
Searching for High-Value Rare Events
with Uncheatable Grid Computing

Wenliang Du1 and Michael T. Goodrich2

1 Department of Electrical Engineering and Computer Science, Syracuse University.
wedu(at)ecs.syr.edu

2 Department of Computer Science, University of California, Irvine.
goodrich(at)acm.org

Abstract. High-value rare-event searching is arguably the most natural applica-
tion of grid computing, where computational tasks are distributed to a large col-
lection of clients (which comprise the computationgrid) in such a way that clients
are rewarded for performing tasks assigned to them. Although natural,rare-event
searching presents significant challenges for a computation supervisor, who parti-
tions and distributes the search space out to clients while contending with “lazy”
clients, who don’t do all their tasks, and “hoarding” clients, who don’t report rare
events back to the supervisor. We provide schemes, based on a technique we call
chaff injection, for efficiently performing uncheatable grid computing in the con-
text of searching for high-value rare events in the presence of coalitions of lazy
and hoarding clients.

Keywords:Grid computing, cryptographic hash functions, obfuscation, security,
cheating.

1 Introduction

Searching for high-value rare events is a natural use for grid computing environments,
where computational tasks are farmed out to a collection of clients that comprise the
computationalgrid. That is, such tasks naturally give rise to a large search space that
can be explored in a parallel fashion to find a small handful ofimportant inputs that
deserve further attention. For example, rare-event searching forms the core of the most
well-known grid computing applications, such as SETI@home, whose tasks involve
processing large numbers of extraterrestrial signals for signs of intelligent life, and dis-
tributed.net, whose tasks involve performing search-space explorations that implement
brute-force attacks on cryptographic algorithms.

Most grid computing environments provide an economic incentive for clients, which
could involve something tangible, like digital cash, or something intangible, such as an
identification of the fastest clients or the clients who haveperformed the most tasks.
Searching for high-value rare events introduces additional economic complications in a
grid computing environment, however. For example, such a system must contend with
lazy clients, who can request payment for simply saying “I didn’t find anything” and be

1



assured that their answer is almost certainly correct. In addition, a system must contend
with coalitions of hoarding participants, who may auction or ransom the rare events
they find rather than reporting them back to the supervisor ofthe grid environment3.
Heresupervisorrefers to the server that assigns the tasks to the grid participants.

The risks posed by coalitions of cheaters in grid computing environments are real
and immediate. SETI@home’s director, Dr. David Anderson, is quoted [8] as stating
that security has been a major problem, requiring roughly fifty percent of the project’s
resources. For example, he mentioned that the SETI@home software had been hacked
to make it look like more work had been performed (to improve leader board rankings).

Although some well-known rare-event searching tasks, suchas looking for extrater-
restrial intelligence or breaking cryptographic functions, are arguably of philosophical
or recreational interest, some natural grid-computing searching tasks may involve iden-
tifying rare events that have significant economic value. For example, a drug company
may wish to use a computational grid to identify promising drugs for treating certain
diseases (e.g., by performing molecule docking simulations for a large number of can-
didate drug configurations). Unfortunately, coalitions ofgreedy, hoarding clients in a
computational grid performing such a search could pose a serious obstacle for the drug
company. Knowing that a drug is effective against a certain disease via grid computing,
the coalition could sell the result to another drug company.This of course assumes that
the participants can interpret the results.

In some computations, although the supervisor can also disguise the input so that
participants cannot make direct uses of the rare events, this does not fully protect the
grid supervisor from coalitions of hoarding clients. For, even if a participant cannot
directly use an identified rare-event result, the coalitionmay be able to derive economic
benefit through other means, such as ransoming the result back to the supervisor or
buying stock in the supervisor’s company (in the case when a rare-event discovery could
boost the stock value of the company).

We provide schemes for efficiently performing uncheatable grid computing for
searching for high-value rare events. Our techniques, which we call chaff injection
methods, involve introducing elements to task inputs or outputs that provide rare-event
obfuscation. Output-chaff injection applies to contexts where rare-events are not imme-
diately identifiable by clients (as in the distributed.net application of breaking crypto-
graphic functions). It involves the use of one-way hash functions applied to computation
outcomes in a way that defends against coalitions of hoarding clients. Input-chaff in-
jection applies to contexts where rare-events are easily identified by clients (as in the
SETI@home application of finding patterns of intelligence in extraterrestrial signals).
It involves the injection of a number of obfuscated inputs that will test positive as rare
events. We show that distributing such inputs efficiently inan unpredictable way pro-
vides defense against coalitions of hoarding clients at a cost that is lower than existing
input duplication and distribution methods.

Organization The rest of the paper is organized as follows. Section 2 discusses related
work. Section 3 formulates the problem. Section 4 presents our general chaff injec-

3 The participant who auctions or ransoms the rare events must be anonymous; otherwise the
supervisor can get the correct results by redoing the tasks assigned tothis identified participant.

2



tion approach for protecting rare events. Section 5 describes an input-chaff injection
scheme, while Section 6 describes an output-chaff injection scheme. Finally we draw
the conclusion and lay out our future work in Section 7.

2 Related Work

2.1 Uncheatable Grid Computing with Lazy Participants

Although it is an issue grid practitioners have had to contend with for some time [8],
uncheatable grid computing was introduced by Golle and Sutbblebine [5]. In their
paper, they advocate double-checking computational grid results by probabilistic re-
dundant execution of the tasks (SETI@home employs a simple double-redundancy
scheme [8]). A redundancy-based approach can reduce the incentive for isolated lazy
cheaters when the number of potentially lazy cheaters is small, but it is less effective
against large coalitions of lazy cheaters and potentially ineffective against hoarding
cheaters. Indeed, we are not aware of any prior work that addresses the risks posed by
hoarding cheaters.

Subsequent work on uncheatable grid computing has focused on stronger schemes
to defeat lazy cheaters, that is, participants claiming credit for work left undone. Golle
and Mironov propose aringer scheme [4], which can protect against coalitions of lazy
cheaters provided that the computational tasks all involvethe Inversion of a One-Way
Function (IOWF),f , for a given valuey, as in the distributed.net attacks on crypto-
graphic functions (but not the SETI@home application or other grid applications that
don’t involve IOWFs). In the ringer scheme, during the initialization stage for each par-
ticipant, the supervisor randomly selects several inputsxi that will be assigned to that
participant and computesf(xi) for each one. Then, in addition to the value,y, that the
supervisor wishes to invert, the supervisor also sends to that participant all the “ringers”
the supervisor has computed for him. The participant must report the pre-images of all
the ringers (as well as the pre-image ofy if he was lucky enough to discover it). That
is, the participant needs to computef on x for all x in his input domainD and re-
turn the pre-image ofy if found, and he also has to return all the ringer pre-images he
finds. By remembering the ringers for each participant, the supervisor can easily verify
whether each participant has found all his ringers or not. Ifhe has, then the supervisor
is assured with reasonable probability that the participant has indeed conducted all his
computations. Golle and Mironov also discuss some ways to augment this basic ringer
scheme—using bogus ringers to prevent participants from knowing the total number of
ringers planted and magic sets to prevent direct images frombeing sent to the partici-
pants.

Szada, Lawson, and Owen [13] further extend the ringer scheme to deal with lazy
cheaters for other classes of computations, including optimization and Monte Carlo
simulations, by proposing effective ways to choose ringersfor these computations. It
is unknown whether the schemes proposed in [13] can be extended further to arbitrary
computations.

Du et al. [3] propose a different approach to achieve uncheatable grid computing to
defeat lazy participants. In their scheme, the supervisor randomly selects and verifies

3



some samples from the task domain assigned to a participant.To prevent the participant
from cheating on those samples, the participant must commita digest of his/her en-
tire computation results before being checked. Duet al.describe a commitment-based
sampling scheme based on Merkle hash trees.

While the existing studies on uncheatable grid computing [3–5,13] prevent partici-
pants from claiming credit for work they have not done, our study focuses on prevent-
ing participants from lying about the rare events they may have found, that is, defeating
hoarding cheaters. The previous schemes do not seem useful against hoarding cheaters,
particularly in the case of rare-event searching. Participants in a ringer scheme are not
induced to report the desired inverse of the one-way function4, and participants in the
commitment-sampling scheme can simply lie about the commitment of a discovered
rare event (which is unlikely to be chosen by the supervisor as a test).

As it turns out, our schemes provide some protection againstlazy cheaters. In fact,
even though previous works use scoring computations like SETI@home as motivat-
ing examples, our input chaff injection scheme is the first scheme for uncheatable grid
computing that applies to applications that involve a scoring function that is computed
in floating point and may have device-dependent rounding errors. These rounding er-
rors don’t significantly impact the correctness of requested computations but they pre-
vent previous checking schemes, like ringers and commitment sampling, from validat-
ing otherwise acceptable computations. In the cases of other grid computing applica-
tions (with device-independent computations), protection against lazy cheaters can be
strengthened by combining our schemes with one of the existing ringer or commitment-
sampling techniques. Nevertheless, for the remainder of this paper, our primary empha-
sis will be on ways to defend against hoarding cheaters in grid computing applications.

2.2 Other Related Work

An alternative way to defeat cheating of many kinds is to use tamper-resistant software
for all participants. Code obfuscators would be used in thiscontext to convert pro-
grams to equivalent programs that are much harder to understand and reverse-engineer.
Thus, it becomes hard for malicious attackers to modify the programs to accomplish
what they want. However the tamper-resistant approach is only heuristically secure, and
many tamper-resistant schemes cannot withstand attacks from coalitions of determined
attackers [11].

The problem of uncheatable grid computing is close to another body of literature:
the problem of malicious hosts in the study of mobile agents [15,18]. Several practical
solutions have been proposed for such problems, which include remote auditing [11,
14], code obfuscation with timing constraints [7], computing with encrypted func-
tions [12], and replication and voting [17]. The major difference between the mobile-
agent work and our grid-computing work is the threat model. The mobile-agent work
assumes a malicious cheating model, i.e., a malicious host can do whatever it takes to
cheat, including spending more CPU cycles than the honest behavior. Our study focuses

4 Even if the hash valuey would be randomly mixed with the ringer set for each participant, two
cooperating cheaters could easily separatey from their respective ringers.

4



on a different model, however, in which it is irrational for aparticipant to cheat with a
cost more expensive than honest behavior.

Various cryptographic protocols, such as Private Information Retrieval (PIR) [2] and
Probabilistically Checkable Proofs (PCP) [16] can also be used to achieve uncheatable
grid computing. However, their expensive computation costmakes them inappropriate
choice for grid computing in practice. We are interested in this paper on solutions that
could be of efficient use in practice.

3 Problem Definition

In this section, we formally define the problem of rare-eventsearching with uncheatable
grid computing, including definitions of the kinds of cheating we wish to defend against.

3.1 Model of Grid Computing

We consider a grid computing environment in whichuntrusted participantsare taking
part. The computation is organized by asupervisor. Formally, such computations are
defined in our model by the following elements:

– A task function f : X 7→ T defined on a finite domainX. The goal of the
computation is to evaluatef on all x ∈ X. For the purpose of distributing the
computation, the supervisor partitionsX into subsets. The evaluation off on subset
Xi is assigned to participanti.

– A screening functionS. The screener is a function that takes as input a pair of the
form ((x, f(x)); y) for x ∈ X, and returns a strings = S((x, f(x)); y), wherey
represents the criterion.S is intended to screen for “valuable” outputs off that are
reported to the supervisor by means of the strings.

In the case of rare-event searching, we are interested in finding a small (possibly single-
ton) previously-unknown subsetR of X such thatf(x) is some desired value, for each
x ∈ R. Minimally, the screening functionS should catch allx ∈ R.

3.2 Models of Cheaters

A participant can choose to cheat for a variety of reasons. Wecategorize the cheating
using the following three models. We assume each participant is given a domainD ⊂
X, and his task is to computef(x) for all x ∈ D. From now on, we useD as the domain
of f for a given participant.

– Lazy Cheater Model:In this model, the participant follows the supervisor’s compu-
tations with one exception: forx ∈ Ď ⊂ D, the participant usešf(x) as the result
of f(x). Functionf̌ is usually much less expensive than functionf ; for instance,
f̌ can be a random guess. In other words, the participant does not compute the re-
quired functionf on inputsx ∈ Ď. The goal of the cheating participant in this
model is to reduce the amount of computations, such that it can maximize its gain
by “performing” more tasks during the same period of time. Ifthe participants are
getting paid, the cheating participant might be guided by the lure of money. This
type of cheating behavior is a cheating on the task functionf .

5



– Hoarding Cheater Model:In this model, the participant conducts all the required
computations. However, the participant will keep the computation results if the
results are valuable. For example, if the computation is to search for a rare event,
a “lucky” participant who has found a rare event might reporta negative result
because of the value of such a result. This type of cheating behavior is a cheating
on the screening functionS.

– Malicious Cheater Model:In this model, the behavior of the participant can be
arbitrary. For example, a malicious participant might havecalculated functionf
on all x ∈ D, but when it computes the screener functionS, instead of returning
S((x, f(x)); y), it might return a random value. In other words, the participant in-
tentionally returns wrong results to the supervisor, for the purpose of disrupting the
computations. A malicious cheater may be a competitor, or a non-serious partici-
pant playing pranks.

Defending against the lazy cheaters is the main purpose of the schemes proposed
in [3–5,13]. In this paper, we focus primarily on defeating the second type of cheaters—
hoarding cheaters. Namely, we want to prevent the participant who has found high-value
rare events (members ofR) from lying about the discovery. Moreover, we even want to
prevent participants from determining which are the high-value rare inputs, that is, we
would like to prevent participants from learningR with any certainty.

For the sake of simplicity, we assume that participants, including the hoarding par-
ticipants, honestly conduct all the tasks assigned to them (i.e., they do not cheat onf ).
This honesty behavior can be guaranteed by the uncheatable grid computing schemes
proposed previously [3–5, 13]. In other words, by combiningour scheme with the
schemes such as ringers, we can successfully defeat both lazy cheaters and hoarding
cheaters.

3.3 Types of Rare Events

Recall that in the screener functionS, there is an certificatey, which defines the criterion
to justify whether a rare event is found or not. We categorizegrid computing problems
into the following two types, and we will describe solutionsfor each of them:

1. Obvious Rare Events (ORE):In some grid computing scenarios, the criteriony
for identifying rare events is obvious. That is, givenx andf(x), a participant can
easily determine ifx is a desired rare-event input. For example, in the Hamiltonian-
cycle problem, a rare event is a permutation of the vertices that forms a Hamiltonian
cycle, and verifying this fact is straightforward based on the well-known definition
of Hamiltonian cycles. Indeed, every member of the complexity class NP has an
effective verification algorithm, by definition. Likewise,the SETI@home applica-
tion has obvious rare events—input signals that have high correlations scores for
patterns of intelligence.

2. Camouflaged Rare Events (CRE):In some grid computing scenarios, givenx and
f(x) alone, it is not at all clear whetherx is a rare event or not. For example, to
find the inverse of a one-way hash valuey, i.e., to findx that generatesy = h(x),
whereh is the one-way hash function and each participant is given the value ofy.

6



Sincey provided to the participants might not be the actual valuable one, even if a
participant finds the correspondingx, it will not be able to decide whether this is
the valuable rare event.

To prevent participants from keeping the rare events, it is necessary to hide the
criteriony, so that the participants cannot identify whether an input is a rare event or not.
Hiding y for the CRE problem is relatively easier than hidingy for the ORE problem,
becausey is given by the supervisor in CRE problems, whiley is a public knowledge in
ORE problems. In the remainder of this paper, for each type ofrare events, we describe
our solutions for performing uncheatable grid computing inthe presence of hoarding
cheaters.

4 Protecting Rare Events via Chaff Injection

In this section, we give a high-level description ofchaff injectionfor protecting high-
value rare events in grid computing. Like a true rare event (amember ofR), a piece
of chaff is also a rare event, but it is generated by the supervisor. Participants cannot
distinguish chaff from an actual rare event. Only the supervisor knows which one is
chaff and which one is an actual rare event he/she is searching for. We use the term
semi-rareevents to refer to sets that consist of the chaff and the actual rare events.

The main idea of chaff injection is the following:

1. The supervisor injects a number of chaff items into the computations
2. Participants report to the supervisor all the semi-rare events they find
3. The supervisor filters the results and discards the chaff.

If some participants decide not to return the chaff they havefound, the supervisor can
easily catch such cheaters. As long as the number of chaff items is sufficiently large,
participants will have no incentive to hide semi-rare events, because the results might
be useless chaff and their cheating can be caught. On the other hand, chaff should not
be too dense, because receiving and processing those chaff consume bandwidth and
CPU cycles of the supervisor. Since the supervisor has a highbandwidth connection
and a large number of available CPU cycles, introducing millions of chaff items does
not introduce much burden to the supervisor, but this amountis already large enough
for participants to lose their cheating incentives.

4.1 Our Approaches to Chaff Injection

Two approaches can be used to introduce new chaff, which we respectively refer to as
input chaff injection andoutput chaffinjection.

One technique involves the replacement of the criteriony with a new criterionŷ
so many non-rare events also become a semi-rare events, while maintaining the condi-
tion for defining actual rare events. Since the criteriony is used at the output, we call
this chaff approach theoutput chaff injectionscheme. Formally speaking, the screen
function should satisfy the following predicate:

7



S((x, f(x)); y) = 1 −→ S((x, f(x)); ŷ) = 1.

The predicate states that if an eventx is a rare event, thenx should also be a semi-
rare event. This way, we guarantee that the set of semi-rare events is a superset of rare
events.

The output chaff injection scheme is suitable for CRE problems, because the crite-
rion y is a secret information that is known only to the supervisor.In ORE problems,
wherey is public knowledge, replacingy with a new criterion̂y cannot hidey. There-
fore, we use the output chaff scheme for CRE problems. There are two different ways
to transform a criteriony in this case, however, one throughexpansionand the other
one throughreduction.

For ORE problems, wherey cannot be disguised, to inject chaff, we turn to the
input. In this case we replace the input domainX with X ∪ C, whereC is a set of
chaff items that are guaranteed to test positive for the taskfunction f . Depending on
the particular application, we may assign a participant a set of inputs that include items
from both X and C, or we may probabilistically choose to send a participant a set
of inputs exclusively fromX or C. The key property that we must maintain for input
chaff is that it must be computationally expensive for a participant to determine if his
input domain includes chaff or not. The efficiency challengefor an input-chaff injection
scheme is to define the size ofC to be large enough for rare events to become semi-rare
while also keeping the size ofC to be a small fraction of the size ofX.

5 Obvious Rare Events with Input Chaff

In this section, we presentinput chaff injectionschemes to protect high-value rare events
in grid computing for ORE problems. Because the criteriony is already publicly known
in this case; obfuscatingy cannot prevent participants from knowing whether a rare
event has occurred. We provide solutions to three types of computations, while solutions
to generic computations are still an open problem.

5.1 Graph Isomorphism

As an illustration of how input-chaff injection can obfuscate rare events for hoarding
cheaters, in this section we present an uncheatable grid computation for a problem
often used to illustrate the concept of zero-knowledge proofs—the graph isomorphism
problem. In the graph isomorphism problem, we are given two graphsG = (V,E)
andH = (V, F ), each havingn vertices andm edges, and we are asked if there is
a permutation mapπ, on V , so that(a, b) ∈ E if and only if (π(a), π(b)) ∈ F . We
view π as a permutation map becauseG andH have the same vertex sets; their lists of
edges are different (but possibly isomorphic). The graph isomorphism problem is not
known to be in P, nor is it known if the graph isomorphism problem is NP-complete. It
is widely believed to be a difficult problem, however.

Suppose, then, that we are given two such graphsG andH (and that this appears
to be a hard instance of the graph isomorphism problem). Suppose further that we are

8



interested in performing a brute-force search for an isomorphism betweenG andH
using a computational grid. Of course, the straightforwardway of solving this problem
is to give each participant the following tasks:

– Each participant is given, as input,G andH and a familyΠ of permutation maps
on V . For eachπ ∈ Π, the participant should check ifπ maps each edge inG
to an edge inH and that each edge inH has an edge mapped to it byπ. If π is
determined to define an isomorphism fromG to H, this fact is to be reported back
to the supervisor.

Thus, an exponential-sized search space is divided among the set of participants in a
way that requires only polynomial space and bandwidth. The problem is that an iso-
morphism mapping fromG to H is obvious; hence, it is easily hoarded.

To obfuscate this obvious rare event, we introduce some input chaff (and a fur-
ther obfuscation of non-chaff inputs). LetP = {Π1,Π2, . . . ,Πk} be the collection
of permutation sets that are to be distributed to the participants, where we assume that
the sets are represented in a way that allows composition with a permutationπ to de-
fine a legitimate set of permutations in a way that does not reveal π. In addition, let
{π1, π2, . . . , πk+r} be a set of random permutations and letj be an index into this
set (initially, j = 1). For a probabilityp set by the supervisor (e.g.,p = 1/100 or
p = 1/1000), the supervisor performs the following computation for each participant:

1. The supervisor generates a random bit with probabilityp. If this bit is 0, then the
supervisor assigns the given participant,G andH, and the next setΠi of permuta-
tion maps to as above, except that the supervisor disguisesH andΠi by applying
πj to both (this will not change the computation for the participant). The supervisor
then incrementsi andj.

2. Otherwise, if the random bit is1, then the supervisor randomly chooses a permuta-
tion π from Πi and constructs a permutationG′ of G usingπ. Then the supervisor
sends the participant,G andG′ and the familyΠi, after applyingπj to G′ andΠi.
The supervisor then incrementsj (but noti).

Note that roughlyp of the inputs are now guaranteed to test positive as isomorphisms
between the two graphs given to the participants. Moreover,each participant is given
the graphG and a graph that looks different for each participant but which will prove
to be isomorphic toG with probabilityp.

Security.The security of the above chaff-injection scheme is derivedfrom the inability
of participants from determining whether they have been given chaff input or not. In this
case, the argument is simple: for a participant to distinguish the chaff from a true input,
they must be able to tell the difference betweenG′ andH. But doing so would require
them to solve essentially the same graph isomorphism problem the grid is collectively
trying to solve. Note in addition that colluding cheaters may be able to determine that
some of them were assigned the same permutation setΠi, but, again, without solv-
ing the graph isomorphism problem itself, they will not be able to tell which of these
tasks are chaff and which (if any) are a true input set. Each participant is given a dif-
ferent looking graph to test againstG (even the ones assignedH); hence, colluding
participants cannot determine which of them are given chaffand which are not (without
solving the graph isomorphism problem itself, that is).

9



Analysis. The expected additional work involved in using this input chaff injection
scheme is equal top times the work needed by the original solution, which is not resis-
tant to hoarding cheaters. That is, if we lete denote the additional work introduced by
input chaff injection, then

E(e) = k · p,

wherek is the number of subproblems defined by the supervisor based on the size of
her participant base (e.g.,k = 100, 000 or k = 1, 000, 000 are realistic values). Thus,
if p = 1/10 or p = 1/100, this scheme introduces a small computational overhead of
10% or 1% to the process. For example, ifp = 1/100 andk = 1, 000, 000, thenE(e) =
10, 000. But even with small values forp, rare events are significantly obfuscated. For,
even ifG andH are isomorphic, we have the following:

Pr(a participant finding an isomorphism that is not chaff) = 1/e.

For example, ife = 10, 000, then there is only a one in ten thousand chance that a
discovered isomorphism is not chaff; hence, a 99.99% chancethat a hoarding partic-
ipant will be caught in this scheme (using these example parameters). Note that our
chaff injection approach is therefore more efficient than task duplication approaches to
uncheatable grid computing [5], which have a computationaloverhead of 46% to 243%
for reasonable protection against lazy cheaters (while providing only modest protection
against hoarding cheaters of rare events).

5.2 Data Filtering Problems

Having given a “warm-up” example of input-chaff injection,we turn in this section to a
more practical set of grid computations—data filteringproblems. In data filtering prob-
lems we are given a large setX of data instances and a Boolean filtering functionf .
The supervisor is interested in all the elementsx of X such thatf(x) = 1. Usually,
the functionf will involve some internal scoring function on each inputx along with
a threshold value such that ifx scores above this value, thenx is considered rare and
interesting. This class of problems includes the SETI@homeapplication, whereX con-
sists of extraterrestrial signals that are scored against what are considered to be patterns
of intelligence. Likewise, this class of problems includesthe drug screening example
mentioned in the introduction.

By their very nature, it is not obvious which of the inputs inX will score positive
for the filterf (for otherwise there would be no motivation for us to go to thetrouble
of using a grid computing environment to solve this problem). For example, a casual
examination of the signals that have scored highest so far inthe SETI@home scoring
function does not yield any obvious patterns; to the naked eye they all appear as noise.
Thus, for data filtering applications such as this, employing an input chaff injection
scheme is easy.

To inject input chaff into the set of tasks, the supervisor needs only to have a set
of instancesY such that determining if any memberyi is not inX is at least as diffi-
cult as computingf(yi). (The supervisor may not need to explicitly constructY if she
has a way of choosing elements fromY probabilistically.) Then the supervisor can ran-
domly inject members ofY into the task setsD ⊂ X for each participant (with some

10



probabilityp) to provably obfuscate the rare events. For example, a true inputx in the
SETI@home application could be transformed into chaff simply by adding a pattern of
intelligence to it.

Note that this chaff injection scheme has a finer granularitythan our scheme for
graph isomorphism, that is, in this case, each participant is likely to have some semi-
rare chaff events to report, whereas in the graph isomorphism solution each participant
was given an input that was entirely valid or entirely chaff.In any case, the security
and analysis of this scheme for data filtering are similar to those given for the graph
isomorphism solution given above.

5.3 Searching for Solutions to NP-Complete Problems

In this section, we present a chaff-injection solution for grid computations that involve
searches for solutions to NP-complete problems. We begin with a template for building
such schemes and we then give a solution for a well-known NP-complete problem—
3SAT. Since all NP problems can be reduced to 3SAT in polynomial time, this gives
a chaff-injection scheme for any NP-complete problem. Of course, in practice, it may
be more efficient for a supervisor setting up a grid search forsolutions to a specific
NP-complete problem to use our template and example as a guideline in setting up a
specific scheme.

A Template for Chaff Injection for NP Solution Searching.By their nature, solutions
to difficult instances of NP-complete problems are rare events, and, with the practical
importance of many of these problems, such solutions may have economic value. Let
us therefore provide a template for chaff injection for NP solution searching. Every
languageL in NP has a polynomial-time verification algorithm,A, that takes as input a
problem instancex and a polynomial-sized certificatey, such thatx ∈ L if and only if
A acceptsx for somey (e.g., see [6]). Thus, we can set up a naive grid computation by
dividing the setY of all certificates into as many subsets as participants and asking each
participanti to evaluateA(x, y) for all y in hisYi ⊂ Y . Of course, accepting inputs for
A are obvious in this naive computation.

To set up a grid computation that defends against hoarding cheaters, we assume the
existence of two functions,α andβ, for L. The functionα takes an input instancex
and certificate setYi and produces a pair(x′, Y ′

i ) such thatA(x, y) = A(x′, y′), for
eachy ∈ Yi andy′ ∈ Y ′

i , but determining this fact is computationally difficult (e.g., at
least as hard as the graph isomorphism problem). The function β takes a certificate set
Yi and returns a problem instancez for L such thatA(z, y) = 1 from somey ∈ Yi,
but determining this fact is computationally hard (ideally, there should be only one
accepting certificate inYi and locating it should be difficult). Moreover, it should be
computationally difficult to determine whether or notz is isomorphic tox with respect
to A. The template for a chaff-injection scheme, then, is for thesupervisor to set a
probabilityp (e.g.,p = 1/10 orp = 1/100) and perform as follows for each participant:

1. The supervisor generates a random bitb with probability p. If b = 0, then she
appliesα(x, Yi) to construct an isomorphic pair(x′, Y ′

i ) that is equivalent with
respect toA to (x, Yi). She then sends(x′, Y ′

i ) to the participant and incrementsi.

11



2. Otherwise, ifb = 1, then the supervisor appliesβ onYi to generate at hard positive
instancez of L onYi. She then appliesα to the pair(z, Yi) to yield an isomorphic
pair (z′, Y ′

i ), and she sends(z′, Y ′

i ) to the participant and does not incrementi.

The participant in this scheme has no efficient way of determining if they got an input
isomorphic tox or z; hence, each participant is induced to perform their computation.
But roughlyp of the inputs are now guaranteed to be rare events; hence, each rare event
should be reported or a cheater will be discovered with high probability. The analysis
and security of this scheme are therefore similar to that given for the graph isomorphism
problem above.

A Specific Example for 3SATSince any NP-complete problem can be reduced to an-
other NP-complete problem, we only need to describe our solution to one NP-complete
problem. We choose the 3-CNF satisfiability problem, because it is traditionally the
problem to which other problems in NP are reduced.

A CNF formula is a Boolean expression in a conjunctive normal form, i.e., each
conjunct in the formula is aclause, which is itself the disjunction of literals. Each
literal is either avariable, or the complement of a variable. A3-CNF formula consists
of clauses each containing exactly3 literals. A formula issatisfiableif there exists at
least one assignment for those variables that will satisfy the formula. We usen andm
to represent the number of variables and the number of clauses, respectively.

Finding whether a 3-CNF formula is satisfiable is NP-complete (e.g., see [6]). To
apply our grid computing template, therefore, we need to show how to construct the
functionsα andβ for this problem. Fortunately, buildingα for a formulax and certifi-
cate setYi is relatively simple in this case: we simply rename all the variable names
in x (and change their respective names inYi in a corresponding way), and randomly
permute the clauses inx. Determining if the output formulax′ is equivalent tox is at
least as hard as the graph isomorphism problem. Forβ, we can employ any of a number
of schemes for constructing hard instances of 3SAT. For example, Achlioptas, Kautz,
et al. [1, 9] have an interesting tunable scheme for generating hard instances of SAT,
and Massacci and Marraro [10] show how to construct a satisfiable Boolean formula
such that finding the satisfying assignment is as hard as breaking the DES encryption
algorithm. Combining these techniques allows us to create difficult instances of 3SAT
that would match the statistical properties of the inputx, allowing us to create hard,
satisfiable formulas that are difficult to distinguish as notbeing isomorphisms ofx.

The statistical properties of two isomorphic 3-CNF formulaare similar (e.g., the
number of clauses are the same, and the number of occurrencesfor each variables are
the same), while the statistical properties of chaff might be different from the original
input and other chaff. Therefore, two colluding participants can compare their formulae
to find out whether they are likely to have the chaff or the original input. There are two
approaches to defeat the colluding attacks. First, we can make the statistical properties
of the chaff match that of inputx; second, the chaff can also be isomorphic to each other,
so they also have similar statistical properties. Therefore, by comparing the statistical
properties of their inputs, colluding participants are still unable to tell whether they have
the original inputx or chaff.

12



6 Camouflaged Rare Events with Output Chaff

In this section, we present ouroutput chaff injectionschemes to protect high-value rare
events in grid computing when rare events are camouflaged.

6.1 An Chaff-Injection Scheme via Criterion Expansion

In the following, we give a generic solution for CRE problems, i.e. the criteriony is only
known to the supervisor. We assume that the screen function is defined as the following:

S(f(x), y) = 1 iff f(x) == y.

For CRE problems, to obfuscate rare events, we introduce many other criteria. If
an inputx satisfies any of these criteria, it is considered as a semi-rare event. If the
actual rare-event criterion is superficially indistinguishable from the introduced criteria,
participants cannot tell whether a semi-rare event is the actual rare event or just chaff.
The algorithms for CRE problems is described in the following:

1. The supervisor randomly selectsm inputsx1, . . . , xm from the input domainX.
Note thatX is the global input domain, each participant only conducts tasks for a
subset ofX.

2. The supervisor generatesm chaff by computingci = hash(f(xi)), for i = 1, . . . ,m.
3. The supervisor sends the listC = {hash(y), c1, . . . , cm} to all the participants.C

should be permuted to hidehash(y).
4. For any inputx assigned to each participant, the participant computeshash(f(x))

and compares the results with the listC. If a match occurs, the participant sendsx
back to the supervisor; otherwisex is discarded.

5. The supervisor can verify whether a returnedx value is an actual rare event or
chaff, by a simple lookup inC (say, by storing the elements ofC in a hash table).
The supervisor also checks whether the participant whose tasks include chaff has
returned the chaff or not. This way, the cheater can be caught.

Security Analysis.When a participant finds a semi-rare event, because of the existence
of chaff, the probability that this semi-rare event is an actual rare event is only1

m
.

Furthermore, because the participants all get the same list, i.e., the information about
the rare events is the same, colluding does not bring any extra information to improve
that probability. Incidentally, this scheme differs from the ringers scheme of Golle and
Mironov [4] in two important ways. First, our output chaff injection scheme gives the
same set of chaff to all participants, so collusion is useless in identifying chaff, unlike
ringers. Second, unlike ringers, our output chaff cannot bedistinguished from actual
desired outputs (without performing the requested computation, that is).

In an actual grid computing application, of course, the rareevent may or may not
exist. Knowing whether a rare event exists or not might also be valuable, and needs
to be protected. Our chaff scheme does prevent the participants from finding out this
information. The only situation when the participants knowthat the rare event exists
is when they have found the matches for all the elements inC. Because the chaff are

13



selected uniformly randomly from the entire input domain, the chance that a group
of cheating participants get all the chaff ispm, wherep is the portion of the cheating
participants among all the participants. In practice,p is quite small. Therefore,pm is
negligible whenm is large.

Computation overhead.The extra computation cost added to this grid computing is
that of computing a cryptographic hash function and the finding of matches among the
list C (the lookup inC can be done using a non-cryptographic hash table). We have
assumed that the cost of computing a hash function is negligible compared to the cost
of computing the task functionf . Moreover, finding the match can be quite efficient
using the hash table data structure even if the list is long (i.e., the value ofm is large).
Therefore, the supervisor can afford to send a list containing tens of thousands chaff.
As we have known, the longer the list is, the fewer incentivesparticipants have.

6.2 Criterion Reduction for CRE Problems

Another way to increase the number of inputs that satisfy a criterion, and thereby in-
troduce input chaff, is to reduce the amount of requirementsthat must be satisfied. For
example, assume that the original criterion says that an input must satisfy five require-
ments to be considered as a rare event; we can reduce the number of requirements to
three in the new criterion, thus increasing the number of satisfiable inputs.

1. The supervisor computesh(y), and letŷ be the firstk bits of the result, wherek
is a security parameter. The supervisor sendsŷ to participants along with the task
assignments.

2. For each assigned inputx, a participant computesf(x), and checks whether the
first k bits of h(f(x)) equalŷ. If true, the participant returnsx andh(f(x)) to the
supervisor; otherwise, discardsx.

3. The supervisor verifies whetherh(f(x)) = h(y). If false,x is just chaff; else,x is
a rare event.

Analysis. Just like the criterion-expansion scheme, we want to keep the number of
semi-rare events sufficiently large, so participants will lose incentives to cheat. On the
other hand, the number of semi-rare events must be kept within a range, otherwise,
finding the actual rare events from the semi-rare events willconsume too much time of
the supervisor.

Because of the randomness of hash value, we can easily decidehow many bits to
disclose to the participants. Assume that the search space is 264, and hash values of
outputs are uniformly distributed. Disclosing the first 44 bits of h(y) will lead to a real-
to-false ratio 1:220. This is big enough for the participant to lose incentives, but small
enough for the supervisor to find out the actual rare events (220 means only 1 million of
hash-function evaluations).

Compared to the criterion-expansion scheme, the criterion-reduction scheme intro-
duces computation costs on the server side, although they are manageable. Another dif-
ference is that in criterion reduction, controlling the ratio between the rare and semi-rare
events becomes difficult when the hash values of outputs are not uniformly distributed
(this can happen, for example, when many outputs have the same values).

14



7 Conclusion and Future Work

This paper provides a first step towards disguising high-value rare events in the context
of grid computing with hoarding cheaters. The techniques weemployed involved the
injection of input and/or output chaff, depending on whether the rare events were obvi-
ous or not. There are still many interesting open problems that could be studied in the
future, including:

– Can we develop a generic scheme for all ORE problems?
– The difficulty with the ORE problems is the publically known indicator of rare

events. Can we turn an obvious indicator to a non-obvious indicator, i.e., transform
ORE problems into CRE problems? If this can be done, we could use solutions to
CRE to solve ORE problems.

8 Acknowledgment

The authors acknowledge the supports from the United StatesNational Science Foun-
dation under grants ISS-0219560, IIS-0312366, CCR-0225642, CCR-0311720, CCR-
0312760.

References

1. Dimitris Achlioptas, Carla P. Gomes, Henry A. Kautz, and Bart Selman.Generating satisfi-
able problem instances. InAAAI/IAAI, pages 256–261, 2000.

2. C. Cachin, S. Micali, and M. Stadler. Computationally private informationretrieval with
polylogarithmic communication.Lecture Notes in Computer Science, 1592:402–414, 1999.

3. W. Du, J. Jia, M. Mangal, and M. Murugesan. Uncheatable grid computing. InThe 24th In-
ternational Conference on Distributed Computing Systems (ICDCS’04), pages 4–11, Tokyo,
Japan, March 23–26 2004.

4. P. Golle and I. Mironov. Uncheatable distributed computations.Lecture Notes in Computer
Science, 2020:425–440, 2001.

5. P. Golle and S. Stubblebine. Secure distributed computing in a commercial environment. In
P. Syverson, editor,Proceedings of Financial Crypto 2001, volume 2339 ofLecture Notes in
Computer Science, pages 289–304. Springer-Verlag, 2001.

6. M. T. Goodrich and R. Tamassia.Algorithm Design: Foundations, Analysis, and Internet
Examples. John Wiley & Sons, New York, NY, 2002.

7. F. Hohl. Time limited blackbox security: Protecting mobile agents from malicious hosts.
Mobile Agents and Security, Lecture Notes in Computer Science,Springer-Verlag, 1419:92–
113, 1998.

8. L. Kahney. Cheaters bow to peer pressure.Wired Magazine, Feb. 15, 2001.
9. Henry A. Kautz, Yongshao Ruan, Dimitris Achlioptas, Carla P. Gomes,Bart Selman, and

Mark E. Stickel. Balance and filtering in structured satisfiable problems. InIJCAI, pages
351–358, 2001.

10. F. Massacci and L. Marraro. Logical cryptanalysis as a SAT problem: The encoding of the
Data Encryption Standard.Journal of Automated Reasoning, 24(1–2):165–203, 2000.

11. F. Monrose, P. Wykoff, and Aviel D. Rubin. Distributed execution with remote audit. In
Proceedings of ISOC Symposium on Network and Distributed System Security, pages 103–
113, February 1999.

15



12. T. Sander and C. F. Tschudin. Protecting mobile agents against malicious hosts, springer-
verlag.Lecture Notes in Computer Science, 1419:44–60, 1998.

13. D. Szajda, B. Lawson, and J. Owen. Hardening functions for large scale distributed compu-
tations.IEEE Symposium on Security and Privacy, 2003.

14. G. Vigna. Protecting mobile agents through tracing. InProceedings of the 3rd Workshop on
Mobile Object Systems, June 1997.

15. G. Vigna, editor.Mobile Agents and Security, volume 1419 ofLecture Notes in Computer
Science. Springer, 1998.

16. R. Ostrovsky W. Aiello, S. Bhatt and S. Rajagopalan. Fast verification of any remote pro-
cedure call: short witness-indistinguishable one-round proofs for np. In Proceedings of the
27th International Colloquium on Automata, Languages and Programming, pages 463–474,
July 2000.

17. F. Schneider Y. Minsky, R. van Renesse and S. D. Stoller. Cryptographic support for
fault-tolerant distributed computing. InProceedings of Seventh ACM SIGOPS European
Workshop,System Support for Worldwide Applications, pages 109–114, Connemara, Ireland,
September 1996.

18. B. S. Yee. A sanctuary for mobile agents. InSecure Internet Programming, pages 261–273,
1999.

16


