
Detecting Exploit Code Execution in Loadable Kernel Modules

Haizhi Xu Wenliang Du Steve J. Chapin
Systems Assurance Institute

Syracuse University
3-114 CST, 111 College Place, Syracuse, NY 13210, USAfhxu02, wedu, chaping@syr.edu

Abstract

In current extensible monolithic operating systems, load-
able kernel modules (LKM) have unrestricted access to
all portions of kernel memory and I/O space. As a result,
kernel-module exploitation can jeopardize the integrity of
the entire system. In this paper, we analyze the threat that
comes from the implicit trust relationship between the oper-
ating system kernel and loadable kernel modules. We then
present a specification-directed access monitoring tool—
HECK, that detects kernel modules for malicious code ex-
ecution. Inside the module, HECK prevents code execution
on the kernel stack and the data sections; on the bound-
ary, HECK restricts the module’s access to only those kernel
resources necessary for the module’s operation. Our mea-
surements show that our tool incurs 5–23% overhead on
some I/O intensive applications using these modules.

1. Introduction

Loadable Kernel Modules (LKM) are kernel extensions
that can be loaded into operating system kernel dynami-
cally. In extensible operating systems, LKMs are part of the
kernel and are implicitly trusted once loaded into the ker-
nel. The modules are in the same hardware protection do-
main as the hosting kernel and they can access the entire
kernel address space and execute privileged instructions.
Most kernel-space device drivers (e.g., the drivers for sound
cards and CDROMs, and many other extended kernel func-
tions such as the DOS FAT file system) are implemented as
kernel modules.

According to the study of Chou and his colleagues [5],
kernel modules constitute 70% of Linux kernel code; they
account for 70% to 90% of well-known kernel bugs; and the
average bug life time for kernel modules is 1.8 years. Many
kernel modules (e.g. device drivers) are developed under
time restrictions and therefore may not be fully tested for
security properties. Vulnerabilities such as lack of boundary

and pointer checks can lead to kernel-level exploits, which
can jeopardize the integrity of the running kernel. Inside the
kernel, exploit code has the privilege to intercept system ser-
vice routines, to modify interrupt handlers, and to overwrite
kernel data. In such cases, the behavior of the entire sys-
tem may become suspect.

Kernel-level protection is different from user space pro-
tection. Not every application-level protection mechanism
can be applied directly to kernel code, because privileges
of the kernel environment is different from that of the user
space. For example, non-executable user page [21] and non-
executable user stack [29] use virtual memory mapping sup-
port for pages and segments, but inside the kernel, a page
or segment fault can lead to kernel panic. In addition, the
system hardware protection does not isolate kernel modules
from the core kernel and each other. The differences show
us that protecting kernel modules requires both sandboxing
and malicious code prevention.

This paper introduces the design and implementa-
tion of HECK—Hybrid Extension Checker for Kernels—a
specification-directed security monitor for detecting ex-
ploit code execution in kernel modules. HECK restricts
external access from an instruction in a kernel mod-
ule to only the legitimate addresses listed in the specifica-
tion of the module. In addition, HECK prevents the module
from executing code on the kernel stack or in other data sec-
tions of the module.

The contributions of this paper are

1. analyzing the threats from kernel-module exploitation
and the issues in defending kernel-level attacks;

2. detecting malicious code execution from a kernel mod-
ule using a combination of module isolation, specifica-
tion based access control, and software-enforced non-
executable data sections.

Throughout this paper, we use the terms module, kernel
module, and loadable kernel module interchangeably.

2. Problem analysis

In this paper we emphasize protecting benign but vulner-
able (e.g. careless boundary checking) modules. Implemen-
tation errors in kernel modules may be exploited by non-
privileged attackers, as long as they have access to the de-
vice using a vulnerable module. For example, the Windows
ping-of-death packet exploits a careless calculation on the
size of an IP packet, which can lead to smashing the packet
buffer and beyond [11]. An error in the ISO9660 file sys-
tem that performs no checking on the size of symbolic file
names can lead to buffer overflow attacks by feeding a mal-
formed CD with long symbolic files [17]. None of the at-
tacks require root privilege.

The threat that allows kernel modules to compromise
the underlying operating system kernel is due to the im-
plicit trust relationship between the operating system and
its extensions—loadable kernel modules. In monolithic ker-
nels, exploit code in a kernel module can access entire ker-
nel code, data structures, hardware interface, and even the
system protection mechanism. As a result, kernel-level ex-
ploits can break the integrity of the run-time kernel. For
example, exploit code can disable system security mech-
anisms, break system protection, modify system behavior,
escalate user privileges, and deny system services.

Among all the attacks a kernel module faces, malicious
code execution is the most powerful approach for attackers
and is our main target for protection.

Malicious code execution can be launched in the follow-
ing ways:

1. transferring control from a kernel module to a piece of
exploit code located in the data sections of the mod-
ule, on the kernel stack, or in a kernel buffer. This is
analogous to a shell code attack in the user space;

2. calling an unauthorized kernel function, similar to the
return-into-lib(c) attack in user land;

3. overwriting unauthorized kernel data structures con-
taining function pointers, which can be called later on;

4. calling authorized functions with malicious parame-
ters.

All the above attacks need execution of asensitive in-
struction, either a branch instruction or a data access in-
struction overwriting a code pointer, which changes the pro-
gram behavior from benign to malicious.

Sandboxing or isolating a kernel module prevents access
to unrelated kernel sections, but it is not enough for protect-
ing kernel modules. First, sandboxing does not provide fine-
grained controlled access to the kernel (e.g., allowing only
external calls to legitimate kernel functions and returning to
legitimate locations), which is required by the functional-
ity of device drivers; second, sandboxing does not prevent

code execution on the stack or within other data sections in-
side the module.

Due to the limitations above, we augment sandboxing
with malicious code prevention. Malicious code prevention
covers static analysis, compiler-based detections, and run-
time monitoring depending on the deployment stage. We
choose run-time monitoring among these techniques be-
cause it provides the best support for legacy modules. Static
analysis and compiler-based techniques may not be feasi-
ble if the source code is not available, which is especially
true for Windows-based device drivers. Besides, our run-
time monitor can be merged with software-based isolation
by using code instrumentation techniques.

3. Overview of HECK

We focus on detecting and preventing exploit code exe-
cution in vulnerable kernel modules. Our work is based on
three assumptions:� there are unexpected implementation errors in the le-

gitimate kernel modules;� the attacker has no root privilege, but is authorized to
operate on a device using vulnerable kernel modules;� the source code of the modules are trusted, compiled
with a trusted compiler, and the binary images are
stored safely. In Linux, the default system configura-
tion requires root privileges to modify the on-disk ker-
nel module images.

3.1. Restrictions on the kernel modules

From the analysis in section 2 we know that the sensitive
branch instructions and memory access instructions are crit-
ical to exploit code execution and therefore should be care-
fully monitored. We isolate the module, except for allowing
selective operations based on a specification of the legiti-
mate requests. We perform the following restrictions on the
control flow and data flow instructions of the module be-
ing monitored:

1. We monitor branch instructions, if the target addresses
can be derived at run time. Inside the module, we al-
low control transfer within the code section and dis-
allow control transfer to the data sections, heap, and
the kernel stack. The target address, if out of the mod-
ule, must be explicitly named as a legal branch target
by the specification.

Inside the module, malicious code can be located in
the data sections or on the kernel stack, or in the mid-
dle of a legitimate instruction (this attack is not appli-
cable to RISC machines because the size of a RISC in-
struction is fixed). We mark the data sections and the
kernel stack as non-executable sections and check on

every sensitive branch instruction for violation. To pre-
vent jumping to the middle of an instruction, we can
add inter-instruction padding randomly, thereby mov-
ing potential target instructions to unpredictable off-
sets from their original locations. This makes the at-
tack likely to crash rather than finding desirable loca-
tions.

Outside the module, a potentially malicious target
address can be at any location in the kernel. We ex-
tract the legitimate external calls to the kernel func-
tions from static analysis. Then we monitor the exter-
nal calls to ensure that execution passes through only
these legitimate entrance locations and return to the
corresponding legitimate return addresses.

2. In order to avoid unauthorized writes to the unrelated
kernel data, especially code pointers, we do not give a
module unnecessary permissions access to the kernel
data.

To prevent caller frame pointers and return ad-
dresses from being overwritten, we disallow write ac-
cesses to the stack outside the local frame.

Using static analysis, we can obtain only a subset of
the legitimate kernel data accesses. Others are obtained
through function call parameters and resource alloca-
tion functions such askmalloc(). We trust the ker-
nel structures introduced by the permitted kernel func-
tions. If a kernel function calls a module function, we
allow the module function to access to the parame-
ters from the caller and treat hierarchical references
the same way. We allow access to dynamically allo-
cated resources created by the module.

Our security check works on the instruction level. On
this level we do not have full semantic understanding of
the program, so data flow monitoring is difficult. Never-
theless, with the type information from the kernel header
files, we check on some functions that can overwrite ar-
bitrary memory. For example, we interceptstrcpy() to
check whether the source address and the target address vi-
olates the specification.

3.2. The architecture of HECK

One of our goals in designing HECK is providing se-
curity monitoring that is compatible with the legacy kernel
module code. HECK does not require changing the archi-
tecture of the kernel nor does it require module source code.
Instead, HECK deals with compiled modules directly.

HECK can be divided into a specification generation part
and a run-time monitoring part. Statically, HECK gener-
ates a specification describing the module’s legitimate op-
erations on system resources (i.e. kernel functions, kernel
data structures, and I/O ports). The initial static specifica-
tion is augmented with information describing dynamically

user space

kernel space

the OS kernel

module.o --

a kernel module

in the ELF object

format

(2)

The module in the

assembly format

(3)

The module with the run-time

checking code and the

specification loaded

Loaded original

module

without much

restriction

(1)

specification for

the module

Code

instrumentation

disassemble

insmod
 insmod

(4)

Loaded module with policy-directed

SFI code:
 The module is monitored

according to the specification

Module with

checking hooks

Dynamic checking

functions

Anonymous

memory

management

Run-time

specification

The original module

loading procedure

Figure 1. The procedure of monitoring a ker-
nel module. The left side path shows the
current module loading procedure. The right
side path describes the steps of the HECK-
ing procedure.

allocated resources and parameters-introduced kernel struc-
tures at runtime. After generating the static specification,
HECK modifies the module to incorporate the specification,
the run-time checking code, and dynamic resource manage-
ment code using code instrumentation techniques. At run-
time, HECK monitors the behavior of the module based on
the specification.

The following steps describe the procedure of HECK-
ing a kernel module in a temporal order, which is also illus-
trated in figure 1:

1. Generate a specification of the binary module using
objdump, a GNU disassembler. This step will be fur-
ther explained in section 4.1.

2. Disassemble the kernel module.
In Linux, a compiled module is an OBJ file in the ELF
format. It needs to be linked at module loading time
to resolve the external symbols (e.g. names of kernel

The original module

R.O. data section

R.W. data section

code section

R.O. data section

R.W. data section

code section

static permission lists

dynamic permission

lists

Dynamic checking

functions

Dynamic specification

management functions

The HECKed module

Figure 2. The organization of an original mod-
ule file and its HECKed version. The per-
mission lists are appended to the read–only
section and the read–writable section. The
code is instrumented for the dynamic check-
ing and dynamic resource management pro-
cedures, which will be further illustrated in
figure 3 and section 4.2. The main body of
the dynamic checking code and the dynamic
resource registration code are appended to
the code section.

functions and data structures). An OBJ file contains
enough information to restore the assembly file.

We useobjdump for disassembling. The output of
objdump contains all the information of the assembly
code but not a complete assembly file. We have writ-
ten a script to convert the output ofobjdump into the
assembly format file.

3. Augment the module with the specification, run-time
checking code, and dynamic resource manage-
ment code. The assembly code, including the run-time
checking subroutine, checking hooks, and the specifi-
cation, is re-assembled. Hooks for registering return
addresses and parameters are set at the entrance of re-
lated module functions. Hooks for registering the
dynamic buffers are set after returning from the re-
source allocation functions.

4. Perform run-time security checking at every check
point marked in the above phase. Dynamic resources
are registered by the activation of proper registration
functions at run time.

Figure 2 illustrates the organization of an original mod-
ule and its HECKed version. Permission lists derived from

the specification are stored at the end of the read-only and
read-writable sections. The run-time checking routines and
dynamic specification management routines are attached to
the code section. The code section is modified for trigger-
ing the dynamic checking functions and dynamic resource
management functions at the check points.

4. Implementation of HECK

4.1. Description of the specification

A specification describes permissions granted to a ker-
nel module. We represent apermissionas an operation on a
block of virtual memory or I/O ports, marked by the start-
ing address and the ending address.Operationson kernel
symbols and kernel memory areread, write,andcall. Op-
erationson I/O ports areread and write. The specifica-
tion contains five pairs of permission lists:allow memread
and neverallowmemread, allow memwrite and nev-
erallow memwrite, allow memcall and neveral-
low memcall, allow IO read and neverallowIO read,
and allow IO write and neverallowIO write. The al-
low lists, as the name implies, define the permissions
granted to the module. Theneverallowlists define oper-
ations prohibited to the module. At each checking point,
we choose one pair of allow/neverallow list, accord-
ing to the operation and resource type.

As we mentioned in section 3.2, a specification contains
a statically defined part and a dynamic part—a dynamic re-
source manager. The static specification describes accesses
to static resources, e.g. kernel functions or kernel data, the
addresses of which can be determined statically from the
system map. The dynamic part lists accesses to dynamic re-
sources obtained at run time.

The following shows a fraction of the static specification
generated foride-cd, the Linux IDE CDROM driver.

default: neverallow stack call
default: neverallow data sections call
allow kmalloc Rsmp 93d4cfe6 call
allow kfree Rsmp 037a0cba call
allow printk Rsmp 1b7d4074 call
allow sprintf Rsmp 1d26aa98 call
allow atapi output bytes Rsmp affe3a66 call
... ...

IDE 1
allow IO port 0x170--0x177 read-write
allow IO port 0x376--0x376 read-write
Bus master IDE
allow IO port 0xd000--0xd00f read-write

neverallow proc root Rsmp 020bc977 write

Readers should keep the following in mind:

� The neverallowpermissions supersede theallow per-
missions, if there is an overlap of memory or I/O
blocks on both the lists.� Write permission does not imply read permission by
default. This is to maintain consistency with I/O re-
quests, because an I/O port can be read only, write
only, or both readable and writable.

We have builtspecgen—a static analysis tool for gener-
ating specifications.Specgen generates necessary permis-
sions for a legitimate binary module. Using the output from
objdump, specgen lists all external accesses with unre-
solved kernel symbols and absolute addresses. Since we as-
sume the module is benign, we take every external access at
this stage as legitimate. Thenspecgen converts these ac-
cesses into permissions in the specification.

Dynamic resources, such as function call parameters, dy-
namically allocated memory, dynamically memory mapped
I/O, and function return addresses, can complicate the mon-
itoring because the location of these parameters are not
available statically. We will further explain the procedure
of dynamic resource management in section 4.2.

4.2. Implementation of the checking procedure
and dynamic resource management

HECK run-time checking, as illustrated in figure 3, is
specification directed. The whole checking procedure can
be divided into three steps.

Step 1, statically, HECK injects a checking hook before
every sensitive instruction. Such a sensitive instructioncan
be a memory access instruction, a control transfer instruc-
tion, or an I/O instruction. For example, in figure 3, be-
fore theret marked asoriginal instruction 12,
HECK adds a checking hook of 4 instructions.

Step 2, before executing the sensitive instruction, a
checking hook will call the corresponding monitoring sub-
routine for checking whether the sensitive instruction con-
forms to the security specification. For each sensitive in-
struction in the module, HECK first extracts the access
request and searches the request in the appropriatenev-
erallow.op list. If there is a match, a violation-handler
function is called. If there is no match in thenever-
allow list, HECK searches in the correspondingallow
static and dynamic lists. In the above example, the pro-
gram triggers the checking routined policy fret,
which examines the target address. First, if the target ad-
dress is located on the kernel stack or a data section, the
instruction has a violation; second, if it is in the code sec-
tion or an allowed kernel entrance point, the instruction is
allowed; otherwise, the instruction violates the specifica-
tion.

Step 3, if the checking code finds a violation, it calls a
handler function. Currently, the handler prints a warning

message to the system log and returns; it could take more
sophisticated action such as unloading the kernel module,
although this has potentially dire side effects.

The dynamic resource management works similar to the
dynamic checking procedure. First, statically, we have in-
serted hooks for dynamic registration functions at the en-
trance of the cross-boundary functions in the module and
after kernel resource allocation functions.

Then, at run time, the hook triggers a function for reg-
istering either the return address or dynamic resources. By
the time the registration function is triggered, the resource
pointers already exist on the stack. The registration func-
tion will put the locations of the dynamic resources into the
dynamic permission lists. HECK registers a dynamic buffer
after returning from dynamic memory allocation functions,
such askmalloc() andioremap(); HECK also regis-
ters the return address and the function call parameters at
the entrance of the called function, if the caller is external
to the module. The hierarchical structures in the parameters
are defined in the kernel header files. We interpret the hier-
archy manually and hard code it into the registration func-
tions.

For example, in figure 3, at the entrance of the func-
tioncdrom log sense, a dynamic resource management
functiond policy fenter puts the return address to the
allow mem call list.

4.3. Scope of protection

HECK is designed to prevent exploit code execution
from inside kernel modules. Technically, HECK combines
kernel module isolation, access control, and prevention of
malicious code execution.

The specification should be kept away from any unautho-
rized manipulation. As we can see in figure 2, we store the
permission lists of the static specification in the read-only
data section, to prevent them from being overwritten. The
dynamic permission lists are located at the end of the regu-
lar data section. To prevent unexpected overwriting of per-
missions in the writable section, we put the subsection hold-
ing the permission lists into theneverallowmemwrite list,
which is located in the read-only section.

Complete data flow checking requires semantic-level un-
derstanding of the program. Although HECK checks on
memory access instructions in the module, as a binary-level
monitoring tool, HECK is incapable of performing com-
plete data flow protection. What HECK can protect is di-
rectly overwriting unrelated kernel structures such as the
system call table. In the kernel modules we studied, we ob-
served that a kernel module accesses a limited range of ker-
nel data, which is amenable to monitoring. For example, the
IDE cdrom driver only useshwif ! drives[i℄ and its hier-
archically related structures.

Code under monitoring

return

allowed

Run-time

checking

routines

dcheck_ebp_r

dcheck_call

dcheck_ebp_w

dcheck_io_r

dcheck_io_w

Violation

Handler

Static permission lists:

allow_mem

_read

0xc01213e0

... ...

0xc01213e3

0xc0334d60

... ...

0xc0334da3

0xc000

... ...

0xc0ff

neverallow_

mem_read

neverallow

_IO_write

allow_mem

_read

... ...

... ...

... ...

allow_mem_

write

allow_mem

_call

Dynamic permission lists:

disallowed

Functions for the

dynamic resource

registration

d_policy_fenter

d_param_ide_driv

e_t_reg

d_param_cdrom_

device_info_reg

... ...

The original code

... ...

 .type cdrom_log_sense,@function

cdrom_log_sense:

 subl $8, %esp

 movl 20(%esp), %edx

 movl %ebx, 4(%esp)

 xorl %ebx, %ebx

 movl 16(%esp), %eax

 testl %edx, %edx

 je .L122

 testl %eax, %eax

 je .L122

 movl 12(%eax), %eax

 testl %eax, %eax

 je .L121

.L122:

 xorl %eax, %eax

.L120:

 movl 4(%esp), %ebx

 addl $8, %esp

 ret

... ...

... ...

 .type cdrom_log_sense,@function

#xhz d_policy function start!

cdrom_log_sense:

 call d_policy_fenter

 subl $8, %esp

dcheck Optimization--no need for dcheck

#original instruction 7:

 movl 20(%esp), %edx

dcheck Optimization--no need for dcheck

#original instruction 8:

 movl %ebx, 4(%esp)

 xorl %ebx, %ebx

dcheck Optimization--no need for dcheck

#original instruction 9:

 movl 16(%esp), %eax

 testl %edx, %edx

 je .L122

 testl %eax, %eax

 je .L122

dcheck indirect read!

 push %ebx

 lea 12(%eax), %ebx

 call dcheck_ebp_r

 pop %ebx

#original instruction 10:

 movl 12(%eax), %eax

 testl %eax, %eax

 je .L121

.L122:

 xorl %eax, %eax

.L120:

dcheck Optimization--no need to perform

dcheck

#original instruction 11:

 movl 4(%esp), %ebx

 addl $8, %esp

dcheck ret!

 push %ebx

 movl 4(%esp), %ebx

 call d_policy_fret

 pop %ebx

#original instruction 12:

 ret

... ...

dcheck_fret

dcheck indirect read!

 push %ebx

 lea 12(%eax), %ebx

 call dcheck_ebp_r

 pop %ebx

#original instruction 10:

 movl 12(%eax), %eax

dcheck ret!

 push %ebx

 movl 4(%esp), %ebx

 call d_policy_fret

 pop %ebx

#original instruction 12:

 ret

Figure 3. HECK run-time checking and dynamic resource regis tration for the IDE CDROM driver. The
shaded code on top is part of the original code. The unshaded c ode block to its left is the cor-
responding HECKed code, in which the instruction to be exami ned is marked by dark shade; and
a hook of the corresponding checking function above it is mar ked in lighter gray shade. Function
d policy fenter is triggered at the entrance of the function to register the r eturn address to the dy-
namic permission lists. dcheck fret is called to examine the return address. dcheck ebp r is used
to check the memory read instruction.

Because data flow intermingles with control flow (e.g. a
code pointer is a piece of datum), HECK, or other instruc-
tion level checking tools, cannot eliminate control flow at-
tacks. The malicious code may call a legitimate but vulner-
able kernel function (e.g.printf() with the%n vulner-
ability) to overwrite a code pointer in the kernel to point
at a piece of attacking code, which can be triggered latter.
HECK is not designed to make up for the vulnerabilities in
the kernel; instead, HECK relies on the correct behavior of
the kernel functions. An ad hoc solution for this problem is
to analyze statically or profile the legitimate parameters for
external calls and to use the information in intrusion detec-
tion. Nevertheless, HECK prevents common attacks such
as exploit code execution on stack (or in other data sec-
tions) and manipulating non-related kernel resources (e.g.
redirecting the system call table).

5. Overhead measurement

We have measured the overhead of HECK on a Pentium
II 400MHZ dual-processor SMP PC running Red Hat Linux
8.0 with a 40Xmax ATAPI CDROM drive and a generic
10/100M PCI network interface card. The kernel version
number is 2.4.18-14smp.

In our experiments, we chosecdrom, ide-cd,
8139too, fat, andext3 as demonstration kernel mod-
ules.Cdrom is a Linux high-level uniform CD-ROM driver.
Ide-cd is a Linux ATAPI CD-ROM driver.8139too is a
Linux fast Ethernet driver for boards based on the RTL8129
and RTL8139 PCI Ethernet chips.Fat is the DOS FAT
file system module, andext3 is the Linux EXT3 file sys-
tem module. We store the specification in files with
.specification appended to the name of the mod-
ule. A fraction of the specification foride-cd can be
found in section 4.1.

While we have not conducted performance measure-
ments on the portion of the kernel module that is performing
low-level interrupt handling (and is therefore time critical)
directly, our analysis of the IDE-CD device driver and net-
work driver shows that our mechanism will not adversely
affect bottom-half interrupt handlers. The bottom-half in-
terrupt handler is structured to do very little work before
returning, so there are few control transfers that we need
to check. We have run the HECK version of these device
drivers on a desktop workstation that experiences daily use
over a multi-month period with no ill effects.

We measured the space overhead of the run-time check-
ing code. Table 1 lists the number of run-time checking
points we put in the example modules. Certain sensitive in-
structions, such as load and store instructions manipulating
local variables and PC-relative addressing mode jumps, do
not need run time monitoring, because we can find the rel-

number
of instruc-
tions

number of check-
ing points exclud-
ing the local vari-
ables

percentage
of instruc-
tions under
check

cdrom.o 4879 717 15%
ide-cd.o 4749 814 17%
8139too.o 2850 466 16%
fat.o 27979 1695 6%
ext3.o 60534 3401 6%
total 100991 7093 7%

Table 1. number of checking points in the
modules: In the experiment that removes lo-
cal variables checking, we reduces the num-
ber of checking points by moving the lo-
cal variables checking to the static checking
procedure. In this case, 6%–17% (on aver-
age 7%) of all the instructions need run time
checking.

ative target locations statically. On average, 7% of the in-
structions that we monitored need run-time checking.

Figure 4 shows our measurement of the overhead of the
run-time checking on a CPU intensive micro-benchmark
program. This serves as an upper bound on the runtime
overhead of our checking code. Real I/O-bound device
drivers do not call checking routines so frequently, because
the driver is idle when no I/O requests are being processed.
With 20% of the instructions being checked, the overhead
of the run-time checking is about 12 times the original run-
ning time; with 15% of the instructions being checked, the
overhead of the run-time checking introduce 8.5 times over-
head. In short, the HECKed version module runs about 10
times slower than the original one in the worst case.

We measured the overhead of run-time checking code
on the Linux CDROM driver, network interface card driver,
and FAT and EXT3 file system modules. Figure 5 shows
the overhead of the run-time checking on some practical
I/O intensive programs. We measured 1%–3% overhead of
our dynamic monitoring on these I/O intensive applications
with a allowall specifications, and 5%–23% overhead with
the realistic specifications. In theallowall specification, we
put the whole kernel segment as the first entry of theallow
lists and leave theneverallowlists empty. It has the mini-
mum overhead for our checking procedure because the code
does not need to go deep into anallow list for a match. With
a more realistic specification, the checking function needs
to go through the specification lists for a match.

We find that the more I/O intensive a module is, the less
overhead our dynamic monitor puts on the module. This
observation is reasonable. In an I/O intensive program, a

0

2

4

6

8

10

12

R
un

nt
in

g
tim

e
ra

tio

original
program

20% check points,
no optimization

15% check points,
local variable checking
removed

1

11.95

8.5

Figure 4. Run-time overhead on a CPU in-
tensive application micro-benchmark, serv-
ing as the upper bound for the device drivers

large proportion of the real time is spent on I/O operations,
while both the driver module and the application program
are sleeping. The overhead of dynamic monitoring on the
driver is limited by the proportion of the module running
time to the overall running time. We measured (4.6%–8%)
overhead on the threecp programs with realistic specifi-
cations. The overhead on the FAT floppy drive file system
(4.6%) is smaller than the overhead on the CDROM driver
(5.1%) and on the EXT3 file system (8%). Because floppy
disks are much slower than hard disk and CDROM, the FAT
file system is more I/O intensive than CDROM and EXT3,
and therefore, less affected by our monitoring.

The overhead onscp over network (23%) is signifi-
cantly higher than the other four measurements. We con-
sider the following reasons for the overhead variation: First,
the network driver operates on smaller blocks than the lo-
cal CDROM driver and EXT3 file system. Second, because
file systems can perform prefetch that networks cannot, the
network driver is called more frequently than the CDROM
driver and EXT3 code for the same amount of data. Third,
the network driver has 16% of its instructions being checked
dynamically, compared to 6% on EXT3, and 16% on the
CDROM driver. Finally, the specification of the network
driver contains longer permission lists than the CDROM
driver and the EXT3 module. So far, we use a linear search
on the lists. A binary search on the static permission lists
should reduce the per-checking cost.

6. Related work

Related work includes kernel module isolation, user
space malicious code detection, and policy directed pro-
grams safety and security checking.

0

50

100

150

200

250

300

350

400

450

500

R
un

tim
e

(in
 s

ec
on

ds
)

original module
module with the allowall specification
module with the realistic specification5.1% overhead

grep −r rat /mnt/cdrom
CDROM size 602.5M
 10.9%

23%

cp as.ps /mnt/floppy
file size 1.2M 8%

4.6%

cp −r /mnt/cdrom /tmp
CDROM size 602.5M

scp maul:/home.tar.gz .
file size 92M

cp −r /home/hxu02 /tmp
folder size 135.6M

Figure 5. Overhead of our dynamic monitor-
ing on some I/O intensive application pro-
grams

Prior work on kernel modules has focused on in-kernel
programs isolation [3, 22, 20, 25, 27, 30]. There are three
techniques to isolate a kernel module: one is to put the mod-
ules in a separate hardware protection layer (e.g. ring 1 or
2 [4], or the user level [8, 26] in the Intel x86 architecture);
the second is to use the segmentation hardware in ring 0—
the kernel protection layer [30]; and the third is to apply
a per-instruction boundary checking inside the same hard-
ware protection domain as the kernel [25, 27].

Software fault isolation (SFI) [27, 34], or sandboxing,
is effective in isolating in-kernel applications. SFI emu-
lates hardware protection by checking each control-transfer
instruction to prevent the isolated program from escaping
from its domain. Existing SFI tools are segmentation-based,
and they work well for isolating loosely-coupled programs,
which access only their own data and code, and calling the
system service routines through only the system call inter-
face or IPC interface. Addresses in such programs can be
identified by the segment tags. Swift and his colleagues iso-
late kernel modules using segmentation hardware [30].

Kernel module isolation did not take security into full
consideration. Under this frame work, attacks on a vulnera-
ble kernel module can subvert the system, for example, by
jumping to the exploit code on the stack. Our work improves
the SFI technique by incorporating access control and ma-
licious code prevention. We chose SFI-based isolation in-
stead of the others because it can incorporate malicious code
detection conveniently through code instrumentation.

Kernel modules in the SPIN operating system are writ-

ten in a type safe language [3]. This prevents many imple-
mentation errors but does not support legacy binary mod-
ules that are written in other languages.

In the user space, much security research has been
done in preventing malicious code from execution. Stack-
guard and pointguard are effective compiler-based secu-
rity techniques in preventing malicious code execution.
Stack guard puts canary words before the return ad-
dress to detect stack smashing attacks [7]. Pointguard
encrypts legitimate pointers to detect malicious point-
ers [6]. Type assisted overflow detection [15] compiles
type information into the binary code and detects type er-
rors at run time. These compiler-base techniques require
source code, while our HECK works on the binary code di-
rectly.

HECK is also influenced by specification-based
IDS [23], policy directed code safety and secu-
rity [9, 10, 16, 19, 24, 28, 32], static analysis [1, 31, 33], and
dynamic code monitoring [12, 27, 32]. There are two tech-
niques suitable for dynamic code monitoring: code interpre-
tation [32] and code instrumentation [27]. We choose code
instrumentation in our implementation because it is conve-
nient to deploy in the kernel.

Although there are various solutions proposed dealing
with problems related to kernel modules, a satisfactory so-
lution is still yet to come. Monitoring critical kernel data
structures but leaving other parts unprotected is subjective
to adaptive attacks [13, 14]. LIDS disables LKM function-
ality after boot-up [35], which reduces the convenience of
using LKMs. Rootkits detection [18] is signature based
malicious module detector, which is difficult to catch un-
known attacks. Loading modules with only registered sig-
natures [2] can authenticate the modules, but does not guar-
antee that the modules do not contain any vulnerabilities.

7. Conclusion

Kernel module exploitation can jeopardize the integrity
of operating systems. It requires permissions of access to
a device using vulnerable kernel modules, which permis-
sion is usually granted to ordinary users. This issue has been
overlooked by the academic research community, although
much related work studies kernel module isolation and user
space exploit detection.

In this paper, we propose an approach to detect in-
module exploit code execution on the instruction level with
the help of a specification. HECK, the tool we developed,
has the following features:� HECK combines module isolation, specification based

access control, and exploit code prevention.� HECK uses code instrumentation technique to moni-
tor the module at run time. The monitoring of a mod-

ule relies on a specification, which describes the legit-
imate requests of the module.� HECK works on the binary code level, without requir-
ing the source code.

As an instruction-level technique, our tool can examine
every branch instruction inside the kernel modules. On the
other hand, tools at this level do not monitor the data flow
completely, because data flow monitoring requires semantic
understanding of the program behavior. In data flow mon-
itoring, we prevent only direct access to unrelated kernel
data sections. Our future work is to study the data flow prop-
erties in a semantically sensitive way and examine how con-
trol flow and data flow are interrelated with each other in
kernel modules. The data flow pattern of the kernel mod-
ules in our study shows that a device driver visits limited
kernel structures hierarchically through a pointer parame-
ter. Many important kernel structures (e.g. the system call
table) that attackers widely exploit are not necessary for the
legitimate operations. This property can simplify the data
flow monitoring for kernel modules.

We have implemented HECK for LKMs on an x86 Red-
hat Linux PC. We have run HECK-modified kernel modules
continuously on a desktop workstation for a few months
with no ill effects. Our analysis and experiments show that
our tool can detect a large set of malicious code execution
from within kernel modules. We measured 5%–23% over-
head on some I/O intensive applications because of our dy-
namic monitoring on the kernel modules that we tested.

References

[1] K. Ashcraft and D. Engler. Using programmer-written com-
piler extensions to catch security holes. InProceedings of
2002 IEEE symposium on security and privacy, 2002.

[2] M. Bernaschi. REMUS: a security-enhanced operating sys-
tem.ACM Transactions on Information and System security,
5(1):36–61, February 2002.

[3] B. N. Bershad, S. Savage, P. Pardyak, E. G.Sirer, M. E. Fi-
uczynski, D. Becker, C. Chambers, and S. Eggers. Exten-
sibility, safety and performance in the SPIN operating sys-
tem. InProceedings of the 15th ACM Symposium on Oper-
ating Systems principles, pages 267–284, 1995.

[4] T. Chiueh, G. Venkitachalam, and P. Pradhan. Intra-address
space protection using segmentation hardware. InProceed-
ings of the The Seventh Workshop on Hot Topics in Operat-
ing Systems, March 1999.

[5] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
empirical study of operating systems errors. InProceedings
of the 18th ACM Symposium on Operating Systems Princi-
ples, pages 73–88, October 2001.

[6] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Pointguard:
Protecting pointers from buffer overflow vulnerabilities.In
Proceedings of the 12th USENIX Security Symposium, Au-
gust 2003.

[7] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-
Overflow Attacks. InProceedings of the 7th USENIX Se-
curity Symposium, San Antonio, Texas, January 1998.

[8] J. Elson. FUSD— a linux framework for user-space devices.
http://www.circlemud.org/ jelson/software/fusd/, 2003.

[9] U. Erlingsson and F. B. Schneider. SASI enforcement of se-
curity policies: a retrospective. InProceedings of the 1999
New Security Paradigm Workshop, September 1999.

[10] D. Evans and A. Twyman. Flexible policy-directed code
safety. InProceedings of 1999 IEEE symposium on secu-
rity and privacy, May 1999.

[11] Fyodor. Ping of death. http://www.insecure.org/sploits/ping-
o-death.html, 1997.

[12] L. Gong. Inside Java(TM) 2 Platform Security: Architecture,
API Design, and Implementation, Second Edition. Addison
Wesley, June 2003.

[13] K. J. Jones. Loadable kernel modules.;login:, pages 43–49,
November 2001.

[14] T. Lawless. Saint jude, the model.
http://sourceforge.net/projects/stjude, 2000.

[15] K. Lhee and S. J. Chapin. Type-Assisted Dynamic Buffer
Overflow Detection. InProceedings of the 11th USENIX Se-
curity Symposium, San Francisco, August 2002.

[16] P. Loscocco and S. Smalley. Integrating flexible support for
security policies into the linux operating system. InPro-
ceedings of the 2001 USENIX Annual Technical Conference
(FREENIX ’01), June 2001.

[17] G. MacManus. Buffer overflow in iso9660
file system component of linux kernel.
http://www.idefense.com/application/poi/display?id=101
&type=vulnerabilities&flashstatus=true, April 2004.

[18] N. Murilo and K. Steding-Jessen. Locally checks for signs
of a rootkit. http://www.chkrootkit.org/.

[19] G. C. Necula. Proof-carrying code. InProceedings of the
24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Langauges (POPL ’97), pages 106–119, Paris,
Jan 1997.

[20] G. C. Necula and P. Lee. Safe kernel extensions without
run-time checking. In2nd USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI ’96), pages
229–243, October 1996.

[21] W. Purczynski. kNoX—implementation of
non-executable page protection mechanism.
http://www.opennet.ru/prog/info/1769.shtml, May 2003.

[22] G. Rosu and N. Segerlind. Proofs on safety for untrusted
code.UCSD technical report CS1999-0633, October 1999.

[23] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari,
H. Yang, and S. Zhou. Specification-based anomaly detec-
tion: a new approach for detecting network intrusions. In
Proceedings of the 9th ACM Conference on Computer and
Communications Security, November 2002.

[24] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, and D. C.
DuVarney. Model–carrying code: A practical approach for
safe execution of untrusted applications. InProceedings of
the 19th ACM Symposium on Operating Systems Principles,
October 2003.

[25] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Deal-
ing with disaster: Surviving misbehaved kernel extensions.
In Proceedings of the USENIX 2nd Symposium on Operat-
ing Systems Design and Implementation, October 1996.

[26] J. S. Shapiro, J. M. Smith, and D. J. Farber. Eros: a fast ca-
pability system. In17th ACM Symposium on Operating Sys-
tems principles, Dec. 1999.

[27] C. Small. Building an Extensible Operating System. PhD
thesis, Harvard University, Division of Engineering and Ap-
plied Sciences, October 1998.

[28] S. Smalley. Configuring the selinux pol-
icy. Technical report, National security agency,
http://www.nsa.gov/selinux/papers/policy2/t1.html, Jan-
uary 2003.

[29] Solar Designer. Non-Executable User Stack.
http://www.openwall.com/linux/.

[30] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
reliability of commodity operating systems. InProceedings
of the 19th ACM Symposium on Operating Systems Princi-
ples, October 2003.

[31] B. v. Chess. Improving computer security using extended
static checking. InProceedings of 2002 IEEE symposium on
security and privacy, 2002.

[32] S. A. Vladimir Kiriansky, Derek Bruening. Secure execu-
tion via program shepherding. InProceedings of the 11th
USENIX security symposium, August 2002.

[33] D. Wagner and D. Dean. Intrusion detection via static anal-
ysis. InProceedings of 2001 IEEE symposium on security
and privacy, 2001.

[34] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Ef-
ficient software-based fault isolation. InProceedings of the
14th ACM Symposium on Operating System Principles, De-
cember 1993.

[35] H. Xie. LIDS hacking HOWTO. http://www.lids.org/lids-
howto/lids-hacking-howto.html, 2000.

