
ESCUDO: A Fine-grained Protection Model for Web Browsers

Karthick Jayaraman, Wenliang Du, Balamurugan Rajagopalan, and Steve J. Chapin
Department of EECS, Syracuse University
{kjayaram,wedu,barajago,chapin}@syr.edu

Abstract

Web applications are no longer simple hyperlinked doc-
uments. They have progressively evolved to become highly
complex—web pages combine content from several sources
(with varying levels of trustworthiness), and incorporate
significant portions of client-side code. However, the
prevailing web protection model, thesame-origin policy,
has not adequately evolved to manage the security conse-
quences of this additional complexity. As a result, web ap-
plications have become attractive targets of exploitation.
We argue that this disconnection between the protection
needs of modern web applications and the protection mod-
els used by web browsers that manage those applications
amounts to a failure of access control. In this paper, we
presentESCUDO, a new web browser protection model de-
signed based on established principles of mandatory access
control. We describe our implementation of a prototype of
ESCUDO in the Lobo web browser, and illustrate how web
applications can useESCUDO for securing their resources.
Our evaluation results indicate thatESCUDO incurs low
overhead. To support backwards compatibility,ESCUDO

defaults to the same-origin policy for legacy applications.

1 Introduction

Initially, web applications comprised a set of documents
that mostly contained text to be rendered and hyperlinks to
other documents, with little or no client-side code. All the
content originated from a single, trusted source. Over the
last several years, in the race to add interactive features,
web applications have progressively become more complex.
In more recent times, web applications have evolved to be-
come highly interactive applications that execute on both
the server and client. As a result, web pages in modern ap-
plications are no longer simple documents–they now com-
prise highly dynamic contents that interact with each other.
In some sense, a web page has now become a “system”–the
dynamic contents are programs running in the system, and
they interact with users, access other contents both on the
web page and in the hosting browser, invoke browser APIs,
and interact with programs on the server side.

Moreover, today’s web pages no longer draw contents
from a single source; contents are now derived from several
sources with varying levels of trustworthiness. Contents
may be included by the application itself, derived from user-
supplied text, or from partially trusted third parties. Dur-
ing parsing, rendering, and execution inside the browser,
the dynamic and static contents of web pages can both act
and be acted upon by other entities—in classic security par-
lance, they can be instantiated as both principals and ob-
jects. These principals and objects are only as trustworthy
as the sources from which they originate.

The security of a web application is primarily dependent
on the integrity and confidentiality of its resources inside
the web browser. For example, session identifiers in cook-
ies need to be protected against access by untrusted princi-
pals; code from untrusted sources must be authorized be-
fore it is allowed to modify any trusted content on a web
page. Without appropriate access control in web applica-
tions, we cannot preserve the trustworthiness of contents,
and security could be compromised. If we consider each
web page as a “system,” we need an adequate protection
model in browsers to mediate the interactions within such a
system.

All web browsers implement a protection model called
the same-origin policy. Unfortunately, this model has not
adequately evolved to manage the security consequences of
the additional complexity in modern web pages. It cannot
distinguish gradations in trustworthiness, nor does it pro-
vide sufficient isolation between web browser objects to en-
sure proper access control. As a result, web applications
have become attractive targets of exploitation. Both cross-
site-scripting attacks and cross-site-request forgery attacks
are examples of untrusted principals exercising control over
trusted objects inside the web browser. We argue that the
root cause of the problem is a failure of access control. The
same-origin policy clearly violates two important principles
of access control, namely separation of privilege and prin-
ciple of least privilege [32].

Because of access-control failures, web applications that
embed third party content in their web page cannot restrict
the permissions of the third party code. For example, a blog
publisher may sell a small portion of his web page to an
advertising network. The advertising network, in turn, ac-
cepts Javascript ads from its clients and displays them on

1



the publisher’s web page. The publisher has no further con-
trol over what appears in that ad space—he trusts the net-
work to have verified all content. An attacker posing as an
advertiser could compromise the integrity of the publishers
web application using a malicious JavaScript program [36].
JavaScript verifiers such as ADsafe [12] could be used by
an advertisement network to verify a JavaScript program,
but that does not change the publisher’s position: he is re-
lying on a third-party to vouch for the trustworthiness of
Javascript programs that will run in his own web pages.

There have been other approaches for dealing with this
access-control failure. Web applications, as a first line of
defense, employ input validation and content filtering at the
server when generating the web page. The objective of this
step is preventing known attacks from instantiating an un-
trustworthy principal inside a web page. For example, to
defeat cross-site scripting attacks, we can filter out all the
code from contents originating from untrusted sources. This
first-line of defense has proven to be difficult to implement
properly; many vulnerabilities are because of the errors in
such a process [15, 17]. Second, there are browser patches
that address specific attacks [18]. In general, all these ap-
proaches address the symptoms of specific problems with-
out addressing the fundamental root cause—the lack of a
robust protection model suitable for modern web applica-
tions.

We describe an alternate approach that addresses the
access-control failure in web browsers by redesigning the
underlying access-control model, attacking the root of the
problem. Redesigning the access-control model for web
browsers involves four challenges. First, the access-control
model should be able to identify principals and objects at re-
quired granularity. Second, the access-control model should
use an appropriate policy to secure content with varying lev-
els of trustworthiness. Third, a challenge unique to web ap-
plications is distributed enforcement–the applications at the
server are aware of trustworthiness, but the actual interac-
tions that have to be restricted happen at the browser. Fi-
nally, the new model should be backward compatible with
the same-origin policy to facilitate incremental deployment.

In this paper, we describe ESCUDO, a fine-grained web
browser protection model, based on vetted access-control
principles to protect modern web applications. To the best
of our knowledge, this is the first work on redesigning the
access-control model for web browsers. ESCUDO is de-
signed to enforce separation of privilege and the principleof
least privilege, and to provide adequate granularity in both
specification and enforcement. We argue that the protection
requirements of web applications are similar to operating
systems. Some operating systems use hierarchical protec-
tion rings (HPR) to enforce their protection requirements.
ESCUDO is an adaptation of HPR tailored to meet the pro-
tection requirements of web applications.

To address the distributed enforcement problem, we de-
scribe a method that web applications could use to identify
the principals, objects, and their trustworthiness and con-

figure their resources at the granularity required by them
to reflect their protection needs. The method is backward
compatible with non-ESCUDO browsers, which ignore the
configuration and default to the same-origin policy.

We implemented a prototype of ESCUDO for the Lobo
browser and our evaluation results show that ESCUDO in-
curs around 5% overhead. We illustrate our experience
in building web applications for ESCUDO using two open-
source web applications as case studies. We modified two
open source web applications to use ESCUDO. We analyzed
the web applications to understand their security require-
ments and configured them to use ESCUDO to enforce the
security requirements. The key contributions of the paper
can be summarized as follows:

• ESCUDO is a new fine-grained web browser protection
model to meet the protection requirements of modern ap-
plications.

• A backward-compatible configuration method that web
applications can use to identify the principals, objects,
and their trustworthiness in order to use ESCUDO.

• A prototype implementation of ESCUDO on the Lobo
web browser.

• Case studies illustrating our experience of building web
applications for ESCUDO.

2 Protection Requirements for Web Applica-
tions

In this section, we will describe the protection require-
ments of web applications by providing an analysis of the
principals, objects, and the characteristics of modern web
applications. Finally, we describe the inadequacy of the
same-origin policy in meeting the protection requirements.

2.1 Principals and Objects

In a web application, principals are action-inducing
HTML excerpts such as JavaScript programs, and objects
are application resources such as the web page contents and
cookies that are targets of actions. Some HTML excerpts,
such as JavaScript programs, may act as both principals and
objects. Table 1 describes the principals and objects inside
a web application.

HTTP-request Issuing Principals: HTTP-request issu-
ing principals are HTML tags such asa, img, form, embed,
andiframe that instruct the web browser to issue an HTTP
request.

Script-invoking Principals: Script-invoking principals
are HTML constructs such asscript and the CSSexpres-
sionthat can invoke the JavaScript interpreter. Additionally,

2



web applications can specify user-interface (UI) event han-
dlers to be invoked for specific events using attributes such
asonload, onmouseover, etc.

Plugins: Plugins are content-specific run-time environ-
ments for certain types of contents such as Flash, Sil-
verlight, and PDF. Additionally, browsers such as Firefox
provide a framework for creating extensions, enabling users
to extend the functionality of the browser. Plugins and ex-
tensions have their own security models and may or may
not be controlled by the web applications. In this paper, we
only focus on the principals that can be controlled by the
web applications.

Document object model (DOM): Internally, web
browsers represent the contents of a web page using a data
structured called the DOM, in which all the HTML tags
and their content are organized in a hierarchical fashion.
Each HTML tag is a DOM element. DOM elements have a
special feature—they can act as both principals and objects.
Some DOM elements are script-invoking principals or
HTTP-request initiating principals. Such DOM elements
act as principals momentarily when they are instantiated.
On the other hand, they act as objects when they are the
targets of modification via the DOM API.

Cookies: Web applications create cookies in web
browsers; cookies typically contain data used to track ses-
sions. After a cookie is created, web browsers attach the
cookies in all subsequent HTTP requests back to the web
application. Therefore, cookies are objects that are implic-
itly accessed in all HTTP requests. In addition, JavaScript
programs may explicitly manipulate cookies.

Native Code: Native browser code is exposed to
JavaScript programs via an API. For example, the
XMLHttpRequest API is an example of native code that
helps JavaScript programs interact with server-side pro-
grams. Similarly, the DOM API is used by JavaScript pro-
grams to access and modify the web page. Web applications
may not want to expose these API to untrusted code. There-
fore, the ability to invoke such API should be a controllable
privilege.

Browser State: Web browsers maintain browsing history
and visited link information for each browsing session with
a web site. This information is part of the state of a brows-
ing session and is accessible to JavaScript programs through
the DOM API. Browsing history is a log of recently vis-
ited URL and users may use this information to instruct the
web browser to render a previously visited web page. Vis-
ited link information is used by web browsers to differen-
tiate recently visited from unvisited URL—typically, web
browsers use differing colors to display visited and unvis-
ited links.

Principals Objects

HTTP-request issuing princi-
pals

Document object model (DOM)

- HTML Form
- HTML Anchor Cookies
- HTML Img
- HTML Iframe Native Code API
- HTML Emded -XMLHttpRequest API

-DOM API
Script-invoking principals
- JavaScript Programs Browser State
- UI event Handlers - History

- Visited link information
Plugins (Cannot be controlled
by web applications)

Table 1. Principals and objects inside the web
browser.

2.2 Protection Needs

We outline two characteristics of modern applications
that are relevant for motivating our protection requirements:

Increasing Use of Client-side Code: Earlier, web ap-
plications primarily executed on the server and only web
pages were delivered to browsers. With the introduction
of JavaScript programs, web applications could additionally
execute in the browser to provide some interactive features.
JavaScript programs are commonly used to display drop-
down menus by updating the contents of the web page. Fur-
thermore, AJAX enables JavaScript programs to communi-
cate with the application at the server. An instant-messaging
application might use an AJAX-based JavaScript program
for communicating with the server and updating the chat
window.

Content with Varying Levels of Trustworthiness: In
modern applications, the content inside web pages is de-
rived from multiple sources with nonuniform trustworthi-
ness. Therefore, content inside web pages is no longer only
trusted and provided by the application itself. There are sev-
eral examples of applications including untrusted content.
Blogs and wikis enable users to provide arbitrary text that
will be part of the web pages. Because the text is supplied
by the user, it should not be trusted. There are also ex-
amples of applications including semi-trusted content. An
online auction application may enable a seller to create a
web page in its application and may also allow the seller
to provide JavaScript programs in the page to enable some
rich functionality. A social networking application may al-
low users to add applications, essentially JavaScript pro-
grams, in their profile to extend the functionality of their
profile pages. Web applications frequently add third party
JavaScript programs for adding some features. For exam-
ple, an application may include third party JavaScript pro-
gram for keeping track of site statistics. Online advertising

3



that we discussed earlier is another example of including
semi-trusted content.

As a direct consequence of these two characteristics, we
have principals of varying trustworthiness inside the web
page. Currently, these principals access or modify con-
tent in the web page, invoke native API, and communicate
with the application at the server, irrespective of their trust-
worthiness. Saltzer and Schroeder [32] have summarized
eight design principles for building protection mechanisms:
economy of mechanism, fail-safe defaults, complete medi-
ation, open design, separation of privilege, least privilege,
least common mechanism, and psychological acceptability.
Of the eight guidelines, the same-origin policy clearly vio-
lates two principles, namely least privilege and separation
of privilege, but has done a fairly good job with respect
to the other characteristics. The same-origin policy’s non-
conformance with sound design principles leads directly to
its failure to meet the protection needs of modern applica-
tions. Based on our analysis of modern applications and
vetted principles, a protection model for web browsers re-
quires three characteristics:

1. Separation of Privilege:Separation of privilege indi-
cates that, if possible, privileges in a system should be
divided into less powerful privileges, such that no sin-
gle accident, deception, or breach of trust is sufficient
to compromise the protected information.

2. Principle of Least Privilege: The protection model
should be able to limit the interactions of principals
based on their trustworthiness. Essentially, a principal
should not have more privileges to access information
or resources than required for its legitimate purpose.
In addition, a principal should not be able to elevate its
privilege in an uncontrolled manner.

3. Fine Granularity: The protection model should be
able to identify principals at a sufficient granularity
to ascertain their trustworthiness. Therefore, origins
alone are insufficient for this purpose. Having fine
granularity is essential for achieving the principle of
least privileges.

2.3 The Same-Origin Policy is Inadequate

The same-origin policy (SOP) identifies an applica-
tion’s origin as a unique combination of〈protocol, do-
main, port〉. For instance,http://www.amazon.
com/index.php and http://www.amazon.com/
search.php belong to the same origin, buthttp://
www.gmail.com andhttp://www.amazon.com do
not belong to the same origin because they have differ-
ing domains. Similarly,http://www.gmail.com and
https://www.gmail.com do not belong to the same
origin because they use different protocols. Web browsers
associate application resources such as cookies and docu-
ment object model (DOM) to their origin, and the SOP pre-

vents JavaScript programs from one origin from accessing
application resources belonging to other origins.

Under the SOP, all principals inside the web application
are associated with a single principal identified by the origin
and are associated with all the privileges irrespective of their
trustworthiness, violating the principle of least privilege. In
addition, principals and resources across applications are
not appropriately isolated from one another. Both cross-
site-scripting (XSS) attacks and cross-site-request forgery
(CSRF) attacks are a side effect of these inadequacies.

In XSS attacks, an attacker deftly constructs input data
for an application that is interpreted as JavaScript by the
web browser and executes with all privileges. Ideally, the
JavaScript program should execute with limited or no priv-
ileges because it was derived from untrusted web content.

In CSRF attacks, a malicious site forges and injects a re-
quest into a victim user’s active session with a trusted site.
Some HTML tags such asa, img, and iframescan initiate
an HTTP request. There are no restrictions on the URL that
can be used in these HTML tags. In addition, web browsers
automatically attach the target site’s cookies to the HTTP
request, irrespective of who is making the request. A ma-
licious site abuses this weakness to forge a request for a
trusted site. Ideally, principals and objects across applica-
tions should be isolated from these types of unintended in-
terferences.

3 Our Approach

We need fundamental changes to the existing web
browser protection model to address the protection needs
of modern applications. Our approach is to design a
web browser protection model based on vetted mandatory
access-control (MAC) principles. In our proposed model,
developers can configure their application by appropriately
specifying the principals, objects, and their trustworthiness.
Web applications communicate the configuration to the web
browser, where the proposed access-control model enforces
access decisions based on the configuration. This is typical
of any MAC system, where a system administrator config-
ures the system and system-level mechanisms enforce ac-
cess decisions based on the configuration [8].

Conceptually, access control is the ability to decide who
can do what to whom in a system. An access-control sys-
tem consists of three components: principals, objects, and
an access-control model. Principals (the who) are the en-
tities in the system that can manipulate resources. Objects
(the whom) are the resources in the system that require con-
trolled access. An access-control model describes how ac-
cess decisions are enforced in the system; the expression of
a set of rules within the model is an access-control policy
(the what).

Based on the analysis of the protection needs in web ap-
plications, it is clear that a hierarchical multi-level MAC
model can address these needs. In such models, a system
organizes its principals and objects into hierarchies based

4



on their trustworthiness, and assigns appropriate privileges
to each hierarchy. Access decisions are based on the hier-
archy of the principals and objects. For example, SELinux
and Windows Vista have adopted a MAC model to enforce
restrictions on programs based on their trustworthiness.

We analyzed several existing multi-level MAC models
such as Biba [7], Bell-LaPadula [6], and hierarchical pro-
tection rings (HPR) [33]. There are several similarities
between the protection needs of web applications in web
browsers and those of programs in operating systems. In op-
erating systems, a program with user-level privileges must
be isolated from a program with kernel-level privileges.
In addition, the memory address spaces of user programs
should be isolated from one another. Our design is primarily
motivated by this similarity to protection needs in operating
systems.

Figure 1. Protection rings: All principals and ob-
jects are organized into protection rings. The in-
nermost ring is the most restricted ring and the
outermost ring is the least restricted ring.

HPR was first introduced in the Multics operating sys-
tem. In Multics, the access permissions are organized into
hierarchical rings numbered from0 to n (Figure 1). Ring 0
is the most privileged ring and ringn is the least privileged
ring. The access permissions in a ringx are a subset of ac-
cess permissions in ringy, wheneverx > y. A process in
a particular ring is limited to use the access permissions in
its own ring or outer rings. There are special gates between
rings to allow a process from an outer ring to request some
resources from an inner ring in a controlled fashion. To iso-
late the memory address spaces of user programs, Multics
uses segment descriptors. Organizing the program in rings
provides separation of privilege, and memory isolation en-
forced via segment descriptors further increases the granu-
larity of protection offered by rings and enforces the princi-
ple of least privilege. ESCUDO is an adaptation of HPR to
meet the protection requirements of web applications.

4 The ESCUDO Access Control Model

ESCUDOconsists of four components:

• Rings:ESCUDO treats each web page as a “system,” and
all the elements in this system are placed in a static set of
per-page protection rings. This is similar to HPR in op-
erating systems. However, unlike in operating systems,
where there is only one set of rings, a browser can simul-
taneously host multiple systems (i.e. web pages), the set
of rings for each web page is independent from the oth-
ers. The rings of web pages belonging to the same origin
are compatible with each other.

• Ring Assignments:A web application should provide
the ring assignments for all the elements in the system
based on the trustworthiness of the elements and protec-
tion needs. The ring assignment method varies depend-
ing on the type of element and is discussed in section 4.1.
This step is called “configuration,” analogous to a sys-
tem administrator configuring a system. Our configura-
tion method provides fine-grained granularity in specifi-
cation.

• Access Control List (ACL):ESCUDO allows objects to
additionally use an ACL to improve the granularity of
protection provided by the model. Essentially, the ACL
used by each object enforces the principle of least privi-
lege. Section 4.1 describes how an object can configure
its ACL.

• Access-control Model:ESCUDO uses a MAC model
based on HPR for enforcing access restrictions inside the
browser. The access decisions are based on the configura-
tion (ring assignment and ACL) provided by the applica-
tion. The rules in the access-control model are described
in section 4.2.

This design reflects the three principles we summarized
in Section 2.2. With rings and ACLs, privileges in a web
applications are divided into many pieces; these pieces are
organized into a widely-used hierarchical model, making
them easy to use. The fine granularity of principals and
privileges is also achieved through the introduction of mul-
tiple rings. With fine-grained principals, fine-grained priv-
ileges, and well-isolated privileges, the principle of least
privilege can be easily enforced in web applications.

4.1 Rings, Ring Assignment, and ACL

ESCUDOallows web developers to choose a set of rings
for their applications, and assign the elements of the web
applications into these rings. The set of rings for one web
application is independent from that of others; therefore,
other than defining the relationships among different rings,
ESCUDOdoes not define what each ring means, nor does it
stipulate the total number of rings. The definitions are up
to the web application designers. Designers can choose the
total number of rings that fit their application needs; they
can make their own ring assignment, independent of other
applications.

5



Rings in ESCUDO are labeled0, 1, . . ., N , whereN is
application dependent. In the HPR model, higher numbered
rings have lesser privileges than lower numbered rings.
Ring0 is the highest-privileged ring, and ringN is the least-
privileged ring. All examples in this paper, for the sake of
simplicity in illustration, useN = 3. This is a large enough
number to demonstrate interaction between rings without
being cumbersome; other than that, 3 is arbitrary.

In this subsection, we describe how various principals
and objects in the web application are assigned to rings.
Web applications can communicate the ring assignment to
ESCUDO either using HTML tags or optional HTTP head-
ers, depending on the type of the object.

DOM Elements: Recall that DOM elements can act as
both principals (e.g. script-invoking constructs) and ob-
jects (e.g. HTML excerpts). We use the HTMLdiv tag
to label each DOM element. HTMLdiv tags were orig-
inally introduced to specify style information for a group
of HTML tags; recently they have been extended for other
purposes [35]. We introduce a new attribute called thering
attribute for thediv tag. This attribute of thediv tag assigns
a ring label to all the DOM elements within the scope of the
tag, which is the region enclosed by thediv and /div tags
(Figure 2). We refer to suchdiv tags as access-control (AC)
tags.

<div ring=2 r=1 w=0 x=2>
...
<div ring=3 r=2 w=0 x=2>
...
</div>

</div>

Figure 2. Ring assignment

HTML allows hierarchicaldiv scopes, i.e., adiv scope
can be enclosed entirely within anotherdiv scope. There-
fore, ring assignments can also be hierarchical. To maintain
the integrity of the ring assignment, ring numbers in the in-
ner scope must be equal to or higher than the ring numbers
in the outer scope (i.e. fewer privileges). Figure 2 gives an
example of ring assignment. Special attention must be taken
to ensure the integrity of the ring assignment. In Section 5,
we will describe specific mechanisms to thwart attempts to
compromise the integrity of ring assignment.

When a DOM element acts as an object, ESCUDOallows
web applications to further specify a finer grained security
policy on how this object can be accessed, in addition to the
policy already imposed by the rings. ESCUDOuses Access
Control Lists (ACL) for this purpose. Each ACL consists of
three items: permissions forread, write, anduse op-
erations. The meanings forread andwrite operations
are straightforward; theuse operation needs more expla-
nation. In some scenarios, web browsers implicitly access
objects on behalf of principals, even though the principal
does not explicitly request the access. For example, when-
ever an HTTP request is generated for a target URL, web

browsers automatically attach the cookies belonging to the
target site to the HTTP request. However, the principal who
initiated the request did not explicitly reference the cookies.
Another example is delivering a UI event to a DOM element
using a JavaScript program. We call these implicit accesses
theuse operation.

An ACL is specified using a list of attributes (r, w, x)
in thediv tag, wherer, w, x refer to theread, write, and
use operations respectively. The value of each attribute
identifies the outermost ring required for the operation. For
example, in Figure 2, the outermostAC tag maps the ob-
jects inside its scope to ring 2 (“ring=2”). However, only
principals in ring0 can modify any DOM elements embed-
ded inside the outermostAC tags (“w=0”).

Cookies: Typically, web applications instruct the web
browser to store a cookie in the browser using aset-cookie
header in HTTP. In ESCUDO, we use an additional optional
HTTP header to communicate to the browsers the ring as-
signment and ACL for cookies. Cookies that contain sen-
sitive data such as session identifiers should be mapped to
a higher-privileged ring. Other cookies could be mapped to
lesser-privileged rings. If ring mappings are omitted from
the HTTP header, by default, all cookies are assigned to ring
0.

Native Code API: The ring mappings for native code
APIs such as XMLHttpRequest are also communicated to
ESCUDO using an optional HTTP header. By default, ES-
CUDO assigns native code API such as XMLHttpRequest
to the highest-privileged ring 0, conforming to the fail-safe
defaults guideline. Web applications may assign the native
code APIs to different rings.

Browser State: ESCUDO mandatorily assigns internal
browser state such as cache and browsing history to ring 0.
In our current model, the ring assignment of browser state is
not configurable. The web browser could manipulate or use
the state information. However, JavaScript programs in the
applications cannot manipulate the state, unless they belong
to ring 0. This is because there are well-known attacks that
abuse this information for tracking users [18].

4.2 The Mandatory Access Control Policy

ESCUDO defines a Mandatory Access Control (MAC)
policy based on rings and ACLs, and this policy controls
how principals in a web page can access the objects.

For the sake of presentation, we use the following nota-
tion for describing the policy:〈P ⊲ O〉 denotes a principal
P trying to perform an operation⊲ on objectO. R(P ) and
R(O) denote the rings of the principal and object respec-
tively. O(P ) andO(O) denote the origin of the principal
and object. We use⊓(O, ⊲) to denote the least-privileged
ring that is allowed to conduct the operation⊲ on the object

6



O. An access request〈P ⊲ O〉 is permitted if and only if
the access is permitted by all the following three rules:

1. The Origin Rule: O(P ) = O(O)

Origin is the unique combination of
〈protocol, domain, port〉 in the URL of the web
application that instantiates the principal or object.
The origin rule requires the principal and object to
belong to the same origin. However, unlike the SOP,
this is not the only basis for access-control decisions.

2. The Ring Rule: R(P ) ≤ R(O)

The ring rule factors the trustworthiness of the princi-
pals and objects into the model. The ring rule requires
that the principal’s ring should be of equal of greater
privilege than the object’s ring.

3. The ACL Rule: R(P ) ≤ ⊓(O, ⊲)

The ACL rule further limits the access control on ob-
jects. The ACL rule requires that the principal’s ring be
at least as privileged as that specified for the operation
by the object’s ACL. Web applications can avoid inter-
ference between JavaScript programs belonging to the
same ring by assigning a more restrictive ring in the
ACL.

However, it should be noted that web applications can-
not associate an ACL with an object that is less re-
strictive than the object’s ring. For example, an object
assigned to ringn cannot have an ACL that permits a
principal belonging ton′, wheren′ > n, to access the
object. Even if the ACL is set incorrectly, the ACL will
be ineffective because the Ring Rule prevents such an
access.

4.3 An Example

To help understand our model, we give a more complete
example in Figure 3. This is an example of a blog appli-
cation. In Line 2, the original blog post (Lines 2-11) is as-
signed to ring 2 as a principal, and its ACL indicates that
only ring 0 has the permission toread/write/use it 1.
The user comment (Lines 14-19) is assigned to ring 3, so
even if there is a malicious script in the user comment, the
script cannot access anything in the original blog post. If a
ring specification is missing, ESCUDO assumes a safe de-
fault value, i.e. the ring attribute will be set to the least-
privileged ring, and the ACL will be set tor=0, w=0,
x=0, allowing only the principals in ring 0 to access it.

5 Security Analysis of Escudo

The key to Escudo’s security enforcement is the safety
and integrity of the configuration provided by the appli-
cation. Because Escudo is a MAC model, Escudo reads

1Please temporarily ignore the number in thenonce attribute. We will
explain the purpose of that attribute in Section 5.

Figure 3. Assigning DOM elements to rings: This
is the web page of a blog application. The original
posted message is isolated from the user com-
ments by assigning them to different rings.

the configuration information provided by the application
and performs the ring mapping exactly once. Escudo’s im-
plementation disallows reassignment of rings, because the
configuration information is not exposed to JavaScript pro-
grams for modification.

We describe additional measures to ensure the safety
of the configuration from tampering. The configuration
information for all the principals and objects maintained
inside the browser is not exposed to JavaScript programs.
However, because the ring mapping for DOM elements
is communicated via HTML, it is vulnerable to certain
tampering methods via HTML and JavaScript. Escudo
enforces some additional rules to prohibit such tampering
methods. Broadly, there are two ways that HTML or
JavaScript could be used for illegally elevating privilege.

(1) A Principal Increasing Privilege: A JavaScript
program may attempt to remap anAC tag to a higher
privileged ring using the DOM API functionsetAttribute.
Recall that the configuration information is not exposed to
JavaScript programs. Therefore, such attempts to modify
the attributes cannot succeed.

(2) A Principal Trying to Create a New Principal
with Elevated Privilege: HTML tags could be vulner-
able to node-splitting because of vulnerabilities in the
application [21]. In a node-splitting attack, an attacker
may prematurely terminate adiv region using</div>,
and then start a newdiv region with a different set of
ring assignments (potentially with higher privileges). This
attack escapes the privilege restriction set on adiv region

7



by web developers. Node-splitting attacks can be prevented
by using markup randomization techniques, which involve
incorporating random nonces in thediv tags (See Lines 2,
11, 14, and 19 in Figure 3). Escudo ignores any</div>
tag whose random nonce does not match the number in
its matchingdiv tag. The random nonces are dynamically
generated when constructing a web page, so adversaries
cannot predict those numbers before they insert their
malicious contents into a web page.

JavaScript programs can add new DOM elements. A ma-
licious JavaScript program may attempt to use this feature
to create a newAC tag with higher privileges. Escudo en-
forces ascoping rule to protect against such attempts. The
scoping rule restricts all child elements of a DOM element
to be mapped to either the same ring or some less privileged
ring. Formally speaking, when adiv tag is labeled with
ring="n", then the privileges of the principals within the
scope of thisdiv tag, including all sub scopes, are bounded
by ring leveln. Escudo’s implementation strictly enforces
this even if the ring specification of the sub scope violates
this rule.

In a properly configured web application, a malicious
principal would belong to the least privileged ring. As a
result, such a malicious principal can only modify DOM el-
ements that are mapped to the least privileged ring for write
operation. That is, a malicious principal can add new DOM
elements in only the least privileged ring. The scoping rule
restricts all child elements of a DOM element to be mapped
to either the same ring or a less privileged ring. As a result,
a malicious principal cannot create a new principal that has
higher privileges than itself. All the DOM modifications
done using the DOM API are subject to the scoping rule.

6 Evaluation

We implemented a prototype of ESCUDO on the Lobo
web browser and evaluated the prototype to ascertain the
feasibility of deploying and using ESCUDO. Our evaluation
assessed the following: (1) how web applications can take
advantage of ESCUDO (2) compatibility with legacy web
applications, (3) resistance to common XSS and CSRF at-
tacks, and (4) performance overhead.

6.1 Implementation

We implemented a prototype of ESCUDO for the Lobo
web browser [34], an extensible Java-based web browser.
Lobo is intended to be a platform for building new client-
side web languages. Therefore, the browser architecture is
designed to be easily extensible. Implementing ESCUDO

on Lobo involved 500 lines of code for extracting, track-
ing, and enforcing the ESCUDOpolicy specified by the web
application. ESCUDO’s implementation can be categorized
into three parts: extracting the security contexts, tracking
the security contexts, and enforcing the access control pol-
icy. The ESCUDOimplementation maintains a security con-

text derived from the configuration information provided by
the application, tracks it through the browser, and makes it
available whenever a principal makes a request. The secu-
rity context is internally maintained data such as the ring
assignments, domain, and ACL for all the principals and
objects. We implemented the ESCUDO Reference Moni-
tor (ERM), which enforces access-decisions based on the
security contexts. The ERM is spread over several places
because the places to embed the checks is specific to the
object type.

6.2 Building ESCUDO-based Web Applica-
tions

We analyzed two open-source web applications, phpBB
and PHP-Calendar, and created ESCUDO configurations
for securing them. phpBB (http://www.phpbb.com/) is a
multi-user message board application and PHP-Calendar
(http://www.php-calendar.com/) is a multi-user online cal-
endar application. We analyzed the principals and objects
in these web applications and understood their security re-
quirements. It did not take more than a day for modifying
either application to use ESCUDO. A developer who knows
the application better would be able to make the changes
faster.

phpBB: phpBB is primarily used to create an online com-
munity, in which users may interact with one another by
posting new topics for discussion, responding to existing
discussion threads, or sending private messages to other
users. The key security concern in phpBB is appropriately
limiting the capabilities of messages posted by users. Table
2 describes the security requirements. Application contents,
such as trusted JavaScript programs and HTML forms in-
cluded into the web page by the application, require access
to the messages, cookies, and the XMLHttpRequest object.
Topics, replies, and private messages, however, do not re-
quire such privileges. Furthermore, user-provided topics,
replies, and private messages are not expected to manipu-
late the contents of the web page. We created an ESCUDO

configuration that enforces these requirements.
The ESCUDO policy for phpBB is described in Table 3.

The head portion of the page contains style information and
some trusted JavaScript programs. These are all assigned
to ring 0 and can be manipulated only from ring 0. The
content enclosed between thebodyand/bodytags is a mix
of application provided content and user-provided topics,
replies, and private messages. The body tags are assigned
to ring 1 and can only be manipulated by principals in rings
0 and 1. Topics, replies, and private messages appearing
inside the body are assigned to ring 3, but their ACL is con-
figured so that they can be manipulated only by principals
in ring 0, 1, and 2. Therefore, content provided by one
user is completely isolated from content provided by an-
other. There are two cookies in the web application, namely
phpbb2mysqldataandphpbb2mysqlsid. Both cookies are

8



Principal Modify Messages (DOM) Access Cookies Access XMLHttpRequest
Application contents Yes Yes Yes
Topics and replies No No No
Private messages No No No

Table 2. Application contents can modify messages, access c ookies, and access the XMLHttpRequest object.
However, topics, replies, and private messages do not have s uch capabilities.

Configuration Cookies XMLHttpRequest Application contents Topics& Replies Private Messages
Ring 1 1 1 3 3

Access-control List
Read access ≤ 1 ≤ 1 ≤ 1 ≤ 2 ≤ 2
Write access ≤ 1 ≤ 1 ≤ 1 ≤2 ≤ 2

Table 3. ESCUDO security configuration for phpBB: Application contents, co okies, and the XMLHttpRequest
object are assigned to ring 1. The ACL for cookies and applica tion-content is set so that it can be accessed only
from rings 0 and 1. Topics, replies, and private messages are assigned to ring 3. The ACL for topics, replies,
and messages are configured to allow only principals in ring 0 -2 to manipulate it, providing isolation between
the messages.

assigned to ring 1. The cookies are attached only to HTTP
requests generated by principals belonging to rings 0 and 1.

phpBB uses a template engine similar toSmartyfor sep-
arating the HTML layout from the internal processing that
produces content for the web page. To specify the ESCUDO

configuration, we made changes in the template for each
web page. Moreover, phpBB creates two session cookies
and sends them to the browser using theset-cookieheader.
There were two places in the source code that create the
cookies. We used theheaderfunction to add an additional
HTTP header to specify the ring mapping for these cookies.

PHP-Calendar: PHP-Calendar is meant to facilitate a
group’s collaborative creating and tracking of events. An
event in PHP-Calendar consists of a text message describ-
ing the event, time, and date of the event. The key security
concern in PHP-Calendar is appropriately limiting the ca-
pabilities of events inside the web application. Table 4 de-
scribes the security requirements for PHP-Calendar. Appli-
cation content requires privileges to modify events, session
cookies, and use the XMLHttpRequest object. However,
events should be prohibited from modifying other events via
the DOM API and are not expected to manipulate cookies
or use the XMLHttpRequest object. The security require-
ments for the PHP-Calendar application are very similar to
phpBB.

We created an ESCUDO configuration for enforcing the
security requirements. Table 5 describes the ESCUDO pol-
icy for PHP-Calendar. In all the web pages inside PHP-
Calendar, the body of the web page is a mix of application
content and user created events. The content enclosed be-
tween the body tags is mapped to ring 1 and its ACL is
configured to permit manipulation only by rings 0 and 1.
However, as allowed by the scoping rule, the individual cal-
endar events that appear within the body are assigned to ring

3 and configured to allow manipulation by rings 0, 1, and
2. Therefore, the various calendar events are isolated from
one another. All the session cookies in the application are
assigned to ring 1, along with the XMLHttpRequest object.

PHP-Calendar has created an HTML type system using
PHP classes for separating the HTML layout from the inter-
nal processing required for producing content for the web
page. This organization made it easier to modify the layout
to incorporate the isolation policies. For specifying the ring
mapping for cookies, we use the same technique as we used
for phpBB.

Framework Support for E SCUDO Configuration: Cre-
ating ESCUDO configurations for static web pages is very
straightforward because the configuration can be directly
embedded in the web page and is not expected to change.
In the case of web applications with significant portions of
dynamic code, we need more systematic methods for spec-
ifying the configurations. Otherwise, specifying the config-
uration will be cumbersome.

HTML template engines provide a structured method for
isolating the view elements from the business logic. The
view elements are specified in a template and data com-
puted at run-time is plugged into the template to create the
web page. The ESCUDO configuration can be specified in
the template, isolating the configuration from dynamic data.
Sophisticated template engines such as StringTemplate [29]
provide a stricter separation between view and model, mak-
ing it easy to manage ESCUDO configurations for large-
scale web applications.

Language-based information flow could also be used to
create ESCUDO configurations. The SIF framework is an
extension of the Java Servlet framework to enforce confi-
dentiality and integrity policies at run-time using language-
based information flow [10]. In SIF, developer provides

9



Principal Modify Messages (DOM) Access Cookies Access XMLHttpRequest
Application content Yes Yes Yes

Calendar events No No No

Table 4. Application content can modify messages, access co okies, and access the XMLHttpRequest object.
However, calendar events do not have such capabilities.

Configuration Cookies XMLHttpRequest Application content Calendar events
Ring 1 1 1 3

Access-control List
Read access ≤ 1 ≤ 1 ≤ 1 ≤ 2
Write access ≤ 1 ≤ 1 ≤ 1 ≤ 2

Table 5. ESCUDO security configuration for PHP-Calendar: Application cont ent, cookies, and the XMLHttpRe-
quest object are assigned to ring 1. The ACL for cookies and ap plication-content is set so that it can be accessed
only from rings 0 and 1. Calendar events are assigned to ring 3 . The ACL for calendar events is configured to
allow only principals in ring 0-2 to manipulate it, providin g isolation between the events.

annotations in the source code to mark the confidentiality
and integrity policies. These policies are then enforced at
run-time when the program executes at the server. The con-
fidentiality and integrity policies on the data can be used
to automatically derive the ESCUDO configuration for the
web page, when the web page is created. We are currently
working on an SIF extension that could achieve this. We are
unable to describe the extension in detail because of space
limitations.

6.3 Compatibility with Legacy Applica-
tions

There are two types of compatibility concerns with re-
spect to ESCUDO: (1) compatibility of ESCUDO-configured
applications with non-ESCUDObrowsers, and (2) compati-
bility of ESCUDO-based browsers with non-ESCUDOappli-
cations.

ESCUDO-configured applications are compatible with
non-ESCUDObrowsers. The only aspect that distinguishes
an ESCUDO-based application is the availability of ring
mappings for cookies, the XMLHttpRequest API, and
DOM objects. For DOM objects, ring mappings are spec-
ified usingAC tags, which are additional attributes in the
div tag. Non-ESCUDO browsers would simply ignore
these attributes. For cookies and the XMLHttpRequest API,
ring mappings are specified using an optional HTTP header;
they also will be ignored by non-ESCUDObrowsers.

ESCUDO-based browsers are also compatible with non-
ESCUDO applications. Non-ESCUDO applications do not
provide any ring mapping. Therefore, all principals and
object inside the application are assigned to a single ring,
effectively mimicking the same-origin policy.

6.4 Defense Effectiveness

We evaluated the effectiveness of ESCUDO in address-
ing common XSS and CSRF problems. We created XSS

and CSRF attacks for both applications. For the purpose of
evaluation, we removed some protection mechanisms in the
applications to facilitate the attacks. In both applications,
we removed the input validation routines to facilitate XSS
attacks. In phpBB, we removed the secret-token validation
protection to facilitate CSRF attacks. PHP-Calendar had no
protection mechanisms for CSRF attacks.

We created 4 XSS attacks for each web applications. In
phpBB, we created XSS attacks for posting new messages
on behalf of victim users and for modifying existing mes-
sages. In PHP-Calendar, we created XSS attacks for cre-
ating new events on behalf of victim users, and modifying
existing events. All the attacks were neutralized in the pres-
ence of ESCUDO. This is because we structured the appli-
cation to map all user-influenced regions to belong to ring
3.

We created five CSRF attacks for each web applications.
We set up a malicious web site that crafted cross-origin
requests for the two web applications, when accessed by
a user. When accessed using our ESCUDO-enabled Lobo
browser, the malicious site still issued the requests for the
two web applications. However, ESCUDOdid not attach the
session cookie automatically to the requests (because of the
insufficient privileges of the principals), neutralizing the at-
tacks.

6.5 Performance Overhead

ESCUDO’s execution is invoked during both parsing and
rendering of web pages and while responding to UI events.
Therefore, to measure the performance overhead from using
ESCUDO, we measured the slowdown in both activities. We
instrumented Lobo to measure the amount of time taken to
parse the web page and also to respond to UI events. In
both cases, we did not observe any noticeable overhead in
any of the activities. We setup 8 web pages varying amounts
of AC tags and dynamic content. To measure the overhead

10



 20

 40

 60

 80

 100

 120

 140

 160

 180

P
ar

si
ng

 a
nd

 r
en

de
rin

g 
tim

e 
(m

s)
Without Escudo Escudo

Figure 4. Performance overhead in parsing and
rendering (in 8 different scenarios).

we compared the time taken for parsing and rendering the
8 pages and averaged the rendering time over 90 executions
(Figure 4). The average overhead was 5.09%. ESCUDO

primarily does bookkeeping to keep track of the principals
and this activity does not add any significant cost. Similarly,
we did not notice any overhead for UI event handling.

7 Related Work

Same-origin policy (SOP) extensions:Jackson et al. [18]
extends the SOP to browser cache content and visited link
information to protect user privacy. Livshits and Ulfar [27]
extends the SOP to additionally account for the principal
names added to tag groups for neutralizing code-injection
attacks. Karlof et al. [24] extends the SOP to account for
certificate errors in the origin to distinguish resources inthe
authentic domain from a spoofed domain to detect dynamic-
pharming attacks. While each of these proposals addresses
a specific shortcoming in the SOP, they do not address the
general gap between the fundamental model and the secu-
rity requirements of modern web applications. ESCUDOis a
fine-grained protection model specifically designed to meet
the protection needs of modern web applications.
New browser architectures:The OP web browser isolates
each web page instance and various browser components
using OS processes [14]. The architecture makes communi-
cation between components explicit and interposes itself in
all inter-process communication to provide isolation guar-
antees. Tahoma isolates each instance of a web applica-
tion inside the browser using separate virtual machines [20].
The policy for identifying program boundaries and the per-
missible characteristics, such as which URL may be visited
in each VM, are specified in a manifest. Essentially, these
are two different approaches for isolating web applications
from one another and limiting their permissible behavior.
Both share the weakness that the granularity of protection is
the web page, rather than objects within the page. In com-
parison, ESCUDOprovides more fine-grained protection.

Chromium [5, 31] and Gazelle [38] are two new web
browser architectures that bifurcate the browser into two
portions, kernel and applications, for achieving better secu-
rity and reliability. However, the access control mechanism
is still based on the same-origin policy.

XSS and CSRF solutions:Current work has proposed sev-
eral solutions for XSS and CSRF solutions. Approaches
to XSS include taint-tracking [16, 28, 30], pure client-side
solutions [26, 37], pure server-side approaches [9], and
co-operating defenses [21]. Similarly, cross-site-request
forgery solutions can be categorized into client-side meth-
ods [22], HTTP referrer header validation [25], propos-
als for new headers [4], and secret-token validation tech-
niques [23]. All these solutions are attack-specific patches
to the application, framework, or browser. In contrast to
these solutions that address the symptoms of the underlying
problem, ESCUDO is not a patch for XSS or CSRF prob-
lems. Rather, ESCUDO is a fine-grained protection model
for web browsers. XSS and CSRF problems are thwarted
as a side effect of addressing the fundamental weakness in
the protection model.

In addition to patching, input validation and sanitiza-
tion is a basic and primitive defensive coding technique for
avoiding XSS. Frameworks such as PHP and ASP.NET pro-
vide libraries for this purpose. Filtering and sanitizing in-
put, although useful as a sanity check, may be bypassed by
known evasion techniques [15, 17]. As we showed earlier
in the paper, ESCUDO prevents such attacks even when the
front-line defense has been bypassed.

Mashup solutions: Mashups applications integrate con-
tent from several applications from differing origins into
one web page. A key security concern in such applica-
tions is isolating the resources of each application from
one another. Several frame-based design proposals for
mashups have contributed new primitives and communica-
tion methods with minimal or no changes to the browser
[3, 11, 13, 19]. Still, these proposals have a coarse-grained
privileged model because they are based on the same-origin
policy. Mashups are outside the scope of this paper. How-
ever, ESCUDO’s fine-grained protection model could be ex-
tended to address security requirements for mashup applica-
tions by appropriately describing the relationship between
the rings of applications from different origins.

JavaScript verifiers: There are several static and dynamic
verifiers that could be used to verify conformance of a
JavaScript program to a safe subset of the language [1, 2,
12, 39]. The primary target of these tools are applications
that embed untrusted and semi-trusted JavaScript programs
from third parties. Verifiers can be considered as an alter-
native approach to dealing with the web browser access-
control failure. However, a publisher should trust the con-
tent provider to use the verifier on the JavaScript program.
For example, a publisher may lease a portion of his page
to an advertisement network. Currently, the publisher has
to trust the advertising network to use a verifier on the
JavaScript program provided to display the advertisement.

11



In the case of ESCUDO, a publisher could take advantage
of the browser protection model to enforce restrictions on
the embedded JavaScript content rather than trusting an ad-
vertisement network. Furthermore, ESCUDO is generic pro-
tection model and constraints not only JavaScript programs,
but also HTTP-request initiating principals. Therefore, ES-
CUDO can restrict the actions of an untrustworthy HTTP-
request initiating principal manipulating more trustworthy
resources (eg. CSRF attacks), but JavaScript verifiers can-
not do this because these principals are outside the scope of
their protection.

8 Conclusion

There is a disconnection between the protection needs
of modern web applications and the prevailing protection
model–same-origin policy. We outlined three character-
istics that a protection model should have to address the
disconnection. We presented ESCUDO, a new protection
model that is systematically designed to fulfill the three re-
quirements using mandatory access-control principles. We
implemented a prototype of ESCUDO in the Lobo web
browser, and illustrated how web applications can use ES-
CUDO to secure their resources using case studies. Our eval-
uations results indicate that ESCUDO is a practical access-
control model. In addition, ESCUDO can be incrementally
deployed because it retains backward compatibility with
legacy applications.

References

[1] Caja. http://code.google.com/p/google-caja/.

[2] Web Sandbox.http://websandbox.livelabs.com/.

[3] MashupOS: operating system abstractions for client mashups. In
HOTOS, 2007.

[4] A. Barth, C. Jackson, and J. C. Mitchell. Robust defensesfor cross-
site request forgery. InACM CCS, 2008.

[5] A. Barth, C. Jackson, and C. Reis. The security architecture
of chromium browser. http://crypto.stanford.edu/
websec/chromium/.

[6] D. E. Bell and L. J. La Padula. Secure Computer System: Unified
Exposition and Multics Interpretation, 1976.

[7] K. J. Biba. Integrity Considerations for Secure Computer Systems,
April 1977.

[8] M. A. Bishop. The Art and Science of Computer Security. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[9] P. Bisht and V. Venkatakrishnan. XSS-GUARD: Precise Dynamic
Prevention of Cross-Site Scripting Attacks . InDIMVA, 2008.

[10] S. Chong, K. Vikram, and A. C. Myers. Sif: enforcing confidentiality
and integrity in web applications. InUSENIX-SS, 2007.

[11] S. Crites, F. Hsu, and H. Chen. Omash: enabling secure web mashups
via object abstractions. InACM CCS, 2008.

[12] D. Crockford. ADSafe.http://www.adsafe.org.

[13] F. De Keukelaere, S. Bhola, M. Steiner, S. Chari, and S. Yoshihama.
Smash: secure component model for cross-domain mashups on un-
modified browsers. InWWW, 2008.

[14] C. Grier, S. Tang, and S. T. King. Secure web browsing with the op
web browser. InIEEE S&P, 2008.

[15] J. Grossman. Cross-site scripting worms and viruses. The impending
threat and the best defense.http://www.whitehatsec.com/
downloads/WHXSSThreats.pdf.

[16] M. V. Gundy and H. Chen. Noncespaces: Using randomization to
enforce information flow tracking and thwart cross-site scripting at-
tacks. InNDSS, 2009.

[17] R. Hansen. XSS cheat sheet.http://ha.ckers.org/xss.
html.

[18] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Protecting
browser state from web privacy attacks. InWWW, 2006.

[19] C. Jackson and H. J. Wang. Subspace: secure cross-domain commu-
nication for web mashups. InWWW, 2007.

[20] R. C. Jacob, R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy.
A safety-oriented platform for web applications. InIEEE S&P, 2006.

[21] T. Jim, N. Swamy, and M. Hicks. Defeating script injection attacks
with browser-enforced embedded policies. InWWW, 2007.

[22] M. Johns and J. Winter. RequestRodeo: Client-side protection
against session riding. InOWASP Europe, 2006.

[23] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross site request
forgery attacks. InIEEE S&P, 2006.

[24] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner. Dynamic pharm-
ing attacks and locked same-origin policies for web browsers. In
ACM CCS, 2007.

[25] F. Kerschbaum. Simple cross-site attack prevention. InSecureComm,
2007.

[26] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes:a client-
side solution for mitigating cross-site scripting attacks. In ACM SAC,
2006.

[27] B. Livshits and U. Erlingsson. Using web application construction
frameworks to protect against code injection attacks. InPLAS, 2007.

[28] Y. Nadji, P. Saxena, and D. Song. Document structure integrity: A
robust basis for cross-site scripting defense. InNDSS, 2009.

[29] T. J. Parr. Enforcing strict model-view separation in template en-
gines. InWWW, 2004.

[30] T. Pietraszek and C. V. Berghe. Defending against injection attacks
through context-sensitive string evaluation. InRAID, 2005.

[31] C. Reis and S. D. Gribble. Isolating web programs in modern browser
architectures. InEuroSys, 2009.

[32] J. H. Saltzer and M. D. Schroeder. The protection of information in
computer systems.Proceedings of the IEEE, 1975.

[33] M. D. Schroeder and J. H. Saltzer. A hardware architecture for im-
plementing protection rings.Commun. ACM, 15(3), 1972.

[34] J. Solorzano. The Lobo Project.http://lobobrowser.org/.

[35] M. Ter Louw, P. Bisht, and V. Venkatakrishnan. Analysisof hypertext
isolation techniques for XSS prevention. InW2SP, 2008.

[36] A. Vance. Times web ads show security breach.http:
//www.nytimes.com/2009/09/15/technology/
internet/15adco.html.

[37] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vi-
gna. Cross-site scripting prevention with dynamic data tainting and
static analysis. InNDSS, 2007.

[38] H. Wang, C. Grier, A. Moshchuk, S. King, P. Choudury, andH. Ven-
ter. The multi-principal os construction of the gazelle webbrowser.
In USENIX-SS, 2009.

[39] K. Zyp. Secure Mashups with dojox.secure. http:
//www.sitepen.com/blog/2008/08/01/
secure-mashups-with-dojoxsecure/.

12


