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Abstract

Grid computing is a type of distributed comput-
ing that has shown promising applications in many fields.
A great concern in grid computing is the cheating prob-
lem described in the following: a participant is given
D = {x1, . . . , xn}, it needs to computef(x) for all
x ∈ D and return the results of interest to the supervi-
sor. How does the supervisor efficiently ensure that the par-
ticipant has computedf(x) for all the inputs inD, rather
than a subset of it? If participants get paid for conduct-
ing the task, there are incentives for cheating. In this
paper, we propose a novel scheme to achieve the uncheat-
able grid computing. Our scheme uses a sampling tech-
nique and the Merkle-tree based commitment technique
to achieve efficient and viable uncheatable grid comput-
ing.

1. Introduction

The increasing complexity of computations, better pro-
cessing power of the personal computers and the ever in-
creasing reach and speed of the Internet have laid down
the path for grid computing.Computational gridis a novel,
evolving infrastructure that provides unified, coordinated
access to computing resources such as processor cycles,
storage, etc. Wide variety of systems, from small worksta-
tions to supercomputers can be linked to a grid to form a
powerful virtual computer. All the complexities involved in
managing resources of a grid are hidden from the clients,
providing a seamless access to computing resources. As a
great advancement towards cost reduction, computational
grids can be used as a replacement for supercomputers that
are presently used in many computationally intensive scien-
tific problems [1, 7].

∗ This work was supported in part by Grant IIS-0219560 and IIS-
0312366 from the United States National Science Foundationand by
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The class of problems dealt by grid computing are those
which involve tremendous computations and can be broken
down into independent tasks. A general grid computing en-
vironment includes asupervisorand a group ofparticipants
who allow the idle cycles of their processors to be used for
the computations. The participants are totally ignorant of
each other and after completing their tasks report back the
results to the supervisor.

Past few years have seen a tremendous growth in grid
computing with its effect being felt in the biotechnology in-
dustry, entertainment industry, financial industry, etc. The
success of the projects like SETI@home [2], IBM small-
pox research [3], GIMPS [4] has made the potential of grid
computing visible.

For instance, IBM’s smallpox research [3] uses grid
computing to find potential drugs to counter the smallpox
virus. Its main task is to screen hundreds of thousands of
molecules, a task that can take years even with supercom-
puters. By downloading and running the software, partic-
ipants can add their CPUs to the global grid. Every time
their computers are idle, the computing resources can be
contributed to the grid, accelerating the screening process
while dramatically reducing the cost of the project. The
result is that rather than spending years, it will be pos-
sible to screen hundreds of millions of molecules in just
months. Another highly-profiled grid computing project is
SETI@home [2], which is a scientific experiment that uses
Internet-connected computers in the Search for Extraterres-
trial Intelligence (SETI). SETI@home has more than4.5
million users contributing their computers’ unused process-
ing power, to form a15 Teraflops grid, faster than IBM’s
most powerful supercomputerASCI White(12 Teraflops).
Also the cost of the SETI grid is only500K dollars whereas
ASCI White costs110 million dollars [2].

However the untrusted environments in which the com-
putations are performed tend to cast suspicion on the verac-
ity of the results returned by the participants. The partici-
pant may not have performed the necessary computations
but claims to have done so. This cheating behavior, if un-
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detected, may render the results useless. Project managers
from SETI@home have reportedly uncovered attempts by
some users “to forge the amount of time they have donated
in order to move up on the Web listings of top contribu-
tors” [5]. Yet SETI participants are volunteers who do not
get paid for the cycles they contribute. When participants
are paid for their contribution, they have strong incentives
to cheat for maximizing their gain.

Therefore, we need methods to detect the cheating be-
haviors in grid computing. We formulate the problem of
uncheatable grid computingin the following:

Problem 1 (Uncheatable Grid Computing) A participant is
assigned a task consisting of computingf(x) for all the in-
putsx ∈ D = {x1, . . . , xn}, wheren = |D|; the partic-
ipant needs to return the results of interest to the supervi-
sor. A dishonest participant might computef(x) for only
x ∈ D′, whereD′ is a subset ofD, but claims to have
computedf for all the inputs.How does the supervisor effi-
ciently detect whether the participant is telling a truth ora
lie?

A straightforward solution is todouble-checkevery re-
sult. The supervisor can assign the same task to more
than one participant and compare their results. This sim-
ple scheme leads to the wastage of processor cycles that are
precious resources in grid computing. Moreover, it intro-
ducesO(n) communication cost for each participant. Note
that in grid computing, the supervisor only needs the par-
ticipant to return the results of interest, which is usuallya
very small number compared ton. ThereforeO(n) over-
head is substantial.

An improved solution is to usesamplingtechniques. The
supervisor randomly selects a small number of inputs from
D (we call these randomly selected inputs samples or sam-
ple inputs); it only double-checks the results of these sam-
ple inputs. If the dishonest participant computes only one
half of the inputs, the probability that it can successfully
cheat the supervisor is one out of2m, wherem is the num-
ber of samples. If we makem large enough, e.g.m = 50,
the cheating is almost impossible. This solution has a very
small computational overhead (O(m)), becausem ≪ n.
However, this scheme still suffers from theO(n) commu-
nication cost because it requires the participant to send all
the results back to the supervisor, including those that are
of no interest to the supervisor. To improve this situation,
we have developed a Commitment-Based Sampling (CBS)
scheme. Our scheme reduces the communication overhead
to O(m log n). Becausen is usually large (e.g.,n = 240),
this result is a substantial improvement.

1.1. Related Work

To defeat cheating in grid computing, Golle and Mironov
proposed a ringer scheme [8]. In the ringer scheme, the su-

pervisor sends to the participant some pre-computed results,
without disclosing the corresponding inputs. The partici-
pant must find out those secret inputs. Golle and Mironov
have shown that by selecting the secret inputs in proper
ways, the chance for a participant to cheat successfully is
slim. This scheme is generally referred to as theringer
scheme. The ringer scheme assumes that finding the secret
inputs from the pre-computed results is no easier than us-
ing the brute-force approach to try all the inputs. Therefore
the functionf must have the one-way property, i.e., it is
difficult to find x from f(x). The ringer scheme is thus re-
stricted to computations that have such a one-way property
and it cannot be applied to generic computations.

Szada, Lawson, and Owen extend the ringer scheme to
deal with other general classes of computations, including
optimization and Monte Carlo simulations [10]. They pro-
pose effective ways to choose ringers for those computa-
tions. It is still unknown whether the schemes proposed
in [10] can be extended further to generic computations.

2. Problem Definition

2.1. Model of Grid Computing

We consider a grid computing in whichuntrusted par-
ticipantsare taking part. The computation is organized by a
supervisor. Formally, such computations are defined in our
model by the following elements:

• A function f : X 7→ T defined on a finite domain
X. The goal of the computation is to evaluatef on all
x ∈ X. For the purpose of distributing the computa-
tion, the supervisor partitionX into subsets. The eval-
uation off on subsetXi is assigned to participanti.

• A screenerS. The screener is a program that takes as
input a pair of the form(x; f(x)) for x ∈ X, and re-
turns a strings = S(x; f(x)). S is intended to screen
for “valuable” outputs off that are reported to the su-
pervisor by means of the strings. We assume that the
run-time of S is of negligible cost compared to the
evaluation off .

2.2. Models of Cheating

A participant can choose to cheat for a variety of rea-
sons. We categorize the cheating using the following two
models. We assume that the participant is given a domain
D ⊂ X, and its task is to computef(x) for all x ∈ D.
From now on, we useD as the domain off for the partici-
pant.

• Semi-Honest Cheating Model:In this model, the cheat-
ing participant follows the supervisor’s computations
with one exception: forx ∈ Ď ⊂ D, the participant
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usesf̌(x) as the result off(x). Functionf̌ is usually
much less expensive than functionf ; for instance,f̌
can be a random guess. The goal of the cheating par-
ticipant in this model is to reduce the amount of com-
putations, such that it can maximize its gain by “per-
forming” more tasks during the same period of time.

• Malicious Cheating Model:In this model, the behav-
ior of the participant can be arbitrary. For example, a
malicious participant might have calculated function
f on all x ∈ D, but when it computes the screener
functionS, instead of computingS(x; f(x)), it might
computeS(x; z), wherez is random number. In other
words, the participant intentionally returns wrong re-
sults to the supervisor, for the purpose of disrupting
the computations.

To maximize their gains, rational cheaters tend to use
minimal cost to falsify the contributions they have never
made. Their behaviors fall into the semi-honest cheating
model. Therefore, in this paper, we focus on thesemi-honest
cheating model.

2.3. Definition of Uncheatable Grid Computing

Assume that a participant is assigned a task that consists
of computingf(x) for all x ∈ D, whereD = {x1, . . . , xn}.
If a participant computes the functionf only on x ∈ D′,
whereD′ ⊆ D, we define thehonesty ratior as the value
of |D′|

|D| . When the participant is fully honest, the honesty ra-
tio is r = 1; otherwiser < 1.

Definition 2.1 (Uncheatable Grid Computing) LetPr(r)
be the probability that a participant with honesty ratior

can cheat without being detected by the supervisor. Let
Ccheating be the expected cost of successful cheating, and
Ctask be the overall computation cost of the required task.
We say a grid computing isuncheatableif one of the fol-
lowing or both inequalities are true:

Pr(r) < ε, for a givenε(0 < ε ≤ 1)

or Ccheating > Ctask.

3. The Commitment-Based Sampling Scheme

The naive sampling scheme can solve the uncheatable
grid computing problem with efficient computation cost, but
it requires expensiveO(n) communication cost. To each
participant, this cost might not be too high, but to the su-
pervisor, the cost might be overwhelming. For example, if
the task of grid computing is to break a 64-bit password us-
ing the brute force method, the total communication cost at
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Figure 1. CBS Scheme: the Merkle Tree and
the Verification

the supervisor side isO(264), which is about16 million ter-
abytes. Very few networks can handle such a heavy network
load.

Is it possible not to require each participant to send all
the outputs? Or is it possible just to ask the participant to
send the results for those sample inputs? The solution is
non-trivial because we have to prevent the participant from
computing the results for the sample inputs after it learns
which inputs are samples. For example, ifxk is selected
as a sample, the supervisor needsf(xk) from the partici-
pant to check whether the participant has correctly calcu-
latedf(xk). However, without a proper security measure,
the participant, who has not computedf(xk), can always
compute it after learningxk is a sample. This defeats the
purpose of sampling.

One way to solve the above problem is to usecommit-
ment. Before the participant knows thatxk is a sample, it
needs to send the commitment forf(xk) to the supervisor.
Once the participant commits, it cannot changef(xk) with-
out being caught. The supervisor then tellsxk to the partic-
ipant, which has to reply with the original value off(xk)
that was committed. Since any input has equal probability
to become a sample, this means the participant has to com-
mit all the results for thosen inputs; how can it be done effi-
ciently? Obviously the participant cannot afford to send the
commitment for each single input, because theO(n) com-
munication cost makes it no better than the naive sampling
scheme. The participant cannot hash all thesen results to-
gether to form one single commitment either; although this
method achieves the commitment for all results, it makes
verifying a single result difficult because to do that, the su-
pervisor needs to know all the othern − 1 results.

In summary, we need a commitment scheme that (1) al-
lows all then results to be committed efficiently, and (2) al-
lows the verification of each single result to be performed
efficiently. We use the Merkle Tree [9] to achieve these
goals.
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3.1. The Commitment-Based Sampling Scheme

The Merkle tree (also called hash tree) is a complete bi-
nary tree equipped with a functionhash and an assignment
Φ, which maps a set of nodes to a set of a fixed-size strings.
In a Merkle tree, the leaves of the tree contain the data, and
theΦ value of an internal tree node is the hash value of the
concatenation of theΦ values of its two children.

To build a Merkle tree for our problem, the participant
constructsn leavesL1, . . . , Ln. Then it builds a complete
binary tree with these leaves. TheΦ value of each node is
defined as the following (we useV to denote an internal tree
node, andVleft andVright to denoteV ’s two children):

Φ(Li) = f(xi), for i = 1, . . . , n

Φ(V ) = hash(Φ(Vleft)||Φ(Vright)), (1)

where “||” represents the concatenation of two strings, and
the functionhash is a one-way hash function such as MD5
or SHA. To make a commitment on all the data on the
leaves, the participant just needs to sendΦ(R) to the su-
pervisor, whereR is the root of the Merkle tree. Fig. 1 de-
picts an example of the Merkle tree built for our purpose.

After receiving the commitment, the supervisor ran-
domly selects a number of samples, and sends them to
the participant. The participant needs to provide the evi-
dence to show that, before making the commitment, it has
already computedf for those samples. Letx be a sam-
ple, andL be x’s corresponding leaf node in the tree.
Let λ denote the path fromL to the root (not includ-
ing the root), and letH represent the length of the path.
In order to prove its honesty regardingf(x), the partici-
pant sendsf(x) to the supervisor; in addition, for each node
v ∈ λ, the participant also sendsΦ(v’s sibling) to the su-
pervisor. We useλ1, . . . , λH to represent theseΦ val-
ues.

To verify the participant’s honesty on samplex, the su-
pervisor first verifies the correctness off(x). If f(x) sent by
the participant is incorrect, the participant is caught cheat-
ing immediately. Even iff(x) from the participant is cor-
rect, it cannot prove the participant’s honesty because the
participant, who did not computef(x), can compute the
correctf(x) after knowingx is the sample. The supervisor
uses the commitmentΦ(R) made by the participant to en-
sure that the correctf(x) is used at the time of building the
Merkle tree. To achieve this, the supervisor usesf(x) (cor-
rect) andλ1, . . . , λH to reconstruct the root of the Merkle
treeR′, thus gettingΦ(R′). Only if Φ(R′) = Φ(R), will
the supervisor trust that the participant has correctly com-
putedf(x) before building the Merkle tree. The communi-
cation cost of this process is proportional to the height of
the tree. Because the Merkle tree is a complete binary tree
with n leaves, its height isO(log n), wheren = |D|.

We demonstrate how the verification works using an ex-
ample depicted in Fig. 1. Assume thatx3 is selected as an
sample, whose corresponding leaf node in the tree isL3.
The participant finds the path fromL3 to the root (depicted
by the double lines). Then the participant sends to the super-
visorf(x3) and all theΦ values of the sibling nodes (L4, A,
D, andF ) along the path. The sibling nodes are depicted by
the black nodes in the figure. To verify whether, before com-
mitting Φ(R), the participant has computedf(x3) or not,
the supervisor first makes suref(x3) is correct. Then the su-
pervisor reconstructs the rootR′ from f(x3), Φ(L4), Φ(A),
Φ(D), andΦ(F ).1 If Φ(R′) = Φ(R), we can say that the
participant knowsf(x3) before building the Merkle tree.

We call the scheme described above the Commitment-
Based Sampling (CBS) scheme. Its steps are described in
the following:

Step 1: Building Merkle Tree. Using Eq. (1), the partici-
pant builds a Merkle tree with leaf nodesL1, . . . , Ln, and
Φ(Li) = f(xi), for i = 1, . . . , n. The participant then sends
Φ(R) to the supervisor.

Step 2: Sample Selection.The supervisor randomly gen-
eratesm numbers (i1, . . ., im) in domain[1, n], and sends
thesem numbers to the participant. These numbers are the
sample inputs.

Step 3: Participant’s Proof of Honesty. For eachi ∈
{i1, . . . , im}, the participant finds the pathλ from the leaf
nodeLi to the rootR; then for each nodev ∈ λ, the par-
ticipant sends to the supervisorΦ(v’s sibling). TheseΦ val-
ues are denoted byλ1, . . . , λH . The participant also sends
f(xi) to the supervisor.

Step 4: Supervisor’s Verification. For each
i ∈ {i1, . . . , im}, the supervisor verifies whetherf(xi)
from the participant is correct.

1. If f(xi) is incorrect, the verification stops and the par-
ticipant is caught cheating.

2. If f(xi) is correct, using the recursive procedure de-
fined in Eq. (1), the supervisor reconstructs the root
Φ(R′) of the hash tree fromf(xi) andλ1, . . . , λH . If
Φ(R) 6= Φ(R′), the verification stops and the partici-
pant is caught cheating. IfΦ(R) = Φ(R′), the verifi-
cation succeeds for the samplei.

If the above verification succeeds for all
i ∈ {i1, . . . , im}, the supervisor is convinced that,
with high probability, the participant has not cheated.

1 The reconstruction ofR′ can be conducted using the following pro-
cedure: withf(x3) and Φ(L4), we can computeΦ(B); then with
Φ(A), we can computeΦ(C); then with Φ(D), we can compute
Φ(E); finally we computeΦ(R′) from Φ(E) andΦ(F ).
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To verify whetherf(xi) is correct does not necessarily
mean that the supervisor has to re-computef(xi). There are
many computations whose verification is much less expen-
sive than the computations themselves. For example, factor-
ing large numbers is an expensive computation, but verify-
ing the factoring results is trivial.

Regarding the communication cost, for each sample, the
participant needs to sendO(log n) data to the supervisor.
Therefore, the total communication overhead form sam-
ples isO(m log n).

3.2. Security Analysis

In the following theorem, we useL to denote the input
x’s corresponding leaf node. We useT to denote the Merkle
tree built by the participant, and we useR to denote the root
of the tree.

Let λ be the path from the leafL to the rootR, and
let λ1, . . . , λH represent theΦ values of the sibling nodes
along the pathλ. According to the property of the Merkle
tree,Φ(R) can be computed usingΦ(L) andλ1, . . . , λH .
We useΛ(Φ(L), λ1, . . . , λH) = Φ(R) to represent this cal-
culation, whereΦ(R) is already committed to the supervi-
sor by the participant.

Theorem 1 (Soundness).If the participant indeed has
computedf(x) at the time of building the Merkle tree, it
should succeed in proving its honesty onx.

Proof. If the participant is indeed honest, according to
the CBS scheme, when building the Merkle tree, we have
Φ(L) = f(x). Therefore, during the verification, the super-
visor gets

Φ(R′) = Λ(f(x), λ1, . . . , λH)

= Λ(Φ(L), λ1, . . . , λH)

= Φ(R).

Therefore, according to the CBS scheme, the participant
succeeds in proving its honesty onx.

Theorem 2 (Uncheatability).If the participant is dishonest
on f(x), i.e., when building the Merkle tree,Φ(L) 6= f(x).
Using the CBS scheme, it is computationally infeasible for
the participant to convince the supervisor that it knowsf(x)
when building the Merkle tree.

Proof. According to the CBS scheme, the partici-
pant sendsf(x) and λ′

1, . . . , λ
′
H to the supervisor. Af-

ter verifying the correctness off(x), the supervisor uses
Φ(R′) = Λ(f(x), λ′

1, . . . , λ
′
H) to reconstruct the root (de-

noted byR′) of the tree. The supervisor believes that the
participant is honest onf(x) only if Φ(R′) = Φ(R).

If the participant is dishonest andΦ(L) 6= f(x), to cheat
successfully, the participant must findλ′

1, . . . , λ
′
H , such that

Λ(f(x), λ′
1, . . . , λ

′
H)

= Λ(Φ(L), λ1, . . . , λH) = Φ(R).

BecauseΛ consists of a series of one-way hash func-
tions, givenΦ(R), whenΦ(L) 6= f(x), it is computation-
ally infeasible to findλ′

1, . . . , λ
′
H to satisfy the above equa-

tion. This proves that it is computationally infeasible for
the dishonest participant to convince the supervisor that it
knowsf(x) at the time of building the Merkle tree.

In the following theorem, letq be the probability that
the participant can guess the correct result off(x), i.e.,
Prguess(Φ(L) = f(x)) = q. Let D′ be the set of inputs
that are computed honestly by the participant, so honesty
ratio isr = |D′|

|D| .

Theorem 3 Whenm samples are used in the CBS scheme,
The probability that a participant with honesty ratior can
cheat successfully is

Pr(cheating succeeds) = (r + (1 − r)q)m. (2)

Proof. Since each sample is uniformly-randomly selected,
the probability that a samplex belongs toD′ is r. When
x ∈ D′, i.e., the participant has indeed computedf(x),
according to Theorem 1, the participant should be able to
convince the supervisor of its honesty on samplex. When
x ∈ D−D′, i.e., the participant did not computef(x) when
building the tree, according to Theorem 2, it is computation-
ally infeasible for the participant to cheat unlessΦ(L) hap-
pens to equalf(x). SincePrguess(Φ(L) = f(x)) = q,
whenx ∈ D − D′, the probability to cheat successfully is
q.

Combining both cases ofx ∈ D′ andx ∈ D − D′, for
one samplex, the probability that the participant can prove
its honesty on samplex is (r + (1 − r)q). Therefore, the
probability that the participant can prove its honesty on all
m samples is(r + (1 − r)q)m.

To keep the probability of successful cheating below a
small thresholdε, the sample sizem should be

m ≥
log ε

log (r + (1 − r)q)
. (3)

Fig. 2 shows how largem should be for different honesty
ratiosr, givenε = 0.0001. For example, let us consider a
situation where the participant has conducted only one half
of the task, which means only one half of the leaf nodes in
the Merkle tree contain the actually computed results, and
the other half contain guessed results. When the probability
of guessing the correct results is 0.5 (i.e.,q = 0.5), we need
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at least33 samples to ensure the probability of successful
cheating to be belowε = 0.0001. Whenq ≈ 0 (i.e., it is al-
most impossible to make a correct guess onf(x) without
computing it), we only need14 samples.
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Figure 2. Required sample size vs. cheating
efforts ( ε = 0.0001)

3.3. Storage Usage Improvement

It should be noted that the CBS scheme requires the par-
ticipant to store the entire Merkle tree in its memory or hard-
disk, and the amount of space required isO(|D|). Today’s
hard-disk technologies make it possible for a participant to
accept tasks with|D| as large as230 (by using gig-bytes of
storage); however, storage becomes a problem when|D| is
much larger than230.

We noticed that if a task is as large as240, then comput-
ing f(x) must be very fast; otherwise it might take the par-
ticipant unreasonablely long time to finish the task. So we
can make a tradeoff between time and storage in the fol-
lowing way: Assume the height of the entire Merkle tree is
H = log |D|, and the root is at level0. Instead of storing
the entire Merkle tree, the participant only stores the treeup
to levelH − ℓ, where0 < ℓ < H. Fig. 3(a) depicts the part
of the tree that needs to be stored. The total amount of stor-
age required isO( |D|

2ℓ ), a decrease of2ℓ folds.
To prove that it has computedf(x) (in Step 3 of the CBS

scheme), the participant must find the path from the sam-
plex’s corresponding leaf node to the root, and then send to
the supervisor theΦ values of the sibling nodes along this
path. Unfortunately the sibling nodes in the lower part of the
tree cannot be obtained from the storage. The shading area
in Fig. 3(a) represents the subtree that contains the sample
x but not saved in the storage. Fig. 3(b) depicts an exam-
ple of the unsaved subtree. From the figure, we can see that
nodesV1, V2, andV3 are also the sibling nodes along the
path, but theirΦ values are not saved, but need to be recom-
puted. From Fig. 3(b), it is not difficult to see that recom-
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Figure 3. Storage Usage Improvement

puting thoseΦ values requires the rebuilding of the whole
subtree depicted in the shading area. The cost of the rebuild-
ing is O(2ℓ), an increase of2ℓ folds compared to the CBS
scheme.

We use therelative computation overhead (rco)to indi-
cate how theO(2ℓ) computation overhead impacts the en-
tire task. Therco is defined as the ratio of the total com-
putation overhead form samples to the cost of computing
f(x) for all inputs inD. Let fc represent the cost of com-
puting f(x) for one input. LetS = 2H−ℓ+1 represent the
amount of space for storing the partial tree. To rebuild one
subtree of heightℓ, we need to computef functions for2ℓ

inputs. If we ignore the cost of hash function, the cost of re-
building a subtree equals computingf for 2ℓ times. Hence
we have the following formula:

rco =
m · 2ℓ · fc

|D| · fc

=
m · 2ℓ

2H

=
m

2(H−ℓ)
=

2m

S
.

The above equation indicates thatrco is only affected
by m andS, not by the amount of inputs inD. The more
storage a participant uses for storing the tree, the lower
is the relative computation overhead. For example, when
m = 64, if we use4G (232) hard disk space to store the
partial Merkle tree, we haverco = 2−25. This means that,
regardless of how large a task is, compared to the cost of
the task, the computation overhead at the participant side
is negligible when we use4G disk space. Therefore, even
for a task of size240, using4G disk space provides a feasi-
ble solution both storage-wise and computation-wise.
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4. A Non-Interactive CBS Scheme

The CBS scheme has an extra round of interaction be-
tween the supervisor and the participant. This interactionin-
volves the participant’s sending the commitment and the su-
pervisor’s sending the samples. The interaction ensures that
the supervisor sends the samples only after it receives the
commitment. Although the communication cost of this ex-
tra round of interaction is not a concern, the interaction is
often found less appealing because of the implementation
issues involved in grid computing.

In many grid computing architectures, the supervisor
might not be able to directly interact with the participants.
For example, in the GRACE (Grid Architecture for Com-
putational Economy) architecture [6], which represents a
futuristic paradigm of a service oriented computing indus-
try, there exists a Grid Resource Broker (GRB), which acts
as a mediator between the supervisor and the participant.
The GRB is responsible for finding more resources (partici-
pants) and scheduling of tasks among the resources depend-
ing on their availability and capability.

In the GRACE architecture, the supervisor assigns a big
bulk of tasks to GRB, and relies on GRB to interact with
and assign tasks to the participants. The supervisor does not
even know which participant is conducting what tasks. If
the supervisor wants to verify the participant’s honesty on
its own using the CBS scheme, it will be difficult because
GRB hides the participants from the supervisor.

One way to get rid of this extra round of interaction is to
let the participant generate the sample choices. Obviously,
if the participant is to select the samples, the sample selec-
tion must satisfy the following properties:

1. The samples are selectedafter the Merkle tree is built.

2. The samples must be hard to predict.

When the supervisor selects the samples, the above two
requirements are easily enforced because the supervisor
does not tell the participant the sample choices until the par-
ticipant sends the commitment. How can we enforce these
requirements when we rely on the participant to generate
the sample choices?

4.1. A Non-Interactive CBS Scheme

We modified the CBS scheme, so that the sample choices
are generated by the participant. We call this improved
scheme theNon-Interactive CBS (NI-CBS) scheme. Due to
the page limit, we will not repeat the steps that are the same
as in the CBS scheme.

Step 1: Building Merkle Tree. This step is exactly like the
CBS scheme. At the end, the participant sendsΦ(R) to the
supervisor.

Step 2: Sample Selection.Let g be a one-way hash func-
tion. AssumeD = {x1, . . . , xn} is assigned to the partici-
pant. The participant uses the following method to generate
m numbers{i1, . . . , im} in domain[1, n]:

ik = (gk(Φ(R)) mod n) + 1, for k = 1 . . . m (4)

where

gk(Φ(R)) =

{

g(Φ(R)), for k = 1

g(gk−1(Φ(R))), for k = 2 . . . m

Inputsxi, for i ∈ {i1, . . . , im}, are the selected samples.
In other words, thekth sample is the result of applying the
one-way hash functiong onR for k times.

Step 3: Participant’s Proof of Honesty.This step is also
exactly like the CBS scheme.

Step 4: Supervisor’s Verification. Using Eq. (4), the su-
pervisor regenerates the sample choices{i1, . . . , im} from
Φ(R). It then uses the Step 4 of the CBS scheme to ver-
ify the participant’s results.

4.2. Security Analysis

Assume the participant has conducted the computations
only for the inputs inD′, whereD′ ⊂ D, and the honesty
ratio isr = |D′|

|D| < 1. Also assume that the sample choices
generated by the participant areS1, . . . , Sm. The only way
that the participant can cheat successfully is to make sure
that all theSi for i = 1 . . . m fall into D′.2

Assuming the perfect randomness of the one-way hash
values, the probability that all thesem sample choices are in
the set ofD′ is rm. Namely when building the Merkle tree,
the participant can use whatever values to replacef(x) for
x ∈ D − D′, the probability to produce the sample choices
that are all in setD′ is rm.

The one-way hash function acts as an unbiased random-
bit generator for the sample generation. There is no way for
the participant to force the one-way function to produce cer-
tain values or to guess which values it will produce. It is also
computationally infeasible for the participant to work in the
reverse way, i.e., the participant cannot select the samples
first, and then build a Merkle tree that generates these se-
lected samples.

Unfortunately, the non-interactive feature brings up a
potential attack. In the CBS scheme, the participant has
only one chance to cheat. Form = 10 and r = 0.5;
Pr(successfull cheating) =1 in 210. If one cheating at-
tempt fails, the supervisor will not give the participant more
chances to cheat. The probability of1 in 210 tends to be

2 We assume that the probability that the participant can guess the cor-
rect computation results without conducting the computationis negli-
gible, i.e.,q ≈ 0.
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small enough for the interactive scheme, but it is still too
large for the non-interactive scheme. The participant can use
the following strategy to cheat:

1. Build the Merkle tree, using random numbers as the
results off(x) for the inputsx that are not inD′ (i.e.,
x ∈ D − D′).

2. Compute the sample selections from the root of the
Merkle tree. If they are all withinD′, cheating is suc-
cessful; otherwise pick other random numbers asf(x)
for x ∈ D − D′.

3. Revise the Merkle tree based on the newly selected val-
ues, and repeat step (2) until the cheating becomes suc-
cessful.

The participant can use the above strategy to repeatedly
make many cheating attempts until it finds out that all the
m generated samples are inD′. Since the process is non-
interactive, the supervisor knows nothing about these at-
tempts.

There are two ways to defeat this strategy: one way is to
increase the number of samples. For example, we can use
128 samples, because making2128 attempts is a compu-
tationally infeasible task. However, this also increases the
computation cost for the verification at the supervisor side,
because the supervisor now has to verify 128 computations,
much more than it needs to do in the CBS scheme.

Another way to defeat the cheating strategy is to let the
participant pay for all those cheating attempts. If the costof
conducting the cheating becomes more expensive than the
cost of conducting all the required computations (i.e. com-
puting f(x) for all x ∈ D), the cheating brings no bene-
fit. To achieve this, we increase the cost of sample genera-
tion. LetCg be the cost of the one-way functiong, andCf

be the cost of functionf . Because the probability that each
attempt being successful isrm, the expected number of at-
tempts the participant needs to make is1

rm . Therefore, to
make the expected cost of the total cheating attempts more
expensive than the total cost of the task, we need the follow-
ing inequality:

1

rm
· m · Cg ≥ n · Cf . (5)

To achieve the above inequality without increasingm,
we can increaseCg. Most of the one-way functions, such
as MD5, are very fast. To find a one-way functiong such
that Cg satisfies the above inequality, we just need to let
g ≡ (MD5)k, namely applying MD5 fork times, wherek
is a number that makesCg expensive enough. If we let the
left side of the inequality just a slightly greater than the right
side, this extra cost ofg does not bring significant overhead
to the supervisor or thehonestparticipant because the ra-
tio between the cost of sample generation (m · Cg) and the
cost of the entire task (n ·Cf ) is aboutrm, which can be sig-
nificantly small when we choose proper values form.

5. Conclusion and Future Work

We present a scheme to prevent cheating in Grid com-
puting. Our Scheme uses a Commitment-Based Sampling
(CBS) technique to detect whether the participant is cheat-
ing or not. Unlike the old schemes [8, 10], CBS handles
generic computations gracefully. To prevent the participant
from changing the computation results after learning the
samples, the CBS scheme uses the Merkle tree for the par-
ticipant to commit its results before learning the sample se-
lections. The CBS scheme can be used for generic computa-
tions in grid computing. It is efficient in communication as
well as in computation. Based on the CBS scheme, we have
addressed two important issues (1) how to reduce the stor-
age requirement, and (2) how to convert the CBS scheme
from an interactive scheme to a non-interactive scheme.

One assumption made in the CBS scheme scheme is
that |D| should be significantly large. When each partici-
pant is assigned a task with very few inputs, the sampling
scheme does not work well. For example, when|D| = 1,
i.e., each task consists of only one input, the cost of verify-
ing a sample (for the CBS scheme) is as expensive as con-
ducting the task. Therefore, the scheme is no better than the
naive double-check-every-result scheme. Developing effi-
cient schemes for a situation when|D| is small is a chal-
lenging open problem that we plan to pursue.
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