . . , P
∗(cn))T , and

−→
P =

(P (c1), P (c2), . . . , P (cn))T . Let M be the following matrix:

M =




θ1,1 . . . θ1,n

...
.. .

...
θn,1 . . . θn,n


 .

We can easily derive the following equation:
−→
P ∗ = M

−→
P . (1)

In the above equation,
−→
P , the distribution in the original

data set, is what we are trying to find out;
−→
P ∗, the distribution

of the disguised data, can be estimated using the frequency of
each category in the disguised data. LetNi (i = 1, ..., n) be the
number ofci’s in the disguised data andN be the total number
of records in the data set. We have the MLE (Maximum

Likelihood Estimate) ofP ∗, which is
−̂→
P ∗ = (N1

N
, . . . , Nn

N
)T . If

M is invertible, we substitutê
−→
P ∗ for

−→
P ∗ in Equation (1), solve

the equation and get the estimate of
−→
P . The estimate is an

unbiased MLE. These are ensured by the following theorem1.
Theorem 1:The MLE (Maximum Likelihood Estimate) of

−→
P ∗ is

−̂→
P ∗ = (N1

N
, . . . , Nn

N
)T . If M is invertible, the unbiased

MLE of
−→
P is

−̂→
P = M−1

−̂→
P ∗. (2)

Intuitively speaking, the above theorem indicates that when
the number of records in the disguised data is large enough,
the estimated distribution derived from Equation (2) is very
close to the original distribution.

The above estimation approach uses matrix inversion and is
thus called theinversion approach. Agrawal et al. proposed an
iterative approachto estimate the original distribution [2]: let
the initial distributionP (X = ci)

0 for i = 1, ..., n be some
non-negative values but

∑n

i=0
P (X = ci)

0 = 1 (at step0)
and run the following iterative process (at stepk):

P (X = ci)
k+1 =

n∑

i=1

P ∗(X = ci)
θi,jP (X = cj)

k

∑n

j=1
θi,jP (X = cj)k

. (3)

The above iteration stops until two consecutiveP (X) are close
enough. If it stops after steps, the P (X = ci)

s+1 for i =
1, ..., n is the estimated distribution.

We decide to use the inversion approach in our optimization
algorithm for the following reason: the inversion approachgive
us a close-form formula to quantify the estimation error, but
for the iterative approach, getting the errors takes a much

1The proofs of all theorems are omitted due to the page limitation.
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longer time, because we have to finish the iterative process
before we can calculate the errors. Our optimization method
is based on genetic algorithms, and optimal solutions surface
after many generations, so being able to compute error fast at
each generation is essential.

B. Different RR Matrices

Several specific RR matrices have been proposed in the
literature. The first one is the Warner scheme [1], which was
originally developed for binary data. It can be easily extended
for categorical data. It assignsp to all the diagonal elements of
the matrix and1−p

n−1
to all the non-diagonal elements. Another

type of RR matrix is proposed by Agrawal et al. [2]. It is called
Uniform Perturbation (UP), in which each category value is
retained with a probabilityq and replaced, with a probability
1 − q, by a value selected from a uniform distribution on the
domain of category values. The third scheme is called FRAPP,
proposed by Agrawal and Haritsa [11]. Its diagonal elements
are chosen according to the privacy requirement. The matrices
of all these three schemes are described in the following:

M in the Warner scheme =




p 1−p
n−1

. . .
1−p
n−1

p . . .
...

...
.. .


 ,

M in UP =




q + 1−q
n

1−q
n

. . .
1−q
n

q + 1−q
n

. . .
...

...
. . .


 ,

M in FRAPP =
1

λ + n − 1
∗




λ 1 . . .
1 λ . . .
...

...
. ..


 .

With all these different matrices, it is important to know
which one is better. More importantly, we would like to know
whether any of these matrices is optimal, and if not, how we
can find optimal RR matrices. The main objective of this paper
is to answer these questions.

C. Finding Optimal RR Matrices

The performances of privacy-preserving data mining
schemes are usually measured using two metrics:privacy and
utility. Privacy measures how much ofindividual information
is protected, while utility measures how much ofaggregated
information (e.g. data distribution) is preserved. Achieving
high privacy and utility seems to be two conflicting goals:
if one wants to increase utility, privacy usually gets worse,
and vice versa. Therefore, it is unreasonable just to use one
criterion to compare different privacy-preserving data mining
schemes.

The following example demonstrates the conflicting nature
of privacy and utility. LetM1 and M2 be two different RR
matrices for a data attribute with three categories:

M1 =




1 0 0
0 1 0
0 0 1


 , M2 =




1

3

1

3

1

3
1

3

1

3

1

3
1

3

1

3

1

3


 .

M1 is the Identity matrix; it does not disguise data at all,
i.e., neither individual information nor aggregate information
is lost. Therefore the privacy is the worst, but the utility is
the best. On the other hand,M2 changes any original value
into one of the three possible values with1/3 probability each.
This basically turns any information into uniformly distributed
random data, regardless of what individual and aggregation
information is. Therefore, both individual information and
aggregate information of the original data are lost, which
means that privacy is perfectly preserved, but the data become
totally worthless. This example indicates that if we simplyuse
one criterion (either privacy or utility) to compare randomized
response schemes,M1 andM2 are optimal for their respective
criteria. They are obviously not what we are looking for.

Let P (M) represent the privacy of an RR matrixM and
U(M) represent the utility ofM . We define optimality as the
following:

Definition 3.1: (Optimal RR Matrix) An RR matrixM is
optimal if for any matrixM ′, one of the following conditions
holds:

1) P (M) = P (M ′) andU(M) = U(M ′);
2) at least one ofP (M) and U(M) is better than that of

M ′.
Optimal RR matrices are not unique, and actually, there

should be many optimal RR matrices. For example, both
M1 and M2 in the above example are optimal. For these
two optimal solutions, it is obvious that they are useless
for privacy-preserving data mining. However, for other RR
matrices, whether they are useful or not is less obvious. In
fact, the usefulness of an optimal solution depends on users’
requirements on privacy and utility. It is more desirable to
provide a range of optimal matrices for users to choose, rather
than providing a single optimal matrix.

Even if the users need a single optimal RR matrix for certain
privacy or utility, they still need to find a set of optimal RR
matrices. The reason is that it is difficult to decide all those
RR matrices with fixed privacy (or utility). Thus, we can not
search the set of RR matrices with fixed privacy (or utility) for
an optimal RR matrix with the best utility (or privacy). Instead,
we have to search the set of RR matrices covering the whole
utility (privacy) range for a set of optimal RR matrices and
then pick the optimal RR matrix with certain privacy (utility).

Therefore, we formulate the following problem:Given a
data setD, find a set of optimal RR matrices that provide
a diversified coverage of privacy (or utility). We present our
solution to this problem in the rest of this paper.

It should be noted that the existing schemes described in
Section III-B do provide a diversified coverage (although not
necessarily optimal). For example, for the Warner scheme,
when p = 1, we get the Identity matrix (the same asM1);
whenp = 1

3
, we getM2. By changing the variables (p, q, and

λ), each of the three schemes produces a set of solutions with
different privacy and utility. A closer look at these solution
sets reveals the following theorem:

Theorem 2:The solution sets for the Warner, UP, and
FRAPP schemes are identical.
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IV. QUANTIFYING PRIVACY AND UTILITY

For each attribute of a data set, we useX to represent
the attribute variable of the original data; and we useY to
represent the attribute variable of the disguised data. We use
lower casex andy to represent an instance of these variables.
Since we only consider one-dimensional RR schemes (i.e.,we
only consider one attribute at a time), we can consider that
our entire data set consists of one single attribute. The values
of this data set are instances of the attribute variables. Weuse
Xs = {x1, . . . , xN} and Ys = {y1, . . . , yN} to represent the
original and disguised data sets, respectively, whereN is the
number of records in each data set. We useC to represent
the domains ofX and Y , whereC consists ofn categorical
values, represented byc1, . . . , cn.

As we have mentioned before, privacy measures how much
of individual information can beestimatedfrom the disguised
data, and utility measures how much of the original data
distribution (aggregate information) can beestimatedfrom the
disguised data. We base our privacy and utility definition on
estimation theories.

A. Privacy

Privacy quantification can be considered as the following
estimation problem:

Problem 1: Given a disguised data setYs = {y1, . . . , yN}
and certain prior knowledge of the original dataX, adversaries
would like to estimate the original valuexi from yi, for i =
1, . . . , N . How accurate can their estimates be?

The less accurate their estimates are, the higher privacy is.
Therefore, to quantify privacy, we just need to quantify the
accuracy of the estimates. We define an accuracy functionG
to represent the accuracy score of an estimate (denoted byx̂i)
against the actual valuexi. G can be defined based on the
nature of the data, as well as on the privacy requirements of
applications. With this function, the average accuracy score of
all the estimates can be computed in the following:

A =
1

N

N∑

i=1

G(x̂i, xi). (4)

We will derive the optimal value forA, which represents
the best estimates that can be achieved by adversaries. We will
then use this optimal result to quantify privacy.

For the simplicity of explanation, we first consider consis-
tent estimates defined below. Later we extend to inconsistent
estimates.

Definition 4.1: (Consistent Estimation) We call an estima-
tion is consistentif for any two observed dataY = yi and
Y = yj , yi = yj , their respective estimateŝxi and x̂j are also
the same.

When estimates are consistent, for all the records that
share the same disguised valueY , the estimates are always
the same. We usêXY to represent this estimate. However,
according to the randomized response technique, the same
valueY might be the disguised results of different values from
C = {c1, . . . , cn}. To maximize accuracy, given a specific

Y , adversaries would like to find an (consistent) estimate
X̂Y , such that the expected accuracy score is maximized. The
expected accuracy score can be computed using the following
formula:

EX [G(X̂Y ,X) | Y ] =
∑

X∈C

G(X̂Y ,X) · P (X | Y ). (5)

This is actually theBayes Estimate, the theory of which
not only provides optimal estimates for a variety of accuracy
functionsG, but also provides a methodology to derive optimal
estimates for an arbitraryG. In this paper, we study one
specific accuracy function:

G(X̂,X) =

{
1, when X̂ = X;

0, otherwise. (6)

The intuitive meaning of the above function says that when
an estimate is correct, the score is1; otherwise, the score is
0.

Theorem 3:For the accuracy functionG defined in Equa-
tion (6), the optimal estimatêXY for a givenY is the MAP
(maximum a posteriori) estimate, i.e.,

X̂Y = argmaxX∈CP (X | Y ) (7)
Theorem 3 indicates that the MAP estimate is the best that

adversaries can achieve when their estimation is consistent.
However, adversaries do not need to follow the consistency
constraints. For two data recordsi and j with the same
disguised valuey, the adversaries can usexi to estimate
the original value for recordi, and then use a different
value xj to estimate that for recordj. We call such an
estimationinconsistent estimation. The question is whether the
adversaries can achieve a better expected accuracy value with
inconsistent estimation. The following theorem rules out this
possibility:

Theorem 4:Given the same prior information aboutX, the
inconsistent estimation is no better than the MAP estimate.

From Theorem 3 and Theorem 4, we know that the MAP
estimate is optimal. In other words, MAP estimate gives an
upper bound on what adversaries can achieve. Therefore, MAP
estimate can be used to quantify the privacy.

In Equation (5), the expected accuracy value is computed for
a particularY over all X ∈ C. To consider allY ∈ C from
the disguised data set, we compute another expected value,
but this time, overY . This is the expected accuracy value
for the entire disguised data. Namely, the valueA defined in
Equation (4) can be computed using the following formula,
rather than using the sample means:

A = EY {EX [G(X̂Y ,X) | Y ] }

=
∑

Y ∈C

P (X̂Y | Y ) · P (Y ),

where X̂Y is the MAP estimate for an givenY . Using
Bayes rules, we can further simplify the above formula to
the following:

A =
∑

Y ∈C

P (Y | X̂Y ) · P (X̂Y ).
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The value ofA represents the average estimation accuracy
from adversary’s perspective; the largerA is, the worse for
privacy. Therefore, we define the privacy as1 − A, i.e.,

Privacy = 1 −
∑

Y ∈C

P (Y | X̂Y ) · P (X̂Y ). (8)

It should be noted that the above equation is an average
metric; in addition to the average privacy, data owners are
often concerned about worst-case scenarios. To deal with this
concern, we set an upper bound for the estimation accuracy
of each data value as the following:

P (X̂Y | Y ) ≤ δ for 0 < δ < 1. (9)

The smaller the upper bound is, the harder it takes the
adversaries to correctly estimate the original data. However,
this upper bound cannot be set to an arbitrary small value.
For example, if a valuecq appears in the original data set
with the probability of99%, no matter how the data set is
randomized, the adversaries can always guess the original data
values to becq; therefore, the probability of being correct is
99%. This means that the highest estimation accuracy by the
adversaries cannot be less than99%. Actually, the upper bound
δ (maxY P (X̂Y | Y )) is always larger than or equal to the
prior distribution ofX:

Theorem 5:If X̂Y is MAP estimate,maxY P (X̂Y | Y ) ≥
maxX{P (X)}.

B. Utility

In privacy-preserving data mining, data utility quantifies
how much of data distribution can be reconstructed. We
consider this quantification also as an estimation problem.
However, unlike the privacy quantification, we do not try
to estimate individual values of the original data; instead,
we estimate aggregate information (i.e., distribution) ofthe
original data. The estimation method used by the randomized
response technique is already given by Equation (2).

Let P (X) represent the distribution of the original data
X, and let P̂ (X) represent the estimated distribution ofX
based on the disguised data. From Theorem 1, we know that
the estimation method based on Equation (2) is an unbiased
MLE estimate. Namely, the mean of the estimatêP (X) is the
same as the original distributionP (X). However, each specific
estimateP̂ (X) deviates fromP (X) to a certain degree. The
closer P̂ (X) is to P (X), the better the utility. Therefore,
we can use theMean Squared Errors (MSE)betweenP̂ (X)
and P (X) to quantify utility. MSE can be computed in the
following:

MSE = E(P̂ (X) − P (X))2.

Because the estimate is unbiased, the mean of̂P (X) is
the same as the originalP (X). ReplacingP (X) of the above
equation with the mean of̂P (X), we basically get the variance
of P̂ (X). Therefore, by applying the variance operation on the
both sides of Equation (2), we can get the following theorem:

Theorem 6:The Mean Squared Error (MSE) between
̂P (X = ck) and P (X = ck) can be computed by the fol-

lowing:

MSE(X = ck) = E( ̂P (X = ck) − P (X = ck))2

=

n∑

i=1

β2
k,iV ar(

Ni

N
) +

n∑

i=1,j=1,i6=j

2 · βk,iβk,jCov(
Ni

N
,
Nj

N
),

whereβg,h is the g-th row andh-th column element of the
M−1, and

V ar(
Ni

N
) =

1

N
· P (Y = ci)(1 − P (Y = ci)),

Cov(
Ni

N
,
Nj

N
) = −

1

N
· P (Y = ci) · P (Y = cj).

We measure the utility using the average MSE for all
c1, . . . , cn, i.e.,

Utility =
1

n

n∑

k=1

E( ̂P (X = ck) − P (X = ck))2. (10)

It should be noted that since utility is defined based on mean
squared errors, the larger its value, the worse the utility.

V. EVOLUTIONARY MULTI -OBJECTIVE

OPTIMIZATION
Equipped with the privacy and utility quantification, we

search for the optimal RR matrices for a given data set. The
most straightforward search method is brute-force; namely
we exhaustively compare all possible RR matrices. Let us
see how expensive it is: assume that a single-attribute data
set hasn category values, so there aren2 elements in an
RR matrix. These elements have to satisfy two constraints:
(1) each element is between0 and 1, and (2) the sum of
the elements in each column is1. If the range is discretized
to 0, 1/d, 2/d, ..., 1 for a positive integerd, the number of
combinations of element values in an RR matrix is given in
the following fact:

Fact 1: If each element of an RR matrix can be any of
values in{0, 1/d, 2/d, ..., 1}, the total number of combinations

for the RR matrix is

(
d + n − 1

d

)n

.

The number of combinations can be very large even for
an attribute with a small number of categories. For example,
if n = 10 and d = 100, the number of combinations can be
1.98∗10126, which is infeasible to search. To reduce the search
space, we resort to genetic algorithms.

Genetic algorithms define a scalar fitness function for each
solution; the ones with the best fitness value are optimal. This
approach is quite natural for a single-objective optimization
problem, but has difficulty dealing with multiple objectives,
especially when these objectives are conflicting, such as utility
and privacy. A simple solution to extend a genetic algorithmto
a multiple-objective problem is to combine all the objectives
into a single fitness function. However, there are a number
of problems with this approach: first, it is difficult to find a
function to combine these different objectives that reflectthe
nature of the problem; second, it has been shown that the
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approach cannot generate proper members of the optimal set
if the optimal front is concave [12].

Evolutionary Multi-Objective Optimization (EMOO) algo-
rithms have been developed to deal with multiple objectives.
A comparison study has shown that SPEA2 outperforms
other recent approaches in many well-known problems [13].
Therefore, we choose to use SPEA2. We customized it for our
search problem; moreover, we slightly modified the algorithm
to improve the performance for our specific problem.

Old population Qt Old archive Vt

New archive Vt+1

Environmental Selection

New population Qt+1

Mating selection,

Crossover, Mutation,

Meet the bound,

Optimal set

Update

iteration t+1

iteration t

Fig. 1. Our SPEA2-based algorithm

A. Outline of Our SPEA2-based Algorithm
Similar to the evolution in the nature, SPEA2 iteratively

searches the optimal RR matrices using two sets of RR
matrices:archive and population. Archive is the initial set
for a generation (generated from the previous generation);the
RR matrices in the archive set will evolve during the current
generation via crossover and mutation. The evolution results
are put in a set calledpopulation. The archive set and the new
population set will be used to generate a new archive for the
next generation.

To keep computation manageable, the sizes of population
and archive are fixed, so computation cannot grow out of
control. As a consequence, some good RR matrices will be
thrown away during the evolution when the population and
archive sets become too “crowded”. To deal with this problem,
we introduce a new set calledoptimal set, which stores those
good RR matrices that are thrown away from each iteration.
This set does not participate in the costly evolution process;
instead, it is only used at the end of an iteration, in which, the
archive set (or the population set) and optimal set are used to
update each other. This last step is quite efficient, compared
to the evolution process, so the size of the optimal set can
be much larger than the sizes of population and archive. As a
result, many good RR matrices can still be kept. The process
of our SPEA2-based algorithm is illustrated in Figure 1.

We useQt and Vt to represent the population and the
archive of thet-th iteration or generation, respectively. We also
useΩ to represent the optimal set. The initial populationQ0

consists of a collection of randomly-generated RR matrices.
The initial archiveA0 and optimal setΩ are set to be empty.
The iteration step is described in the following:

Algorithm Optimization for RR Matrices
Input : NQ: population size,

NV : archive size,

L: maximum number of iterations,
NΩ: size of the optimal set.

Output : the optimal setΩ
Initialization: Generate an initial populationQ0,

and setV0 = Ω = ∅.
Repeat:

1. Fitness assignment: Calculate fitness values of
RR matrices inQt andVt

2. Environmental selection: Select RR matrices
in Qt andVt and copy them toVt+1.

3. Mating selection: Select promising RR matrices
from Vt+1 for later evolution.

4. Crossover and mutation: Apply crossover and
mutation operators to those promising RR matrices
and store the resulting RR matrices inQt+1.

5. Meeting the bound: Make each RR matrix
in the resulting populationQt+1 meet the bound
max{P (X|Y )} <= δ.

6. Updating the three sets: Update the resulting
populationQt+1, archiveVt+1 and the optimal set
Ω. Increment the generation counter (t =t + 1).

7. Termination : If the stopping criterion is satisfied,
stop and output the optimal setΩ; otherwise, go to
the next iteration.

B. Fitness Assignment
The quality of an RR matrix in a set can be quantified using

a fitness value, which is based on thedominancerelationship
defined below:

Definition 5.1: (Dominance) An RR matrixMi dominates
anotherMj if none of the properties (privacy and utility) ofMi

is worse than the corresponding properties ofMj ; moreover,
at least one property ofMi is better than the corresponding
property ofMj . We useMi ≻ Mj to denote thatMi dominates
Mj .

When an RR matrix is dominated by another RR matrix,
the former has a worse fitness value (higher quality) than the
latter. Accordingly, if an RR matrix is dominated by more
RR matrices, it also has a worse fitness value. When two RR
matrices are dominated by the same number of RR matrices,
according to SPEA2, the RR matrices dominating the two RR
matrices are further considered to discriminate the qualities of
the two. Among the two RR matrices, if one is dominated by
some RR matrices, which dominate more RR matrices, and
the other is dominated by some RR matrices, which dominate
fewer RR matrices, the former has a worse fitness value than
the latter.

Based on dominance relationship, SPEA2 defines araw
fitnessfor each RR matrix in the archive and population sets.
The calculation of raw fitness consists of two steps: first, each
Mi in the archiveVt and the populationQt is assigned a
strength valueS(Mi), representing the number of RR matrices
dominated byMi, i.e.,

S(Mi) = |{Mj |Mj ∈ (Qt + Vt) andMi ≻ Mj}|,

where |.| is the cardinality of a set,+ means multiset union.
Second, based onS values, the raw fitnessF ′(i) of an Mi is
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the sum of the strength of the RR matrices that dominateMi:

F ′(Mi) =
∑

Mj∈Qt+Vt,Mj≻Mi

S(Mj).

When two RR matrices have the same raw fitness values,
another important factor,diversity, is used to further discrim-
inate them. The use of diversity is based on the following
observation: users’ requirements on privacy (or utility) are
often diversified, so we would like the set of solutions to
cover a wide range of privacy (or utility). In other words, inthe
search algorithm, we do not like to always pick solutions from
a dense area. SPEA2 measures the density of each solution.
The density for an RR matrix is a (decreasing) function of the
distance to the k-th nearest data point, denoted asσk

i (k is
usually set to1 in practice):

d(Mi) =
1

σk
i + 2

,

where 2 is added to ensure that the denominator value is
greater than zero and thatd(Mi) < 1 (this ensures that density
only makes a difference when two RR matrices have the
same raw fitness value, because the difference of two different
fitness values is always greater than or equal to1).

Figure 2 illustrates the use of density using an example.
In the figure, three RR matricesM3, M4 and M5 have the
same raw fitness0 (they are not dominated by any solution).
BecauseM3 has a shorter distance to its nearest neighbor than
M4 andM5, it has a higher density value; therefore,M3 has
a worse fitness value thanM4 andM5.

Fig. 2. Compare the quality ofM3, M4, M5

Based on dominance and diversity, the fitnessF (Mi) of an
RR matrixMi is defined as the sum of densityd(Mi) and raw
fitnessF ′(Mi):

F (Mi) = F ′(Mi) + d(Mi). (11)

From the above computations, the lower fitness an RR matrix
has, the higher quality it has. The running time for assigning
fitness to all RR matrices is dominated by the density calcu-
lation O((NQ + NV )2log(NQ + NV )).

C. Environmental Selection
After each RR matrix is assigned a fitness value, high-

quality RR matrices are selected from the old population and
archive sets, and they are stored in a new archive of the next
generation. This process is calledenvironmental selection. The
process consists of two steps: first, all non-dominated RR

matrices (the fitness values of which are less than1) are copied
from the archive and population sets to the new archiveVt+1:

Vt+1 = {Mi|Mi ∈ (Qt + Vt) andF (Mi) < 1} (12)

Second, if|Vt+1| (the size of the new archive) is equal to
NV (the limit on archive size), the environmental selection
step is finished; otherwise, there can be two cases:

1) If |Vt+1| < NV (i.e., we do not have enough non-
dominated RR matrices),NV − |Vt+1| dominated RR
matrices with the best fitness values are copied from the
archive and population sets to the new archive.

2) If |Vt+1| > NV (i.e., we have too many non-dominated
RR matrices), some non-dominated RR matrices will
be removed iteratively from the new archiveVt+1 until
|Vt+1| = NV . At each iteration, to maintain diversity,
an RR matrix is removed if, among all the RR matrices
in Vt+1, it has the shortest distance to its nearest
neighbor. If several RR matrices have the same shortest
distances, the distances to their second nearest neighbor
are considered, and so on.

The worst run-time complexity of the environmental selec-
tion is dominated by the removal process, which isO((NQ +
NV )3).

D. Mating Selection

After the new archive is constructed, RR matrices are
selected from the archive to fill a pool calledmating pool.
At each selection step, two RR matrices are randomly picked
from the new archive, the one with the better (lower) fitness
value wins and is copied to the mating pool. This procedure,
calledbinary tournament selection, is repeated until the mating
pool is full. If the size of mating pool isNM , the run-time
complexity of mating selection isO(NM ). All the matrices in
the mating pool are calledparents.

E. Crossover

To mimic the mating in evolution, a crossover operator
is applied to the mating pool. Before we do crossover, we
randomly pair the RR matrices in the mating pool; each pair
is then used as parents to produce two new RR matrices
(called children) using crossover, i.e., the parents exchange
some columns of their matrices. Since the sum of elements
in each column is1, not every position can be chosen as the
crossover position. Instead, we randomly pick a line delimiting
two neighboring columns. all elements on the right side of the
line are swapped (between the two parent RR matrices). The
two resulting RR matrices become the children. For example,
in Figure 3, after the crossover, the two parentsM1 andM2

produce two childrenM ′
1 and M ′

2. The run-time complexity
is O(n2), wheren is the number of columns (or rows) in an
RR matrix.
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Fig. 3. Crossover operation on2 parent RR matrices

F. Mutation
After the crossover, we apply the mutation operator to

modify RR matrices. Mutation changes small parts of an
RR matrix according to a given mutation rate. In general,
mutation only changes an arbitrary bit in a genetic sequence
(RR matrix) with a small probability; however, to ensure that
a mutated matrix is still an RR matrix, our mutation operator
changes a column, rather than a bit. We first randomly select
a column, and then add (or subtract) a small random positive
value (< 1) to an arbitrary element (denoted byθi,j) in the
selected column. Because all elements in an RR matrix should
be non-negative, the added value should be less than or equal
to 1 − θi,j while the subtracted value should be less than or
equal toθi,j . To satisfy the RR matrix constraint (i.e., the sum
of each column in any RR matrix is1), certain values should
be subtracted from or added to other elements of the same
column.

Because we consider that a characteristic of a good RR
matrix is represented by the correlations among the elements
of a column in the RR matrix, we do not want the mutation
to destroy the characteristic. To maintain it, we change all
other elements in the column in the following way: if the first
changed element is obtained by addition, the subtracted values
from all other elements are proportional to the corresponding
element values. If it is obtained by subtraction, the added
values to all other elements are proportional to1 minus the
corresponding element values. The run-time complexity of the
mutation isO(n).

G. Meeting the Privacy Bound
After the mutation step, we want to make sure that the

largest posterior probabilityP (X|Y ) is less than the upper
boundδ. What we do is similar to that in the mutation. We
decrease the elements which make theP (X|Y ) too large in a
column and increase the other elements in the same column.
The increased value is proportional to the maximal value
added to the element to achieve the boundδ. For example,
if the current elementθi,j can be changed toθ′i,j to make
P (X = cj |Y = ci) = δ, the added value toθi,j is proportional
to the differenceθ′i,j − θi,j . The updating cost for one column
is O(n).

H. Updating the Three Sets
Because the run-time complexity of the environmental se-

lection is cubic of the size of the population and the archive,
to prevent computation costs from getting too high, the sizes

of the population and archive sets have to be limited. Conse-
quently, when the population and archive become “crowded”,
many good RR matrices will be discarded during the evolution.
To deal with the problem, we useΩ to store those good
RR matrices that are discarded in each iteration.Ω does not
participate in the costly environmental selection process; it is
involved only in the updating process depicted below.

In Ω, those good RR matrices are indexed by their privacy
values. For example, if the size ofΩ is 1000, the good
RR matrix with privacy value0.1523 can be stored in the
152th element. According to the indexing, after the mutation
operation, each RR matrix inQt+1 andVt+1 is compared with
its corresponding RR matrix inΩ. The RR matrices with better
utility values in one set are used to update the corresponding
RR matrices in the other set. The updating takesO(NQ+NV )
time.

Because the run-time complexity does not depend on the
size ofΩ, we can setΩ as large as the memory allows, such
that as many good RR matrices as possible can be stored. After
updatingΩ, Qt+1 or Vt+1, we can always use the good RR
matrices to evolve (selecting, mating, crossover and mutation).
WhenΩ is output as the set of optimal RR matrices, the users
can get more detailed spectrum of the optimal RR matrices
for making choices.

Using Ω to store a wider spectrum of the optimal RR
matrices can only be employed for problems with a few
objectives, because the number of optimal RR matrices will
increase exponentially with the increment of the number of
objectives, i.e., the size of the needed memory to store the
optimal matrices will increase exponentially.

I. Termination

There are several ways to decide the termination criterion.
One way is to set a limit on the number of generations
that RR matrices can evolve. Another way is to specify a
threshold for the number of consecutive generations that do
not modify Ω (i.e., the evolution makes no progress during
these generations). When the criterion is met, the optimal set
Ω is output as the set of optimal RR matrices.

Our scheme is based on SPEA2 but differs from it in three
aspects. First, our scheme adopts the optimal setΩ which can
keep much more optimal RR matrices than SPEA2 without
increasing the computation complexity. Second, our crossover
method is specific for RR matrices because of the constraints
of our problem. Third, we use a novel mutation approach
by which the correlations among most elements could be
maintained when an RR matrix is mutated.

VI. EXPERIMENTS

A. Using Pareto Fronts

For multi-objective optimization, the set of optimal solutions
is called thePareto optimal set[14]. The Pareto optimal set is
often plotted in the objective space (e.g. in our case, the space
consists of utility and privacy), and the plot is called thePareto
front. By plotting the Pareto fronts for different schemes on
the same figure, we can compare which schemes are better.
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(d) δ is 0.9

Fig. 4. For normal distribution with differentδ

In our optimization problem, each RR-matrix-generation
scheme decides a Pareto front in a two-dimensional space (we
use the privacy objective as the x-axis and the utility objective
as the y-axis). We can draw a Pareto front for each of the
Warner, FRAPP, UP, and our schemes. Difference of these
schemes can be illustrated by their Pareto fronts. For example,
if a Pareto front of schemeA is consistently below that of
schemeB within a privacy range, we can tell thatA is better
than B in that range, because to achieve the same degree of
privacy within the range,A always has a smaller mean square
error, the metrics used for measuring utility.

B. Methodology

We would like to compare the Warner [1], FRAPP [11],
UP [2] schemes with ours using Pareto fronts. However,
Theorem 2 indicates that the Pareto fronts for the Warner, UP,
and FRAPP schemes are the same. Therefore, it is sufficient
to just compare our scheme with the Warner scheme.

For the Warner scheme, we let the diagonal element values
(denoted byp) change from0 to 1 with a small step length
of 0.001; accordingly we set the non-diagonal element values
(based on the Warner scheme, these values are(1 − p)/(n −
1), wheren is the number of categories). This way, we can
generate1001 different RR matrices. For a given dataset, we
can calculate the utility and privacy values for each of these
RR matrices. After removing those non-optimal solutions, we
can plot a Pareto front for the Warner scheme. For our scheme,
we conduct the SPEA2-based algorithm for the same dataset
to obtain an optimal set of RR matrices. We let the iteration
stops after it loops20, 000 times. We also plot the Pareto front
for our optimal set.

We have conducted our experiments for two types of data:
synthetic and real data. The synthetic data sets are generated
from various distributions. The real data set is theAdult data
set from the UCI Machine Learning Repository [15].

C. Experiments On Synthetic Dataset

To study how different distributions affect the performance
of the Warner scheme and our scheme, we randomly generate
a single-dimensional data set of10, 000 records. There are10
different category values in these records; the probability of
the categories in the data set follows a specific distribution.

We use DELL precision 340 (2.65Ghz CPU and 512M RAM)
to conduct our experiments. It takes about12 minutes to finish
each experiment.

1) For Different Privacy Boundδ: We first show the
experimental results for data sets from normal distribution
using different privacy boundsδ in Figure 4. From the figure,
with the increment ofδ, the Pareto fronts of our results
cover a larger range of the privacy than the Warner scheme.
Namely, when the worst-case bound on privacy is set to
δ = 0.6, 0.7, 0.8, 0.9, Warner scheme cannot find an RR matrix
with privacy less than0.6, 0.5, 0.4, 0.22, respectively, while
our scheme can find an RR matrix with privacy close to
0.4, 0.3, 0.22, 0.17. Moreover, our scheme achieves a lower
MSE (better utility) than the Warner scheme when the RR
matrices are compared in the same privacy range. Therefore,
no matter whatδ we choose, our scheme always achieves
better performance than the Warner scheme. Although we only
show the results for normal distribution, the trends with respect
to differentδ are similar for other distributions.

2) For Different Distribution: To study how different data
distributions affect our results, we setδ = 0.75 and conduct
experiments using the gamma and uniform distributions. We
do not show the results with otherδ values because the trends
are similar to those for normal distribution in Figure 4.

(a) Gamma Distribution For the gamma distribution, we have
conducted experiments for differentα andβ values (α andβ
are parameters of the gamma distribution). We only depict the
Pareto fronts usingα = 1.0 andβ = 2.0 in Figure 5(a); other
α andβ values have similar results. The figure shows that, for
data based on gamma distribution, our scheme outperforms
the Warner scheme in the entire privacy range. In particular,
our scheme has about two times larger privacy range than the
Warner scheme and has a much better performance than it
when the privacy value is larger than0.62.

(c) Uniform Distribution For the uniform distribution, the
Pareto fronts of the Warner scheme and ours are plotted in
Figure 5(b). Similar to other distributions, our scheme can
find much better RR matrices than the Warner scheme. An
exception is that our scheme covers the same privacy range as
the Warner scheme.
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(d) Using the estima-
tion error by iterative ap-
proaches as utility

Fig. 5. For synthetic data and real data, and for the iterative approach.

D. Experiments On Real Data

For real data, we use the Adult data from the UCI Machine
Learning Repository [15]. The Adult data set has14 attributes,
including both categorical and continuous attributes. We dis-
cretize those continuous attributes in order to apply the ran-
domized response technique. Because of the page limitation,
we only show the results for the first attributes in Figure 5(c);
the results for the other attributes have shown a similar
trend. The results clearly show that our scheme consistently
outperforms the Warner scheme for all the attributes in the
Adult data set. With the same DELL computer, it takes about
10 minutes to finish the experiment.

E. Use the Iterative Approach

In this experiment, we want to see whether the optimal set
found in our scheme outperforms the Warner matrices if the
iterative approach [2] is used to estimate the original data
distribution. We use the same data set from gamma distribution
of α = 1.0 and β = 2.0 and the same optimal set of RR
matrices as those in Figure 5(a). Instead of using the utility
defined in Equation (10), we conduct the iterative approach
to estimate the original distribution, and then calculate the
mean square error (MSE) between the estimation and the
original distribution. The results are plotted in Figure 5(d).
The figure shows that our scheme still outperforms Warner
scheme; namely our scheme has a wider privacy range and
a much lower MSE (or higher accuracy) than the Warner
scheme. Using other data sets, we get the similar results.

VII. C ONCLUSION

In this paper, based on estimate theories, we provide a
method to quantify privacy and utility for the randomized
response technique. We then apply an evolutionary multi-
objective optimization technique to search for optimal RR
matrices. We have conducted an extensive evaluation on our
method. The evaluation shows that our scheme achieves much
better performance than the existing RR schemes. Although
we cannot claim that the RR matrices obtained from our
scheme are optimal in the entire search space, our results do
indicate that our scheme approaches the optimal RR matrices
closer than any other existing RR schemes. In our future

work, we plan to extend our approach to the multi-dimensional
randomized response technique.
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