Searching for High-Value Rare Events
with Uncheatable Grid Computing

Wenliang Du and Michael T. Goodrich

! Department of Electrical Engineering and Computer Science, Sygadnisersity.
wedu(at) ecs. syr. edu
2 Department of Computer Science, University of California, Irvine.
goodrich(at)acmorg

Abstract. High-value rare-event searching is arguably the most natural applica
tion of grid computing, where computational tasks are distributed to a ladge ¢
lection of clients (which comprise the computatgmid) in such a way that clients
are rewarded for performing tasks assigned to them. Although nataralevent
searching presents significant challenges for a computation supewfsnparti-
tions and distributes the search space out to clients while contending withi “lazy
clients, who don’t do all their tasks, and “hoarding” clients, who dosgtart rare
events back to the supervisor. We provide schemes, based on a techweigall
chaff injection for efficiently performing uncheatable grid computing in the con-
text of searching for high-value rare events in the presence of coalitiblazy

and hoarding clients.

Keywords:Grid computing, cryptographic hash functions, obfuscation, security,
cheating.

1 Introduction

Searching for high-value rare events is a natural use fdr@yimputing environments,
where computational tasks are farmed out to a collectioriefnts that comprise the
computationalrid. That is, such tasks naturally give rise to a large searcbesthat
can be explored in a parallel fashion to find a small handfuhgfortant inputs that
deserve further attention. For example, rare-event segyébrms the core of the most
well-known grid computing applications, such as SETI@hpmieose tasks involve
processing large numbers of extraterrestrial signalsifmssof intelligent life, and dis-
tributed.net, whose tasks involve performing search-agaplorations that implement
brute-force attacks on cryptographic algorithms.

Most grid computing environments provide an economic itigerfor clients, which
could involve something tangible, like digital cash, or sthing intangible, such as an
identification of the fastest clients or the clients who hpeeformed the most tasks.
Searching for high-value rare events introduces additiec@nomic complications in a
grid computing environment, however. For example, suchsgesy must contend with
lazy clients, who can request payment for simply saying dhdifind anything” and be

assured that their answer is almost certainly correct. ditiaeh, a system must contend
with coalitions of hoarding participants, who may auctianr@ansom the rare events
they find rather than reporting them back to the supervisahefgrid environmest
Heresupervisorrefers to the server that assigns the tasks to the grid peatits.

The risks posed by coalitions of cheaters in grid computimgrenments are real
and immediate. SETI@home’s director, Dr. David Andersemjuoted [8] as stating
that security has been a major problem, requiring roughty fiercent of the project’s
resources. For example, he mentioned that the SETI@hortvessefhad been hacked
to make it look like more work had been performed (to impraader board rankings).

Although some well-known rare-event searching tasks, asdboking for extrater-
restrial intelligence or breaking cryptographic functpare arguably of philosophical
or recreational interest, some natural grid-computingctgiag tasks may involve iden-
tifying rare events that have significant economic value.es@mple, a drug company
may wish to use a computational grid to identify promisinggdr for treating certain
diseases (e.g., by performing molecule docking simulatfona large number of can-
didate drug configurations). Unfortunately, coalitionsgoéedy, hoarding clients in a
computational grid performing such a search could poseiauseobstacle for the drug
company. Knowing that a drug is effective against a cert@aake via grid computing,
the coalition could sell the result to another drug compahys of course assumes that
the participants can interpret the results.

In some computations, although the supervisor can alsaidisdghe input so that
participants cannot make direct uses of the rare evenssddss not fully protect the
grid supervisor from coalitions of hoarding clients. Foree if a participant cannot
directly use an identified rare-event result, the coalitiay be able to derive economic
benefit through other means, such as ransoming the resildttbabe supervisor or
buying stock in the supervisor's company (in the case whemneaevent discovery could
boost the stock value of the company).

We provide schemes for efficiently performing uncheatabsid gomputing for
searching for high-value rare events. Our techniques, lwhie call chaff injection
methods, involve introducing elements to task inputs opwoistthat provide rare-event
obfuscation. Output-chaff injection applies to contexteve rare-events are not imme-
diately identifiable by clients (as in the distributed.ngplécation of breaking crypto-
graphic functions). It involves the use of one-way hash fiams applied to computation
outcomes in a way that defends against coalitions of hogrdlients. Input-chaff in-
jection applies to contexts where rare-events are eagytiiied by clients (as in the
SETI@home application of finding patterns of intelligenaceektraterrestrial signals).
It involves the injection of a number of obfuscated inputst thill test positive as rare
events. We show that distributing such inputs efficienthamunpredictable way pro-
vides defense against coalitions of hoarding clients atsatbat is lower than existing
input duplication and distribution methods.

Organization The rest of the paper is organized as follows. Section 2 dsurelated
work. Section 3 formulates the problem. Section 4 preseatgyeneral chaff injec-

8 The participant who auctions or ransoms the rare events must beraoosyotherwise the
supervisor can get the correct results by redoing the tasks assighélitentified participant.

tion approach for protecting rare events. Section 5 dessrédm input-chaff injection
scheme, while Section 6 describes an output-chaff injpct@heme. Finally we draw
the conclusion and lay out our future work in Section 7.

2 Related Work

2.1 Uncheatable Grid Computing with Lazy Participants

Although it is an issue grid practitioners have had to coditeith for some time [8],
uncheatable grid computing was introduced by Golle and [Seitine [5]. In their
paper, they advocate double-checking computational gsdlts by probabilistic re-
dundant execution of the tasks (SETI@home employs a simplbld-redundancy
scheme [8]). A redundancy-based approach can reduce taetive for isolated lazy
cheaters when the number of potentially lazy cheaters idl,shud it is less effective
against large coalitions of lazy cheaters and potentialffective against hoarding
cheaters. Indeed, we are not aware of any prior work thatesdds the risks posed by
hoarding cheaters.

Subsequent work on uncheatable grid computing has focusstranger schemes
to defeat lazy cheaters, that is, participants claimingitfer work left undone. Golle
and Mironov propose anger scheme [4], which can protect against coalitions of lazy
cheaters provided that the computational tasks all invtiteelnversion of a One-Way
Function (IOWF),f, for a given valuey, as in the distributed.net attacks on crypto-
graphic functions (but not the SETI@home application oeotlrid applications that
don’tinvolve IOWFs). In the ringer scheme, during the idigation stage for each par-
ticipant, the supervisor randomly selects several inputhat will be assigned to that
participant and compute§x;) for each one. Then, in addition to the valgethat the
supervisor wishes to invert, the supervisor also sendsatqtrticipant all the “ringers”
the supervisor has computed for him. The participant mysirtehe pre-images of all
the ringers (as well as the pre-imageyoff he was lucky enough to discover it). That
is, the participant needs to compufeon x for all = in his input domainD and re-
turn the pre-image af if found, and he also has to return all the ringer pre-images h
finds. By remembering the ringers for each participant, theesvisor can easily verify
whether each participant has found all his ringers or ndielhas, then the supervisor
is assured with reasonable probability that the partidipas indeed conducted all his
computations. Golle and Mironov also discuss some waysdmaat this basic ringer
scheme—using bogus ringers to prevent participants frorwkgpthe total number of
ringers planted and magic sets to prevent direct images ffr@ing sent to the partici-
pants.

Szada, Lawson, and Owen [13] further extend the ringer sehterdeal with lazy
cheaters for other classes of computations, includingropéition and Monte Carlo
simulations, by proposing effective ways to choose ringershese computations. It
is unknown whether the schemes proposed in [13] can be esdendher to arbitrary
computations.

Du et al.[3] propose a different approach to achieve uncheatabdecgrinputing to
defeat lazy participants. In their scheme, the supervisodomly selects and verifies

some samples from the task domain assigned to a particip@ptevent the participant
from cheating on those samples, the participant must corardigest of his/her en-
tire computation results before being checked.dbal. describe a commitment-based
sampling scheme based on Merkle hash trees.

While the existing studies on uncheatable grid computin®[33] prevent partici-
pants from claiming credit for work they have not done, oudgtfocuses on prevent-
ing participants from lying about the rare events they maseHaund, that is, defeating
hoarding cheaters. The previous schemes do not seem ugafu$bhoarding cheaters,
particularly in the case of rare-event searching. Paditipin a ringer scheme are not
induced to report the desired inverse of the one-way funttiand participants in the
commitment-sampling scheme can simply lie about the comanit of a discovered
rare event (which is unlikely to be chosen by the supervisar gst).

As it turns out, our schemes provide some protection agkimgtcheaters. In fact,
even though previous works use scoring computations likEl@home as motivat-
ing examples, our input chaff injection scheme is the fireesee for uncheatable grid
computing that applies to applications that involve a sapfunction that is computed
in floating point and may have device-dependent roundingr&riThese rounding er-
rors don't significantly impact the correctness of requist@mputations but they pre-
vent previous checking schemes, like ringers and commitsemnpling, from validat-
ing otherwise acceptable computations. In the cases of gtitt computing applica-
tions (with device-independent computations), protectgainst lazy cheaters can be
strengthened by combining our schemes with one of the egisitiger or commitment-
sampling techniques. Nevertheless, for the remaindeligptper, our primary empha-
sis will be on ways to defend against hoarding cheaters thagnputing applications.

2.2 Other Related Work

An alternative way to defeat cheating of many kinds is to aseper-resistant software
for all participants. Code obfuscators would be used in tlistext to convert pro-
grams to equivalent programs that are much harder to uaersind reverse-engineer.
Thus, it becomes hard for malicious attackers to modify ttegmms to accomplish
what they want. However the tamper-resistant approachysdwuristically secure, and
many tamper-resistant schemes cannot withstand attawkscialitions of determined
attackers [11].

The problem of uncheatable grid computing is close to amdibdy of literature:
the problem of malicious hosts in the study of mobile agetfis 18]. Several practical
solutions have been proposed for such problems, whichdectemote auditing [11,
14], code obfuscation with timing constraints [7], compgtiwith encrypted func-
tions [12], and replication and voting [17]. The major diface between the mobile-
agent work and our grid-computing work is the threat modék Tobile-agent work
assumes a malicious cheating model, i.e., a malicious lamstic whatever it takes to
cheat, including spending more CPU cycles than the honbsime. Our study focuses

4 Even if the hash valug would be randomly mixed with the ringer set for each participant, two
cooperating cheaters could easily sepaget®em their respective ringers.

on a different model, however, in which it is irrational foparticipant to cheat with a
cost more expensive than honest behavior.

Various cryptographic protocols, such as Private InforomeiRetrieval (PIR) [2] and
Probabilistically Checkable Proofs (PCP) [16] can also $exdto achieve uncheatable
grid computing. However, their expensive computation coagkes them inappropriate
choice for grid computing in practice. We are interestechia paper on solutions that
could be of efficient use in practice.

3 Problem Definition

In this section, we formally define the problem of rare-exssatrching with uncheatable
grid computing, including definitions of the kinds of cheative wish to defend against.

3.1 Model of Grid Computing

We consider a grid computing environment in whiahtrusted participantare taking
part. The computation is organized bysapervisor Formally, such computations are
defined in our model by the following elements:

— A task function f : X — T defined on a finite domain X. The goal of the
computation is to evaluat¢ on all z € X. For the purpose of distributing the
computation, the supervisor partitioAsinto subsets. The evaluation fbn subset
X, is assigned to participant

— A screening functionS. The screener is a function that takes as input a pair of the
form ((z, f(x));y) for z € X, and returns a string = S((z, f(x));y), wherey
represents the criteriofs. is intended to screen for “valuable” outputs othat are
reported to the supervisor by means of the strsing

In the case of rare-event searching, we are interested im¢jrrdsmall (possibly single-
ton) previously-unknown subsé& of X such thatf(z) is some desired value, for each
x € R. Minimally, the screening functiof should catch alk € R.

3.2 Models of Cheaters

A participant can choose to cheat for a variety of reasonscategorize the cheating
using the following three models. We assume each partitisagiven a domairD C
X, and his task is to compuéz) for all z € D. From now on, we us® as the domain
of f for a given participant.

— Lazy Cheater Modeln this model, the participant follows the supervisor’s gum
tations with one exception: far € D c D, the participant use$(x) as the result
of f(z). Functionf is usually much less expensive than functitirfor instance,
f can be a random guess. In other words, the participant ddeonpute the re-
quired functionf on inputsz € D. The goal of the cheating participant in this
model is to reduce the amount of computations, such thahihtaximize its gain
by “performing” more tasks during the same period of timeh# participants are
getting paid, the cheating participant might be guided keyltle of money. This
type of cheating behavior is a cheating on the task funcfion

— Hoarding Cheater Modeltn this model, the participant conducts all the required
computations. However, the participant will keep the cotapan results if the
results are valuable. For example, if the computation isstych for a rare event,
a “lucky” participant who has found a rare event might reportegative result
because of the value of such a result. This type of cheatihgwer is a cheating
on the screening functiof.

— Malicious Cheater Modelin this model, the behavior of the participant can be
arbitrary. For example, a malicious participant might haaéulated functionf
on allxz € D, but when it computes the screener functigrinstead of returning
S((z, f(x));y), it might return a random value. In other words, the parinign-
tentionally returns wrong results to the supervisor, ferphirpose of disrupting the
computations. A malicious cheater may be a competitor, arraserious partici-
pant playing pranks.

Defending against the lazy cheaters is the main purposeecdthemes proposed
in [3-5,13]. In this paper, we focus primarily on defeatihg second type of cheaters—
hoarding cheaters. Namely, we want to prevent the partitipho has found high-value
rare events (members &) from lying about the discovery. Moreover, we even want to
prevent participants from determining which are the highs& rare inputs, that is, we
would like to prevent participants from learnidgwith any certainty.

For the sake of simplicity, we assume that participantdutting the hoarding par-
ticipants, honestly conduct all the tasks assigned to them they do not cheat of)).
This honesty behavior can be guaranteed by the uncheatadleagnputing schemes
proposed previously [3-5, 13]. In other words, by combinmg scheme with the
schemes such as ringers, we can successfully defeat bgtichaaters and hoarding
cheaters.

3.3 Types of Rare Events

Recall that in the screener functidinthere is an certificatg, which defines the criterion
to justify whether a rare event is found or not. We categagize computing problems
into the following two types, and we will describe solutidos each of them:

1. Obvious Rare Events (ORE):In some grid computing scenarios, the criteripn
for identifying rare events is obvious. That is, giverand f (), a participant can
easily determine if is a desired rare-event input. For example, in the Hamatoni
cycle problem, arare event is a permutation of the vertitasforms a Hamiltonian
cycle, and verifying this fact is straightforward based lo@ Wwell-known definition
of Hamiltonian cycles. Indeed, every member of the compjesliass NP has an
effective verification algorithm, by definition. Likewisthe SETI@home applica-
tion has obvious rare events—input signals that have higreledions scores for
patterns of intelligence.

2. Camouflaged Rare Events (CRE)iIn some grid computing scenarios, giveand
f(x) alone, it is not at all clear whetheris a rare event or not. For example, to
find the inverse of a one-way hash valyd.e., to findz that generateg = h(x),
whereh is the one-way hash function and each participant is givervétiue ofy.

Sincey provided to the participants might not be the actual vakealle, even if a
participant finds the corresponding it will not be able to decide whether this is
the valuable rare event.

To prevent participants from keeping the rare events, iteisessary to hide the
criteriony, so that the participants cannot identify whether an inpatrare event or not.
Hiding y for the CRE problem is relatively easier than hidipépr the ORE problem,
because is given by the supervisor in CRE problems, whjles a public knowledge in
ORE problems. In the remainder of this paper, for each typarefevents, we describe
our solutions for performing uncheatable grid computinghi@ presence of hoarding
cheaters.

4 Protecting Rare Events via Chaff Injection

In this section, we give a high-level descriptionatfaff injectionfor protecting high-
value rare events in grid computing. Like a true rare evemhémber ofR), a piece
of chaff is also a rare event, but it is generated by the sigmrParticipants cannot
distinguish chaff from an actual rare event. Only the suigervknows which one is
chaff and which one is an actual rare event he/she is segréhin\We use the term
semi-rareevents to refer to sets that consist of the chaff and the betiteevents.

The main idea of chaff injection is the following:

1. The supervisor injects a number of chaff items into the matetions
2. Participants report to the supervisor all the semi-raemts they find
3. The supervisor filters the results and discards the chaff.

If some participants decide not to return the chaff they Haved, the supervisor can
easily catch such cheaters. As long as the number of chafkite sufficiently large,
participants will have no incentive to hide semi-rare egehecause the results might
be useless chaff and their cheating can be caught. On thetahd, chaff should not
be too dense, because receiving and processing those omnafiroe bandwidth and
CPU cycles of the supervisor. Since the supervisor has alfagdwidth connection
and a large number of available CPU cycles, introducingionil of chaff items does
not introduce much burden to the supervisor, but this amzualready large enough
for participants to lose their cheating incentives.

4.1 Our Approaches to Chaff Injection

Two approaches can be used to introduce new chaff, which syectively refer to as
input chaffinjection andoutput chaffinjection.

One technique involves the replacement of the critegiomith a new criteriony
SO many non-rare events also become a semi-rare events, waihtaining the condi-
tion for defining actual rare events. Since the critenjos used at the output, we call
this chaff approach theutput chaff injectiorscheme. Formally speaking, the screen
function should satisfy the following predicate:

S((z, f(x);y) =1 — S((x, f(2));9) = 1.

The predicate states that if an everis a rare event, then should also be a semi-
rare event. This way, we guarantee that the set of semi-vargsis a superset of rare
events.

The output chaff injection scheme is suitable for CRE protdebecause the crite-
rion y is a secret information that is known only to the supervisbORE problems,
wherey is public knowledge, replacing with a new criterionj cannot hidey. There-
fore, we use the output chaff scheme for CRE problems. Threreaa different ways
to transform a criteriony in this case, however, one throughpansiorand the other
one throughreduction

For ORE problems, wherg cannot be disguised, to inject chaff, we turn to the
input. In this case we replace the input dom&inwith X U C, whereC' is a set of
chaff items that are guaranteed to test positive for the fias&tion f. Depending on
the particular application, we may assign a participant afS@puts that include items
from both X and C, or we may probabilistically choose to send a participanéta s
of inputs exclusively fromX or C. The key property that we must maintain for input
chaff is that it must be computationally expensive for aipgrant to determine if his
input domain includes chaff or not. The efficiency challefayean input-chaff injection
scheme is to define the size@fto be large enough for rare events to become semi-rare
while also keeping the size 6f to be a small fraction of the size &f.

5 Obvious Rare Events with Input Chaff

In this section, we preseimput chaff injectiorschemes to protect high-value rare events
in grid computing for ORE problems. Because the critegigmalready publicly known

in this case; obfuscating cannot prevent participants from knowing whether a rare
event has occurred. We provide solutions to three typesropatations, while solutions

to generic computations are still an open problem.

5.1 Graph Isomorphism

As an illustration of how input-chaff injection can obfuseaare events for hoarding
cheaters, in this section we present an uncheatable grighatation for a problem
often used to illustrate the concept of zero-knowledge fsredhe graph isomorphism
problem. In the graph isomorphism problem, we are given tvaplgsG = (V, E)
andH = (V, F), each having: vertices andn edges, and we are asked if there is
a permutation magr, onV, so that(a,b) € E if and only if (7(a), (b)) € F. We
view 7 as a permutation map becausend H have the same vertex sets; their lists of
edges are different (but possibly isomorphic). The grapmi@rphism problem is not
known to be in P, nor is it known if the graph isomorphism pesblis NP-complete. It
is widely believed to be a difficult problem, however.

Suppose, then, that we are given two such graplend H (and that this appears
to be a hard instance of the graph isomorphism problem). &epfurther that we are

interested in performing a brute-force search for an is@imiem betweerG and H
using a computational grid. Of course, the straightforwaag of solving this problem
is to give each participant the following tasks:

— Each participant is given, as inp@, and H and a family/I of permutation maps
on V. For eachr € II, the participant should check if maps each edge &
to an edge inH and that each edge i has an edge mapped to it ky If 7 is
determined to define an isomorphism frasto H, this fact is to be reported back
to the supervisor.

Thus, an exponential-sized search space is divided amengethof participants in a
way that requires only polynomial space and bandwidth. Tieblpm is that an iso-
morphism mapping fronds to H is obvious; hence, it is easily hoarded.

To obfuscate this obvious rare event, we introduce somet icpaff (and a fur-
ther obfuscation of non-chaff inputs). L&t = {I1y, II», ..., II;} be the collection
of permutation sets that are to be distributed to the pagiuis, where we assume that
the sets are represented in a way that allows compositidnaytermutationr to de-
fine a legitimate set of permutations in a way that does nataiev. In addition, let
{m1,ma,..., T4} be a set of random permutations and jebe an index into this
set (initially, ; = 1). For a probabilityp set by the supervisor (e.qp, = 1/100 or
p = 1/1000), the supervisor performs the following computation fockeparticipant:

1. The supervisor generates a random bit with probabhilitlf this bit is 0, then the
supervisor assigns the given participaitand H, and the next sefll; of permuta-
tion maps to as above, except that the supervisor disgésasd /7, by applying
m; to both (this will not change the computation for the papiit). The supervisor
then increments andj.

2. Otherwise, if the random bit is then the supervisor randomly chooses a permuta-
tion 7 from II; and constructs a permutatiof of G usingz. Then the supervisor
sends the participanty andG’ and the family!I;, after applyingr; to G’ andI7;.

The supervisor then incremenjtgbut nots).

Note that roughlyp of the inputs are now guaranteed to test positive as isonsnsh
between the two graphs given to the participants. More@ah participant is given
the graphG and a graph that looks different for each participant butcivhwill prove
to be isomorphic t@s with probability p.

Security. The security of the above chaff-injection scheme is derfvenh the inability
of participants from determining whether they have beeamgahaff input or not. In this
case, the argument is simple: for a participant to distisigtine chaff from a true input,
they must be able to tell the difference betw&&rand H. But doing so would require
them to solve essentially the same graph isomorphism protile grid is collectively
trying to solve. Note in addition that colluding cheatersyrba able to determine that
some of them were assigned the same permutatioi/sebut, again, without solv-
ing the graph isomorphism problem itself, they will not béeato tell which of these
tasks are chaff and which (if any) are a true input set. Eacticgzant is given a dif-
ferent looking graph to test again&t (even the ones assignéd); hence, colluding
participants cannot determine which of them are given doadfwhich are not (without
solving the graph isomorphism problem itself, that is).

Analysis. The expected additional work involved in using this inpuaffhinjection
scheme is equal totimes the work needed by the original solution, which is ®gis-
tant to hoarding cheaters. That is, if we éetlenote the additional work introduced by
input chaff injection, then

E(@) =k- b,

wherek is the number of subproblems defined by the supervisor baségecsize of

her participant base (e.g:,= 100,000 or k& = 1,000, 000 are realistic values). Thus,

if p=1/10 or p = 1/100, this scheme introduces a small computational overhead of
10% or 1% to the process. For exampleg; i 1/100 andk = 1, 000, 000, thenE(e) =

10, 000. But even with small values far, rare events are significantly obfuscated. For,
even ifG and H are isomorphic, we have the following:

Pr(a participant finding an isomorphism that is not chaff1/e.

For example, ife = 10,000, then there is only a one in ten thousand chance that a
discovered isomorphism is not chaff; hence, a 99.99% chtratea hoarding partic-
ipant will be caught in this scheme (using these examplenpaters). Note that our
chaff injection approach is therefore more efficient thak @uplication approaches to
uncheatable grid computing [5], which have a computatiomathead of 46% to 243%
for reasonable protection against lazy cheaters (whileigirmy only modest protection
against hoarding cheaters of rare events).

5.2 Data Filtering Problems

Having given a “warm-up” example of input-chaff injectiome turn in this section to a
more practical set of grid computationglata filteringproblems. In data filtering prob-
lems we are given a large s&t of data instances and a Boolean filtering functjon
The supervisor is interested in all the elementsf X such thatf(z) = 1. Usually,
the functionf will involve some internal scoring function on each inpuélong with

a threshold value such thatifscores above this value, theris considered rare and
interesting. This class of problems includes the SETI@happdication, whereX con-
sists of extraterrestrial signals that are scored agaihat are considered to be patterns
of intelligence. Likewise, this class of problems includles drug screening example
mentioned in the introduction.

By their very nature, it is not obvious which of the inputsXnwill score positive
for the filter f (for otherwise there would be no motivation for us to go to tifoeible
of using a grid computing environment to solve this probleRgr example, a casual
examination of the signals that have scored highest so flreiSETI@home scoring
function does not yield any obvious patterns; to the nakedtlegy all appear as noise.
Thus, for data filtering applications such as this, emplgyam input chaff injection
scheme is easy.

To inject input chaff into the set of tasks, the supervisagdseonly to have a set
of instances” such that determining if any membeyris not in X is at least as diffi-
cult as computing’(y;). (The supervisor may not need to explicitly construcif she
has a way of choosing elements frafrprobabilistically.) Then the supervisor can ran-
domly inject members oY into the task set® C X for each participant (with some

10

probability p) to provably obfuscate the rare events. For example, a tqué i in the
SETI@home application could be transformed into chaff $irby adding a pattern of
intelligence to it.

Note that this chaff injection scheme has a finer granuldhian our scheme for
graph isomorphism, that is, in this case, each participalikely to have some semi-
rare chaff events to report, whereas in the graph isomarphkaution each participant
was given an input that was entirely valid or entirely ch&ifany case, the security
and analysis of this scheme for data filtering are similahtusé given for the graph
isomorphism solution given above.

5.3 Searching for Solutions to NP-Complete Problems

In this section, we present a chaff-injection solution fadgomputations that involve
searches for solutions to NP-complete problems. We begmaniemplate for building
such schemes and we then give a solution for a well-known difpéete problem—
3SAT. Since all NP problems can be reduced to 3SAT in polyabtithe, this gives
a chaff-injection scheme for any NP-complete problem. Qirse, in practice, it may
be more efficient for a supervisor setting up a grid searctsédutions to a specific
NP-complete problem to use our template and example as algsdn setting up a
specific scheme.

A Template for Chaff Injection for NP Solution Searchiriy their nature, solutions
to difficult instances of NP-complete problems are rare &yeand, with the practical
importance of many of these problems, such solutions mag basnomic value. Let
us therefore provide a template for chaff injection for NRuson searching. Every
languagel. in NP has a polynomial-time verification algorithr, that takes as input a
problem instance and a polynomial-sized certificage such that: € L if and only if

A acceptse for somey (e.g., see [6]). Thus, we can set up a naive grid computation b
dividing the sett” of all certificates into as many subsets as participants skidgeach
participanti to evaluateA(z, y) for all y in hisY; C Y. Of course, accepting inputs for
A are obvious in this naive computation.

To set up a grid computation that defends against hoardiegtehs, we assume the
existence of two functionsy and g, for L. The functiona takes an input instance
and certificate seY; and produces a pait:’,Y;) such thatA(z,y) = A(z’,y'), for
eachy € Y; andy’ € Y/, but determining this fact is computationally difficultde.at
least as hard as the graph isomorphism problem). The fungttakes a certificate set
Y; and returns a problem instanedor L such thatA(z,y) = 1 from somey € Y;,
but determining this fact is computationally hard (ideatlyere should be only one
accepting certificate iy; and locating it should be difficult). Moreover, it should be
computationally difficult to determine whether or nois isomorphic tar with respect
to A. The template for a chaff-injection scheme, then, is for sbpervisor to set a
probabilityp (e.g.,p = 1/10 orp = 1/100) and perform as follows for each participant:

1. The supervisor generates a randombhitith probability p. If b = 0, then she
appliesa(x,Y;) to construct an isomorphic pafr’,Y;) that is equivalent with
respect tod to (z, Y;). She then sends’, Y/) to the participant and increments

11

2. Otherwise, ib = 1, then the supervisor appligson Y; to generate at hard positive
instancez of L onY;. She then applies to the pair(z, Y;) to yield an isomorphic
pair (2/,Y/), and she sendg’, Y/) to the participant and does not incremeént

The participant in this scheme has no efficient way of deteirmgiif they got an input
isomorphic tox or z; hence, each participant is induced to perform their coatjmut.
But roughlyp of the inputs are now guaranteed to be rare events; henderaacevent
should be reported or a cheater will be discovered with higiogbility. The analysis
and security of this scheme are therefore similar to thargfer the graph isomorphism
problem above.

A Specific Example for 3SA%ince any NP-complete problem can be reduced to an-
other NP-complete problem, we only need to describe outisalto one NP-complete
problem. We choose the 3-CNF satisfiability problem, beedtss traditionally the
problem to which other problems in NP are reduced.

A CNF formulais a Boolean expression in a conjunctive normal form, i.ache
conjunct in the formula is @&lause which is itself the disjunction of literals. Each
literal is either avariable, or the complement of a variable. %2CNFformula consists
of clauses each containing exaclyiterals. A formula issatisfiableif there exists at
least one assignment for those variables that will satlsfyformula. We us@ andm
to represent the number of variables and the number of dausspectively.

Finding whether a 3-CNF formula is satisfiable is NP-conmglgtg., see [6]). To
apply our grid computing template, therefore, we need tavshow to construct the
functionsa: andg for this problem. Fortunately, building for a formulaz and certifi-
cate sefy; is relatively simple in this case: we simply rename all thdalgle names
in = (and change their respective name/jrin a corresponding way), and randomly
permute the clauses in Determining if the output formula’ is equivalent tar is at
least as hard as the graph isomorphism problemgkFae can employ any of a number
of schemes for constructing hard instances of 3SAT. For gi@mchlioptas, Kautz,
et al. [1, 9] have an interesting tunable scheme for generating imstances of SAT,
and Massacci and Marraro [10] show how to construct a sdilsfiBoolean formula
such that finding the satisfying assignment is as hard akingthe DES encryption
algorithm. Combining these techniques allows us to creiffieudt instances of 3SAT
that would match the statistical properties of the inpugallowing us to create hard,
satisfiable formulas that are difficult to distinguish aslmeihg isomorphisms of.

The statistical properties of two isomorphic 3-CNF formata similar (e.g., the
number of clauses are the same, and the number of occurremezsch variables are
the same), while the statistical properties of chaff mighdifferent from the original
input and other chaff. Therefore, two colluding particifsatan compare their formulae
to find out whether they are likely to have the chaff or theioagjinput. There are two
approaches to defeat the colluding attacks. First, we cdm the statistical properties
of the chaff match that of input; second, the chaff can also be isomorphic to each other,
so they also have similar statistical properties. Theesfby comparing the statistical
properties of their inputs, colluding participants aré stiable to tell whether they have
the original inputz or chaff.

12

6 Camouflaged Rare Events with Output Chaff

In this section, we present oautput chaff injectiorschemes to protect high-value rare
events in grid computing when rare events are camouflaged.

6.1 An Chaff-Injection Scheme via Criterion Expansion

In the following, we give a generic solution for CRE probleims. the criteriony is only
known to the supervisor. We assume that the screen funetidefined as the following:

S(f(z),y) =1 iff f(z) ==y.

For CRE problems, to obfuscate rare events, we introducey roger criteria. If
an inputz satisfies any of these criteria, it is considered as a semiewent. If the
actual rare-event criterion is superficially indistindhable from the introduced criteria,
participants cannot tell whether a semi-rare event is th@ahcare event or just chaff.
The algorithms for CRE problems is described in the follayvin

1. The supervisor randomly seleetsinputszy, ..., z,, from the input domainX.
Note thatX is the global input domain, each participant only conduasks for a
subset ofX.

. The supervisor generateschaff by computing; = hash(f(z;)),fori =1,...,m.

3. The supervisor sends the IGt= {hash(y),c1,...,cn } to all the participantsC
should be permuted to hideush(y).

4. For any inputr assigned to each participant, the participant compuies (f(x))
and compares the results with the listIf a match occurs, the participant sends
back to the supervisor; otherwigds discarded.

5. The supervisor can verify whether a returnedalue is an actual rare event or
chaff, by a simple lookup i’ (say, by storing the elements 6fin a hash table).
The supervisor also checks whether the participant whate faclude chaff has
returned the chaff or not. This way, the cheater can be caught

N

Security AnalysisWhen a participant finds a semi-rare event, because of thiepgés
of chaff, the probability that this semi-rare event is aruattare event is only};.
Furthermore, because the participants all get the same.distthe information about
the rare events is the same, colluding does not bring ang extsrmation to improve
that probability. Incidentally, this scheme differs frohetringers scheme of Golle and
Mironov [4] in two important ways. First, our output chaffiéation scheme gives the
same set of chaff to all participants, so collusion is uselesdentifying chaff, unlike
ringers. Second, unlike ringers, our output chaff cannotdlisénguished from actual
desired outputs (without performing the requested contipmathat is).

In an actual grid computing application, of course, the mment may or may not
exist. Knowing whether a rare event exists or not might alswdluable, and needs
to be protected. Our chaff scheme does prevent the panmisifeom finding out this
information. The only situation when the participants knthat the rare event exists
is when they have found the matches for all the elemenés.iBecause the chaff are

13

selected uniformly randomly from the entire input domahe thance that a group
of cheating participants get all the chaffi®, wherep is the portion of the cheating
participants among all the participants. In practigés quite small. Thereforey™ is
negligible whenn is large.

Computation overheadThe extra computation cost added to this grid computing is
that of computing a cryptographic hash function and the figdif matches among the
list C' (the lookup inC can be done using a non-cryptographic hash table). We have
assumed that the cost of computing a hash function is nbfgigompared to the cost

of computing the task functiofi. Moreover, finding the match can be quite efficient
using the hash table data structure even if the list is lomg, the value ofn is large).
Therefore, the supervisor can afford to send a list contgiténs of thousands chaff.

As we have known, the longer the list is, the fewer incentpagicipants have.

6.2 Criterion Reduction for CRE Problems

Another way to increase the number of inputs that satisfyitarwn, and thereby in-

troduce input chaff, is to reduce the amount of requiremdratsmust be satisfied. For
example, assume that the original criterion says that aut imust satisfy five require-

ments to be considered as a rare event; we can reduce the mafmkguirements to

three in the new criterion, thus increasing the number a$fable inputs.

1. The supervisor computégy), and letg be the firstk bits of the result, wheré
is a security parameter. The supervisor sejtls participants along with the task
assignments.

2. For each assigned input a participant computeg(z), and checks whether the
first k bits of A(f(x)) equaly. If true, the participant returns andh(f(x)) to the
supervisor; otherwise, discards

3. The supervisor verifies whethe(f(z)) = h(y). If false, z is just chaff; elseg is
arare event.

Analysis. Just like the criterion-expansion scheme, we want to keemtimber of
semi-rare events sufficiently large, so participants wiid incentives to cheat. On the
other hand, the number of semi-rare events must be keptnngthiange, otherwise,
finding the actual rare events from the semi-rare eventscaiisume too much time of
the supervisor.

Because of the randomness of hash value, we can easily demidenany bits to
disclose to the participants. Assume that the search spa®é,iand hash values of
outputs are uniformly distributed. Disclosing the first 4&lof /(y) will lead to a real-
to-false ratio 122°, This is big enough for the participant to lose incentives, small
enough for the supervisor to find out the actual rare ev@dtsnjeans only 1 million of
hash-function evaluations).

Compared to the criterion-expansion scheme, the critegdnction scheme intro-
duces computation costs on the server side, although teenanageable. Another dif-
ference is that in criterion reduction, controlling theadtetween the rare and semi-rare
events becomes difficult when the hash values of outputsareniformly distributed
(this can happen, for example, when many outputs have the galuwes).

14

7 Conclusion and Future Work

This paper provides a first step towards disguising highievahre events in the context
of grid computing with hoarding cheaters. The techniquesemployed involved the

injection of input and/or output chaff, depending on whethe rare events were obvi-
ous or not. There are still many interesting open problerasdbuld be studied in the
future, including:

— Can we develop a generic scheme for all ORE problems?

— The difficulty with the ORE problems is the publically knowndicator of rare
events. Can we turn an obvious indicator to a hon-obvious#tar, i.e., transform
ORE problems into CRE problems? If this can be done, we cosgdsolutions to
CRE to solve ORE problems.

8 Acknowledgment

The authors acknowledge the supports from the United Skdenal Science Foun-
dation under grants ISS-0219560, 11S-0312366, CCR-02256€R-0311720, CCR-
0312760.

References

1. Dimitris Achlioptas, Carla P. Gomes, Henry A. Kautz, and Bart Seln@enerating satisfi-
able problem instances. WAAI/IAAI pages 256-261, 2000.
2. C. Cachin, S. Micali, and M. Stadler. Computationally private informateirieval with
polylogarithmic communication_ecture Notes in Computer Sciend®92:402—414, 1999.
3. W. Du, J. Jia, M. Mangal, and M. Murugesan. Uncheatable grid ctimgp InThe 24th In-
ternational Conference on Distributed Computing Systems (ICDCS¥adjes 4-11, Tokyo,
Japan, March 23-26 2004.
4. P. Golle and I. Mironov. Uncheatable distributed computatidesture Notes in Computer
Science2020:425-440, 2001.
5. P. Golle and S. Stubblebine. Secure distributed computing in a comiveisonment. In
P. Syverson, editoRroceedings of Financial Crypto 200¢olume 2339 of_ecture Notes in
Computer Sciencgages 289—-304. Springer-Verlag, 2001.
6. M. T. Goodrich and R. Tamassi&lgorithm Design: Foundations, Analysis, and Internet
Examples John Wiley & Sons, New York, NY, 2002.
7. F. Hohl. Time limited blackbox security: Protecting mobile agents from rnoaigchosts.
Mobile Agents and Security, Lecture Notes in Computer Science,Spkiagag 1419:92—
113, 1998.
. L. Kahney. Cheaters bow to peer pressWired MagazingFeb. 15, 2001.
9. Henry A. Kautz, Yongshao Ruan, Dimitris Achlioptas, Carla P. GorBest Selman, and
Mark E. Stickel. Balance and filtering in structured satisfiable problemdJQAl, pages
351-358, 2001.
10. F. Massacci and L. Marraro. Logical cryptanalysis as a SABlpm: The encoding of the
Data Encryption Standardournal of Automated Reasonirngf(1-2):165-203, 2000.

11. F. Monrose, P. Wykoff, and Aviel D. Rubin. Distributed executiathwemote audit. In
Proceedings of ISOC Symposium on Network and Distributed Systemityqrages 103—
113, February 1999.

[e0]

15

12

13.

14.

15.

16.

17.

18.

. T. Sander and C. F. Tschudin. Protecting mobile agents againstausltwsts, springer-
verlag. Lecture Notes in Computer Sciend419:44—60, 1998.

D. Szajda, B. Lawson, and J. Owen. Hardening functions foe Iscgle distributed compu-
tations.|[EEE Symposium on Security and Priva2@03.

G. Vigna. Protecting mobile agents through tracing?ioceedings of the 3rd Workshop on
Mobile Object Systemdune 1997.

G. Vigna, editor.Mobile Agents and Securityolume 1419 ol ecture Notes in Computer
ScienceSpringer, 1998.

R. Ostrovsky W. Aiello, S. Bhatt and S. Rajagopalan. Fast verifitati@ny remote pro-
cedure call: short witness-indistinguishable one-round proofs foimproceedings of the
27th International Colloquium on Automata, Languages and Programipiages 463-474,
July 2000.

F. Schneider Y. Minsky, R. van Renesse and S. D. Stoller. Crsgpib@ support for
fault-tolerant distributed computing. IRroceedings of Seventh ACM SIGOPS European
Workshop,System Support for Worldwide Applicatipages 109—-114, Connemara, Ireland,
September 1996.

B. S. Yee. A sanctuary for mobile agents.Secure Internet Programminpages 261-273,
1999.

16

