Testingfor Software Vulnerability Using Environment
Perturbation

Wenliang Du*

Centerfor EducationrandResearchin InformationAssuranceindSecurity(CERIAS)
1315RecitationBuilding
PurdueUniversity, W. Lafayette IN 47907,USA
Email: duw@cs.purdue.edu
Telephone(765)496-6765 Fax: $765)496-3181
Aditya P. Mathur
CERIAS CenterandSoftwareEngineeringResearctCenter(SERC)
1398Departmenbf ComputerSciences
PurdueUniversity, W. Lafayette IN 47907,USA

Abstract

We describean methodolgy for testinga softwae systenfor possiblesecurityflaws. Basedon the observation
that mostsecurityflawsare causedy the program’s inappropriate interactionswith the ervironmentandtriggered
by users malicious perturbation on the environment(which we call an ervironmentfault), we view the security
testingproblemas the problemof testingfor the fault-tolerancepropertiesof a softwae system.\\e considereac
ernvironmentperturbationas a fault and the resultingsecuritycompomisea failure in the toleration of sud faults.
Our approad is basedon thewell knowntechniqueof fault-injection. Environmenfaults are injectedinto the system
undertestand systerrbehaviorobserved Thefailure to tolerate faultsis an indicator of a potentialsecurityflaw in
the system.An Environment-Applicatiorinteraction (EAI) fault modelis proposedwhich guidesus to decidewhat
faultsto inject. Basedon EAI, wehavedevelopeda securitytestingmethodolgy, andapplyit to several applications.
We successfullydentifieda numberof vulnembilities includevulnembilities in WindowsNT operating system.

Keywords: Securitytesting,securityflaws, faultinjection,ernvironmentperturbation.

Word Count: 7500
Contact: WenliangDu

Thematerialhasbeenclearedthroughauthors affiliations.

*Portionsof thiswork weresupportedy contractF30602-96-1-033fom RomeLaboratory(USAF) andby sponsor®f the CERIAS Center

T Portionsof this work weresupportedy contractF30602-96-1-033&rom RomeLaboratory(USAF), by sponsor®f the CERIAS Centey and
NSFaward CCR-9102331.

Testingfor Software
Vulnerability Using
Environment Perturbation

1 Intr oduction

Security testing

Reportsof securityviolationsdueto software errorsare
becomingincreasinglycommon. We referto sucherrors
as“security errors” or “security flaws” This hasresulted
in securityrelatedconcernsamongsoftware developers
andusersregardingthe “robustness’of the softwarethey

use. All stagesof software developmentare motivated
by the desireto make the productsecureandinvulnera-
ble to maliciousintentionsof someusers. Our work is

concernedwith the testingof software with the goal of

detectingerrorsthatmightleadto securityviolations.

Traditional methodsfor detectingsecurity flaws in-
cludepenetratioranalysisandformal verificationof secu-
rity kernelg[17, 19]. Penetratioranalysisgrelieson known
securityflaws in software systemstherthanthe onebe-
ing tested.A teamof individualsis giventheresponsibil-
ity of penetratinghe systemusingthis knowledge. For-
mal methodsusea mathematicatlescriptionof the secu-
rity requirementsandthat of the systemthatimplements
the requirements.The goal of thesemethodsis to show
formally thatthe requirementsareindeedmetby the sys-
tem.

A weaknes®f penetratioranalysisis thatit requires
one eitherto know or be ableto postulatethe natureof
flaws that might exist in a system.Further the effective-
nessof penetratioranalysisis believedto be asgoodas
that of the teamthat performsthe analysis. A lack of an
objective criterionto measureheadequayg of penetration
analysisleadsto uncertaintyin the reliability of the soft-
waresystentor which penetratioranalysisdid notreveal
ary securityflaws.

Attractive due to the precisionthey provide, formal
methodssuffer from the inherentdifficulty in specifying
the requirementsthe system,andthenapplyingthe pro-
cessof checkingthe requirementsspecificationagainst
systemspecification.

Recently several specificsecuritytestingtechniques
have beendeveloped[4, 7, 18, 23, 21, 28]. As discussed
in section5, thesetechniquesreeitherrestrictedo some
specificsecurityflaws or limited by theunderlyingtesting
techniques.

Anotheralternatve for securitytestingis to usegen-
eraltestingtechniquessuchaspathtesting,data-flav test-
ing, domain testing, and syntaxtesting[2]. However,
the effectivenesof thesetechniquesn revealingsecurity

flawsis still unknavn andmorestudiesareneededo jus-
tify theirusein testingfor securityflaws.

Outline of our approach

Our approachfor securitytestingemploys a well known
techniquen thetestingof fault-toleransystemsna-mely
faultinjection. Thisapproactasdravn uponyearsof re-
searctandexperiencen vulnerabilityanalysiq1, 3, 6, 16,
20]. Ourapproactrelieson anempirically supportece-
lief thattheernvironmentplaysasignificantrolein trigger
ing securityflaws thatleadto securityviolations[9, 16)].

The problem

For the purposeof our discussionye assumdhata “sys-
tem” is composedof an “application” andits “environ-
ment” Thus,potentially all codethatis notconsiderecs
belongingto the applicationbelongsto the ernvironment.
However, we canreducethe size of the ervironment, by
consideringpnly thoseportionsof thecodethathave a di-
rector indirect couplingwith the applicationcode. Such
couplingmightarise for example dueto theapplications
useof globalvariabledeclaredn the ervironmentor the
useof commonresourcesuchasfiles and network ele-
ments.

For variousreasonsprogrammergend to make as-
sumptionsaboutthe ervironmentin which their applica-
tion will function. Whentheseassumption$old, the ap-
plicationis likely to behae appropriately But, because
the ervironment,as a sharedresource canoften be per
turbedby othersubjectsespeciallymalicioususersthese
assumptionsnight not be true. A secureprogramis one
that tolerateservironmentperturbationavithout any se-
curity violation.

If we considerervironmentperturbationsgespecially
maliciousperturbatiorto be (malicious)faults,thena se-
curesystencanberegardedasafault-toleransystenthat
is ableto toleratefaultsin theervironment.Thereforethe
goalof testingthesecurityof asystems reducedo ensur
ing thatthe systemis implementedo toleratevariousen-
vironmentfaults;notleadingto securityviolationsis con-
sideredtolerationof suchfaults. In the remainderof this
paperwe will usetheterms* ervironmentperturbation”
and “environmentfault” interchangeablywherethereis
no confusion.

Fault injection—thedeliberateinsertion of faultsinto
anoperationabystemto determindts response—d&érsan
effective solution to validatethe dependabilityof fault-
tolerantcomputerand software systemg5]. In our ap-
proach,faultsareinjectedinto ernvironmenttherebyper
turbingit. In otherwords,we perturbthe applicationen-
vironmentduring testingto seehow the it respondsand

whethertherewill be a securityviolation underthis per
turbation.If notthenthesystemis consideredgecure.

Advantagesof our approach

The useof ernvironmentfault injectiontechniqudeadsto
severaladvantages First, in practice,it is hardto trigger
certainanomaliesn the ervironment,and knowing how
to triggerthemdependson the testers knowledgeof the
ervironment. Therefore,testingsoftware securityunder
thoseernvironmentanomaliedbecomedifficult. Faultin-
jection techniqueprovides a way of emulatingthe ervi-
ronmentanomalieswithout having to be concernedvith
how they could occurin practice. Second,our approach
providesa systematiovay of decidingwhento emulate
ervironmentfaults. If we want to test whethera sys-
temwill behae appropriatelyundercertainervironment
anomalieswe needto setup thoseervironments. How-
ever, the setup time is often difficult to control. If the
setupis too early, it might changeduringthetestandthe
ervironmentstatemight not be we is expectedwhenan
interactionbetweenthe applicationandthe ervironment
takesplace.If theervironmentis setuptoolate,theeffect
it hason the applications behaior might not sene the
purposefor which it wassetup. By exploiting staticin-
formationin theapplicationandthe ervironmentssource
code,ourapproactcan,however, decidedeterministically
whento triggerervironmentfaults. Third, unlike penetra-
tion analysiswherethe proceduras difficult to automate
andquantify, faultinjectiontechniqueprovidesa capabil-
ity of automatingthe testingprocedure.In addition, we
adopta two-dimensionametricsto quantify the quality
of ourtestingprocedure.

Reseach issues

Faultinjectionrequiresthe selectionof a fault model[5].
The choiceof this modeldepend®on the natureof faults.
Softwareerrorsarisingfrom hardwarefaults,for instance,
areoftenmodeledvia bits of zeroesandoneswritten into
adatastructureor aportionof thememory[15, 25], while
protocolimplementatiorerrorsarisingfrom communica-
tion are often modeledvia messagealropping, duplica-
tion, reorderingdelayingetc.[14]. Understandinghena-
ture of securityfaultsprovidesa basisfor the application
of fault injection. Sereral studieshave beenconcerned
with the natureof securityfaults[1, 3, 6, 16, 20].) How-
ever, we are not aware of ary studythat classifiessecu-
rity flaws from the point of view of ervironmentpertur
bation. Somegeneraffault modelshave alsobeenwidely
used[13, 26, 21, 28]. The semanticgap betweenthese
modelsand the ervironmentfaults that lead to security
violationsis wide andthe relationshipbetweenfaultsin-
jectedandfaultsleadingto securityviolationsis notknown.

We have developedan Environment-Applicationinterac-
tion

(EAI) faultmodelwhich senesasthebasighefaultinjec-
tion technigquedescribechere. The advantageof the EAI
modelis in its capabilityof emulatingervironmentfaults
thatarelik ely to causesecurityviolations.

Anotherissuein faultinjectiontechniqueis the loca-
tion, within the systemundertest, wherefaultsareto be
injected. In certaincasesthe locationis obvious. For
example,in ORCHESTRA[14], the faultsemulatedare
communicatiorfaults. Hence,the communicationrchan-
nelsbetweercommunicatingentitiesprovide the obvious
locationfor faultinjection. In othercaseswherethe lo-
cationis hardto decide,nondeterministianethods such
asrandomselection,selectionaccordingto distribution,
areusedto choosethelocations.For example, FERRARI
[15] andFINE [13] usesuchanapproach.The selection
of locationis also a major issuefor us. In the current
stageof our researchyve inject environmentfaultsat the
pointswherethe ervironmentandtheapplicationinteract.
In futurework, we planto exploit staticanalysigo further
reducethe numberof fault injectionlocationsby finding
the equialencerelationshipamongthoselocations. The
motivationfor usingstaticanalysismethodis thatwe can
reducethe testing efforts by utilizing static information
from the program.

A generalissueaboutsoftwaretestingis “what is an
acceptabldestadequayg criterion?” [10]. We adopta
two-dimensionatoveragemetric(codecoverageandfault
coverage}o measurdestadequag.

The remainderof this paperis organizedasfollows:
section2 presentshefaultmodel. A methodologyfor se-
curity testingis presenteth section3. In sectiord we will
shaw the resultsof usingthis methodologyin detecting
realworld programs.Finally a brief overview of related
studiesis presentedn section5 followed by summaryof
thisresearctandthepotentialfor futurework in section6.

2 An Environment Fault Model

In orderto determinesystembehaior undervariousen-
vironmentconditions,an engineemustbe ableto deter
mine the effects of ervironmentperturbationon a given
system. Therefore,it is usefulto inject faultsthat man-
ifest themselesaserrorsin systemsat the ervironment-
applicationinteractionlevel. To maintainconfidencen
the validity of the errors, the model usedfor thesein-
jectionsshouldbe drawvn from actualervironmentfaults,
while faults injectedinto the systemshould be able to
emulatethoseervironmentfaultsappropriately Oneas-
sumptionbehindthis requirements thata securityviola-
tion resultingdueto theinjectedfaultis similarto onethat
resultsdueto an ervironmentfault that arisesduring the

intendeduseof thesystem. guaranteghata programmers assumptiorhold on some
partof the environmentstate,thereis no generalmecha-
nismto dothe sameasthe environmententity hasvarious
attributesthanwhatthe mutualexclusionandsemaphore
Definition 2.1 (Internal Stateand Internal Entity) Any mechanismgould handle. As a result, programmer®f-
elementin an applications codeand dataspaceis con- tenusead hoc mechanisms$o guaranteghe correctness

sideredaninternalentity. A stateconsistingof the status of their assumptionsThis canleadto errorsmoreread-

2.1 Terminology

of theseentitiesis calledaninternalstate.

Variablei in aapplication for example,is aninternal
entity. Thevalueof i is partof aninternalstate. The size
of abufferusedn theapplicationis alsopartof its internal
state.In generalall informationin this applications data
spacestackspaceandheapspacearepartof its internal
state.

ily thanwould be the casewhena standardnechanisnis
used.

2.2 Developinga fault model

In orderto provide high confidencdan the validity of the
securityflaws causedy environmentfaults,the method-
ology describecheremodelssystemsat a high level. We
refer to this level asthe Ervironment-Applicationinter-

Definition 2.2 (EnvironmenEntityandEnvironmenstate), tion (EAI) level. Faultinjection at the interactionlevel

Any elementthatis externalto anapplications codeand
dataspaceis called an ervironmententity. A statethat
consistof the statusof theseentitiesis calledanerviron-
mentstate.

For instancefile andnetwork aretreatedaserviron-
mententities. The permissiorof afile, existenceof afile,
ownershipof afile, real userid of a processandthe ef-
fective userid of processaredifferentpartsof anenviron-
mentstate.

A key differencebetweenan ervironmentandanin-
ternalentity, whichmakesimplementatiorof asecuresys-
tem difficult and errorprone,is the sharednatureof the
ervironmententity. An applicationis not the only one
that canaccessandchangean ernvironmententity. Other
objects,suchas otherusers,may accessaand changethe
ervironmententity aswell. Internal entity, on the other
hand,is privateto anapplicationin the sensdhatonly the
applicationcan modify and accesshem, assumingthat
the underlyingoperatingsystemprovides protectedpro-
cessspace.

In concurrenprogrammingsharedesourcesrehan-
dled by usingthe mutualexclusionandthe sema-phore
mechanisnmto guaranteeassumptionsaboutthe stateof
sharedesourcesHowever, we believe thatfew program-
mersusea similar mechanismnio guaranteeheir assump-
tion aboutthe stateof the ervironment. Thereare sev-
eralreasondor this. First, programmersnight not have
recognizedthat the ervironmententities are sharedre-
sources. When, for example,an applicationwrites to a
file, it checksthatit hasthe permissionto write to that
file, andthenassumeshatright in subsequenbperations
to thatfile withoutnoticingthatamaliciousattaclercould
have changethe environmenttherebyrenderingthe as-
sumptionfalse. Most securityflaws resultingfrom race

conditions[4] are causedby suchdubiousassumptions.

Secondalthoughsomemechanismssuchasfile locking,

attemptsto emulatewhat a “real” attacler does. Since
mostof thevulnerability databasesecordthe way attack-
ers exploit a vulnerability, we transformtheseexploits
to ervironmentfaults to be injectedwith little analysis
on thoserecordstherebynarraving the semantiogapbe-
tweenfaultsinjectedattheinteractionlevel andfaultsthat
really occurduringtheintendeduseof thesystem.n con-
trast, other studies[21, 28] inject faults at the program
statementevel therebyleaving a large semanticgap be-
tweenfaultsinjectedandthosethatmightariseduringthe
intendeduseof theapplication.

2.3 An EAI fault model

In generalervironmentfaultsaffectanapplicationin two
differentways. First, an applicationrecevesinputsfrom
its environment.Theervironmentfaultsnow becomdaults
in the input, which is theninheritedby aninternalentity
of the application. From this point onwardsthe erviron-
mentfaults propagateghroughthe applicationvia the in-
ternalentities.If theapplicationdoesnothandlethefaults
correctly asecurityviolation mightoccur Thedirectrea-
sonfor this violation appearto be faultsin the internal
entity. However, this violation is dueto the propagation
of environmentfaults. Stateddifferently, the environment
indirectly causes securityviolation, throughthemedium
of theinternalentity. Figurel(a)shavs thisindirectway
in which theervironmentfaultsaffectanapplication.

Considerthefollowing example. Supposehatan ap-
plication recevesits input from the network. Any fault
in the network messageelatedto this input is inherited
by aninternalentity. Whenthe applicationdoesa mem-
ory copy from this messagé¢o aninternalbuffer without
checkingthe buffer's boundariesthefaultin the network
messagethefaultbeing“messagéoolong;’ now triggers
aviolation of securitypolicy.

environmel

enviromen
SRty
internal
entity
‘
enti - \
T~

environmen
entity
internal
entity

Software System

Environment

environmel
- entity
enyiromen
entity H

environmen
entity

Environment

———= input from the environment to the software system

- - -> environment entity affects the software system via an internal entity

g execution of the software system

@)

---> environment entity affects the software system directly

i execution of the software system

(b)

Figurel: InteractionModel

A secondway in which an ervironmentfault affects
the applicationis whenthe fault doesnot propagatevia
theinternalentity. Insteadijt stayswithin theenvironment
entity andwhentheapplicationinteractswith theerviron-
mentwithout correctlydealingwith thesefaults,security
policy is violated. In this case the environmentfaultsare
the direct causeof securityviolation andthe mediumfor
ervironmentfaultsis the ervironmententity itself. Fig-
ure 1(b) shows this directway in which the ervironment
faultsaffectanapplication.

Letusnow aconsidermnexampleto illustratethis sec-
ondkind of interaction.Supposéhatanapplicationneeds
to executeafile. Therearetwo possibilitiesonebeingthat
thefile belongso theuserwho runstheapplication.Here
the ervironmentattribute is the file’s ownership. In this
casethe executionis safe. The other possibility is that
the file belongsto somemalicioususer This is an en-
vironmentfault createdby the malicioususer Now the
individual who runsthe applicationassumeshat the file
belongsto the application. If the applicationdoesnot
deal with this environmentfault, it might executearbi-
trary commandsn thatfile therebyresultingin a security
violation.

The most errorprone interaction betweenan appli-
cation and the ervironmentis that involving files. Pro-
grammergendto useanabstractiorof afile thatincludes
only a subsebf thefile attributes. A file namewith alo-
cationor file content,for example,is a commonlyused
abstractionof a file. The ernvironmentfaults, suchasa
long file nameor afile namewith specialcharactersas-
sociatedwith this abstractiorwill propagatevia theinter
nal entity. If the applicationdoesnot placeappropriate
checkson theseinternalentities,suchervironmentfaults

will causesecurityviolationssuchasthosedueto buffer

overflow andthe executionof an unintendedcommand.
The environmentfaultsassociateavith theremainingfile

attributes,suchaswhetherthefile is a symboliclink, the
ownershipof the file, existenceof the file, andthe per

missionsassociatedvith the file, will not propagatevia

aninternalentity. Althoughtheseattributesareextrinsic
to the application,if not dealtcorrectly they are likely

to directly affect the interactionbetweenapplicationand
ervironment.

In summarywe have catgyorizedtheernvironmentfaults
accordingto the way they affect applications. Environ-
mentfaultswhich affect programsvia internalentitiesare
calledindirecternvironmenfaults Environmentfaultswhich
affect programsvia ervironmententitiesarecalleddirect
ervironmenfaults

2.3.1 Indir ectenvironmentfaults

We categorizeindirectervironmentfaultsaccordingo the
way they propagatén theinternalspace Thepropagation
includesinitialization anduseof aninternalentity corre-
spondingo anervironmentfault. Differentwaysof prop-
agationaresummarizedn thefollowing.

First, differentkinds of ernvironmentfaultsaretrans-
ferredto aninternalentity, which hasbeeninitialized, in
differentways. Most commoninitializationsarethrough
theinteractionof theapplicationwith the ervironment,in
which case theremustbe a statemenin the programthat
performsthis initialization. However, for otherinitializa-
tions, thereis no suchstatemenin the application. The
initialization of an ervironmentvariable,for example,is
carriedout by the operatingsystem. The aspectof this

kind of internalentity caneasilycausemis-handlingsince
programmersarely noticethe initialization or eventheir
existence.

Second environmentfaultsinheritedby internal en-
tities propagaten different ways since internal entities
comefrom differentsourcegndareuseddifferently Some
internalentitiesareusedby theapplicationdirectlyin that
thereareexplicit statement theapplicationthatusethe
internal entities. Otherinternal entitiesare usedby the
applicationindirectly, meaningthat thereis no explicit
statementn the applicationthat usesthe internal enti-
ties. Implicit usagemight be causedby systemcalls as
systemcalls usesomeinternal entitieswithout being no-
ticed. When,for instancea systemcall is madein UNI X
to executeacommandvithoutusinganabsolutgyath,one
might not noticefrom the applicationthatthis systemcall
useghePATHernvironmentvariableto find thelocationof
that command.Without this knowledgeon how the sys-
tem call works, programmelis unavare of this invisible
useof theinternalentity andhencemight make incorrect
assumptiongboutit.

As perthe above discussionan understandingf se-
curity flawsis facilitatedby dividing indirectervironment
faultsinto the following five sub-catgoriesaccordingto
their origins: 1) userinput, 2) ervironmentvariable, 3)
file systeminput, 4) network input, 5) processnput.

Accordingto vulnerability analysisreportedin [1, 3,
6, 16, 20] and our analysisof a vulnerability database,
faultslik ely to causesecurityviolationsdependnthe se-
manticsof eachentity. PATH, for example,is anerviron-
mentvariable,andcompriseslist of pathsusedto search
acommandvheneeranapplicationneedgo executethat
command. In this case,the order of pathsis important
sincethe searchwill look for thatcommandusingthe or-
derspecifiedin PATH, andthesearchwill stopright after
it hasfoundit. Thesecuritycouldmostlikely be affected
by changingthe order of pathsin the PATH variableor
appendinganew pathto it. Certainly anarbitrarymodifi-
cationof PATHwill rarelycauseasecuritybreach.

Differentsemanticof eachinternalentity is summa-
rizedin Tableb.

2.3.2 Directenvironmentfaults

Direct ervironmentfaults are perturbationsof erviron-

mententitiesthataffectanapplicationsbehaior directly.

Unlike the internal entities, which consistonly of vari-

ables,environmententitiesare more complex. For each
type of entity, the attributesvary. Therearethreetypes
of ervironmententitiesin a traditional operationsystem
model. We categyorize ernvironmentfaults accordingto

this model. Thesecateyoriesare enumerateds: 1) file

system 2) process3) network.

Tablel: high-level classificationtotal 142)
Categories Indirect En- | Direct En- | Others
vironment vironment
Fault Fault
number 81 48 13
percent 57% 34% 9%

Table3: Direct EnvironmentalFaultsthat CauseSecurity

Violations(total 48)

Categories | File System | Network | Process
Number 42 5 1
Percent 87% 10% 2%

Studiesf securityviolationreportsyulnerabilitydatabases,

andvulnerabilityanalysesuggesseveralsecurity-related
attributescorrespondingp eachervironmententity. These
are summarizedn Table 6. This list is not exhaustve,
neverthelesd providesthecommonattributesthatappear
in reportsof securityviolations. Futurevulnerabilityanal-
yses however, mightaddnew entriesto thelist.

2.4 DataAnalysis

A securityvulnerabilitydatabasg§l6] is maintainedn the
CERIAS Centerat PurdueUniversity. Currentlythereare
195entriesin this databasevhich includevulnerabilities
of applicationdrom differentoperatingsystemssuchas
W ndows NT, Sol ari s, HP- UX, andLi nux. A use-
ful propertyof this databases that mostof the vulner

abilities areanalyzedn detail eitherusingthe first hand
knowledgefrom actualpenetrationiestingor usingsecond
handknowledge.

Among the 195 entriesin the databas&6 entriesdo
not provide sufiicient information for our classification,
22entriesarecausedy incorrectdesignands entriesare
causedy incorrectconfiguration. Both designand con-
figurationerrorsexcludedfrom the scopeof our research.
We thereforeclassify only thoseerrorsthat manifestdi-
rectly asincorrectcodein the applicationusingthe fault
modelpresentedbove. Hencethetotal numberof entries
usedfor our classificatioris 142.

Tablel shavsthehigh-level classificatiorof environ-
mentfaults. 91% of the 142 security flaws are classi-
fied by usingthe EAI fault model;the remaining9% are
causedby software faultsirrelevant to the ervironment.
Thesencludeerrorssuchasthosedueto mistypingof the
codein theapplication.

Table 2 shaws the classificationof indirect environ-
mentfaults. Table 3 shavs the classificatiorof directen-
vironmentfaults. Datain Table 3 indicatesthata signifi-
cantnumberof partof softwarevulnerabilitiesarecaused

Table?2: IndirectEnvironmentFaultsthat CauseSecurityViolations(total 81)

Categories User | nput Envi ronnent Vari - File System I nput Net wor k 1 nput Process I nput
abl e

Number 51 17 5 8 0

Percent 63% 21% 6% 10% 0%

by theinteractionwith thef i | e syst emenvironment.
Interactionwith the net wor k contritutesonly 10% of
all software vulnerabilitiesin our database.The reason
for the low percentagaetwork-causedvulnerabilitiesis
thatmostof the network vulnerabilitiesareintroducedby
aweakprotocoldesignwhich doesnotfall into the scope
of our classification. Table4 providesfurther classifica-
tion of fil e syst emenvironmentfaultsaccordingto
Table6.

3 EnvironmentFault Injection Method-

ology

3.1 Fault injection

LiketheEAI model,whichmodelstheervironmentfaults
attheinteractionlevel, faultinjectionsarealsodoneatthe
interactionlevel. The previoussectionclassifieshe ervi-

ronmentfaultsinto directandindirectenvironmentfaults.

Thesefaultsareinjectedusingthefollowing mechanisms:

1. Indir ect Environment Fault Injections: An in-
direct ervironmentfault occursat the interaction
pointwhereanapplicationrequeststs ervironment
for aninput. The input thatthe ervironmentpro-
videsto the applicationwill mostlikely affect the
applications behaior. A secureapplicationshould
tolerateanunexpectedanomalyin the ervironment
input. Onewayto perturbtheinputis to userandom
input asin Fuzz[8, 23]. However, this approach
dramaticallyincreaseshetestingspacewhich and
calls for a significantlylarge amountof testingef-
fort. The Fuzz approachdoesnot exploit the se-
manticsof eachinput. Our vulnerability analysis,
however, hasshovn thatinputsmostlik ely to cause
securityviolationstendto have patternsaccording
to their semantics. If, for instance the inputis a
list of pathsusedto searcHfor acommandthense-
curity failurewill mostlikely occurwhentheorder
of thesepathsis altered,a new pathis insertedor
deletedor the lengthof thelist is increased Other
kinds of perturbationsarelesslik ely to causesecu-
rity failure. Thus, by an examinationof rare cases
and by concentratingnsteadon fault patternsal-
ready obsened, we reducethe testing spacecon-
siderably

Faultsinjectedinto theapplicationarebasen pat-
ternsthatarelikely to causesecurityfaults. These
patternscomefrom our investigationof a vulnera-
bility databasendotherstudiesreportedin thelit-
erature.Thefaultsaresummarizedn Table5.

2. Direct Environment Faults Injections: A direct
environmentfaultoccursattheinteractionpointwhere
the applicationaccessean ervironmententity for
creation,modification, readingor executionof an
ernvironmententity. Differentstatusof ervironment
entity attributeswill affecttheconsequencesf those
interactions.Thus,theernvironmentfaultinjections
areusedto perturbthe attributesof anernvironment
entity at points of interactionandto obsene how
the applicationrespondgo the perturbation. For
example, beforean applicationexecutesan open
operationto a namedf i | e, several perturbations
areperformedon thisfile by changingits attributes
suchasits existence permissionspwnership,and
thetype of the file sincefailure to handletheseat-
tributesis mostlikely to causesecurityviolations.
Theseattributesareandtheir their perturbatiorare
presentedh Table6.

3.2 Testadequacycriterion

An importantissuein themanagemenf softwaretesting
is to “ensurethat prior to the start of testingthe objec-
tives of testingare known and agreedupon andthat the
objectvesare setin termsthat canbe measured. Such
objectives“should be quantified,reasonableandachies-
able”[11].

We usefault coverage andinteraction coverage mea-
suretestadequag. Fault coverageis definedasthe per
centageof the numberof faultstoleratedwith respecto
thatof thefaultsinjected.Our conjecturas thatthehigher
the fault coveragethe more securethe applicationis. In
additionto fault coverage an additionalmeasuremerf
the testingeffort is the interactioncoverage. Interaction
coveragds definedasthe percentagef the numberof in-
teractionpointswherewe injectedfaultswith respecto
the total numberof interactionpoints. Onceagain,we
conjecturethat the higher the interactioncoverage,the
moredependabl¢he testingresultare. Of coursewe as-
sumethatfaultsfound duringtestingareremoved. These

Table4: File SystemEnvironmentalFaults(total 42)

Categories | file symbolic permission ownership file working
existence link invariance directory

Number 20 6 6 3 6 1

Percent 48% 14% 14% 7% 14% 2%

Table5: IndirectEnvironmentFaultsandEnviromnetPerturbations

Inter nal Entity SemanticAttrib ute Fault Injections
User | nput file name + direc- changelength, userelative path, useabsolutepath, insertspecialcharactersuchas”..”,
tory nane “/" in thename
comrand changelength, userelative path, useabsolutepath, insertspecialcharactersuchas™[”,
“&”, “>" or newline in thecommand
file nane + direc- changdength,userelative path,useabsolutepath,usespecialcharacterssuchas®|”, “&”
tory nane or“>" in thename
Envi ronnent | execution path + Ti- changelength, rearrangeorder of path, inserta untrustedpath, useincorrectpath, use
Vari abl e brary path recursve path
perm ssi on mask changeamaskto 0 soit will not maskary permissiorbit
File Sys- file name + direc- changdength,userelative path,useabsolutepath,usespecialcharactersn the namesuch
tem | nput tory nane as“|”, “&" or“>" in name
fiTe extension changeo otherfile extensiondike “.exe” in Windows systemcchangdengthof file exten-
sion
I P address changdengthof theaddressusebad-formattecddress
Net wor k packet changesizeof thepaclet, usebad-formattepaclet
I nput host nane changdengthof hostname usebad-formattedhostname
DNS reply changdengthof the DNS reply, usebad-formattedeply
Process nessage changdengthof themessageaysebad-formattednessage
I nput
Table6: Direct EnvironmentFaultsandErnvironmentPerturbations
Envir onment Entity Attrib ute Fault Injections
file existence deleteanexisting file or make anon-&isting file exist
file ownership changeownershipto the ownerof the processpthernormalusersor root
File fiTe perm ssion flip the permissiorbit
System synbolic Tink if thefile is a symboliclink, changehetamgetit links to; if thefile is not a symboliclink,
changat to asymboliclink
filTe content invari- modify file
ance
fiTe name invariance changdile name
wor king directory startapplicationin differentdirectory
message authenticity make the messageomefrom othernetwork entity insteadof whereit is expectedto come
from
pr ot ocol purposelyviolatesunderlyingprotocolby omitting a protocolstep,addingan extra step,
reorderingsteps
socket sharethe socletwith anothemprocess
Net wor k service availabiTity dery theservicethatapplicationis askingfor
entity trustability changehe entity with whichthe applicationinteractsto a untrustedne
nessage authenticity male the messageomefrom otherprocessnsteadof whereit is expectedto comefrom
Process process trustability changehe entity with whichthe applicationinteractsto a untrustedne
service availability dery theservicethatapplicationis askingfor

two coveragecriteria leadto a 2-dimensionametric for
measuringestadequayg.

-

Fault Coverages

Interaction Coverage.o

Figure2: TestAdequay Metric

Figure2 shavsthe2-dimensionaimetricandfour sam-
ple pointsof significance.The metric senesasa quanti-
tative evaluationof atestset. Point1 is representatie of
the region wheretestingresultedin low interactionand
fault coverage. In this casetestingis considerednade-
guate. Point 2 is representatie of the region wherethe
faultcoverages high but interactioncoveragds low. The
testis considerednadequatssincein thistest,only afew
interactionsareperturbedhow the systembeharesunder
perturbatiorof otherinteractionds still unknown.

Point3 is representatie of aninsecureregionbecause
thefault coverageis solow thatwe considerthe applica-
tionislikely to bevulnerableo the perturbatiorof theen-
vironment.Thesafesregionis indicatedby point4 which
correspond$o a high interactionandfault coverage.

3.3 Procedure

Theproceduref our EnvironmentFaultinjectionMethod-
ology consistf thefollowing steps:

1. Setcountandn toO.

2. For eachtestcasedostep3to 9.

3. Foreachinteractionpointin theexecutiontrace de-
cideif the applicationasksfor aninput. If thereis
no input, only inject direct ervironmentfaults; if
thereis aninput, inject bothdirectandindirecten-

vironmentfaults.
. Decidethe objectwherefaultswill beinjected.

. Establishafaultlist correspondingo this objectus-
ing Table5andTable6.

. For eachfaultin thelist, inject it beforethe inter-
actionpointfor thedirectervironmentfaults;inject
eachfault aftertheinteractionpointfor theindirect
ervironmentfaults sincein this case,we want to
changethe value the internal entity recevesfrom
theinput.

. Increasen by 1.

. Detectif securitypolicy is violated. If so,increase
countby 1.

. Calculateinteractioncoverage If thetestadequag
criteriafor interactioncoverages satisfiedhenstop
elserepeatsteps3-9 until the adequay criteria for
interactioncoverages achieved.

10. Divide count by n yielding a to obtainthe vulner
ability assessmeisicore(fault coverage)or theap-

plication.

3.4 Example

Toillustratethe stepsshavn above, we consideranexam-
ple of fault injection. The following codeis taken from
BSD versionof | pr. c. Noticethatl pr is a privileged
application. It is a set - Ul D applicationwhich means
thatit runsin theroot’s privilege evenwhenit is invoked
by auserwhodoesnothavethesameprivilegeastheroot.
f = create(n,
if (f<0) {

printf (‘" %:
cl eanup();

0660) ;

cannot create 9%’’', nane,

n);

. (code skipped here)
if (wite(f, buf, i)!=i) {
printf(‘*%: %: tenp file wite error\n’’,
name, n);
break;

Supposéhatwe have decidedto perturbthe environ-
mentat a placewherethecr eat e systemcall is issued.
This is aninteractionpoint wherel pr interactswith the
fil e system Thereis noinputin this caseandhence
we simply carry outdirectenvironmentfaultinjections.

The next stepis to identify the object. Here,n is a
file name andhenceheobijectis thefile referredto using
thisfile name.Thenwereferto Table6 andgetalist of at-
tributesthatneedto be perturbedThislist includesl) file
existence,2) file ownership,3) file permission4) sym-
bolic link, 5) file contentinvariance,6) file nameinvari-
anceand7) working directory A further analysisshavs
thatattributes5 and6 arenotapplicablen this caseasthis
is supposedo bethefirst time thefile is encountered.

We then perturbthe remainingfour attributesof the
file andinjectthefaultsinto theapplication.For example,
the perturbationof the “existence”meansthat we make

thefile exist or not exist beforethe applicationcreatest.
The perturbationof “symbolic link” meanghatwe make
thefile link to someotherfile, suchasthe passverd file,
beforethe applicationcreatest.

After fault injection, we executethe applicationand
detectif thereis ary violation of the securitypolicy. In
this casethe violation is detectedwhen we perturb at-
tributes1, 2, 3 and4. Doing so caused pr to write to
a file even whenthe userwho runsit doesnot have the
appropriateownershipandfile permissions.Thuswhen
thefile is linkedto the passverd file, the passverd file is
bemaodifiedby | pr . Theproblemhereis thattheapplica-
tion assumethatthefile doesnotexist beforethecreation
or assumeshatthe file belongsto the userwho runsthe
application.In arealervironment,this assumptiorcould
easilybe falseandthe fault injection testpointsout a se-
curity vulnerability.

4 Result
4.1 Turnin

Tur ni n is a programusedin Purduefor electronically
submittingfiles for grading. Before studentsin a class
canusethis program,the teachingassistan{TA) for this
classshouldhave setup hisaccoun{or adedicatedourse
account)correspondly Thisincludescreatingasubmi t
directory underthe homedirectory of this account,cre-
atingaProj | i st file undersubmi t directory which
specifiealist of projectsstudentsouldbeableto turnin.
Studentscantype “turnin -c coursenamel” to view the
list of projects;studentsantype“turnin -c coursenamep
projectnamdiles” to turnin their projectfiles. After sub-
mission,the submittedfiles will be copiedto TA's sub-
m t directory

Sincet ur ni n programallows studentdo copy their
files to TA's protecteddirectory the programis running
as SUl D, which meansits effective useris r oot . The
programconsistsof 1310linesof code.

Following our method,we have identified 8 interac-
tion placeswhereprogrammersould possiblyhave made
assumptiongbouttheervironment.We make 41 erviron-
mentperturbatiorto checkwhetherprogrammersndeed
madethe assumptionsand whetherthe failure of these
assumptionganaffect programs security Amongthose
perturbations,9 perturbationlead to security violation,
which meanghe failure of assumption®n these9 situa-
tion couldleadto avulnerabilityin theprogram.Thenwe
investigateccachassumptiondy askingwhetherthey are
reasonable.For example,programmerobviously made
anassumptiotthat/ usr /| ocal / I'i b/ t ur ni n. cf file
is trusted. Our perturbationtestingfound out if this as-
sumptionds false,the systems$ securitywill be violated.

Sincethet ur ni n. cf will alwaysbe protectedsois its
directory, we believe the assumptioris quite reasonable,
thereis no vulnerabilityregardingto this assumption.

However, one assumptiorseemsunreasonabléo us,
it turnsoutto beavulnerability, andis henceexploitedby
usafterwe have known the assumptionThe problematic
codeis list in thefollowing:

if ((FILE *)0 == (fp = fopen(pcFile, "r"))) {
printf("can not find project list file\n");
exit(9);

Sincef open is an interactionpoint wherepotential
assumptiommight be made,we perturbthe ervironment
statusof pcFi | e, makingit only readableby root, not
by the peoplewho is runningthet ur ni n program.The
resultis that by running “turnin -c coursenamel”, we
cansuccessfullyreadthe contentsof the file we are not
supposedo be ableto read. So, herethe programmers
have madeanassumptiorthatpeopleareallowedto read
file pointedby pcFi | e usingt ur ni n program,andits
failure can causesecurityviolation. Now, the question
is: is this assumptiommeasonableThe resultturnsout to
be NO sinceTA canmake pcFi | e pointto ary file he
wants,thenusingt ur ni n programto readthe contents
of thatfile.

Knowing this fact, we designedh following scenario:

aTA makesthePr oj | i st asymboliclink to/ et ¢/ shadow,

which is not readableby anyoneexceptr oot . Thenthe
TA runs “turnin -c coursenamel”, Voila, the program
printsoutthe contentof / et ¢/ shadow!
Anotherperturbationwe have doneis perturbingthe
attributesof theargumentin thefollowing code:

execve (acTar, nargv, environ);

Sincenargv containsfile namesaccordingto table5,
we have insertedspecialcharacterssuchas*/“, “../", in
front of thefile names.The programdoesa goodjob in
forbiddingthe“/” characterhowever, it doesnotresistthe
perturbationof inserting“../” in the front. Knowing this
fact,astudentansubmitseveral“.login” fileswith differ-
entnumberof “../” in front of the“.login” file, suchthat
when his TA unpacksthe submittedfile, the TA's “.lo-
gin” will be overwrittenby the students malicious*.lo-
gin” file, which cando anything evil to the TA.

Thet ur ni n programhasbeenusedin PurdueUni-
versitywidely since1993,andwe becamehefirsttoiden-
tify thesevulnerabilities. After our discovery, the urver
sity quickly verifiedandproblemandpatchedtst ur ni n
program.

4.2 WindowsNT Registry

In Windows NT operationsystem,registry directory is
a critical partto the systemsecurity Registry directory

is essentiallyan organizedstoredfor operatingsystems
and applications datawhich are globally sharedby dif-

ferentapplicationsanddifferentcomponent®f the oper

ating system. An appropriateconfigurationon eachreg-

istry key in theregistry directoryis a key factorfor secu-
rity. Many securityvulnerabilitieshasbeenreporteddue
to aninappropriateconfigurationof the registry keys. In

the Windows NT 4.0 (SP3),thereare still keys thatare
not protected. Our taskis to testthe relatedmodulesof

theoperatingsystemandfind if it is secureo leave those
registry keys unprotected.

Firstof all, we usestaticanalysigechniqueo find out
wheretheseunprotectedeys areused thenwe applythe
EPA methodto find if programmerdave madeassump-
tionsthatcanfail.

The resultis a surprise! We have identified9 unpro-
tectedregistry keys that could be exploited to breakthe
systemsecurity and indeedwe cameup with testcases
to actuallyexploit the vulnerabilities.Furthermorebased
on the similarities of these9 registry keys and other 20
unprotectedeys, we speculatehatthe samevulnerabili-
tiesexist for those20 keys aswell. However, we have not
beenable to perturbthe modulesthat usedthe other 20
keys yet dueto thelack of knowledgeof how thosemod-
uleswork. The9 registry keys thatwe have exploitedare
theresultsof applyingour perturbatiortechnique.

Dueto the agreementvith Microsoft, we are not re-
vealingthe exactkeys andsourcecodesthathave thevul-
nerabilities. So, in the next discussionwe will not refer
to ary specifickey, exceptthe purposeof the key andthe
problemwith thekey.

Oneof the keys in the registry directory specifiesa
file namefor a font. It seemspretty safeto give every-
body the right to modify this registry key until we have
founda modulein the systenthatinvokesa functioncall
to actuallydeletethis file. To know whetherthe program
hasdonethe correctcheckingbeforethedeleteor not, we
did a perturbationon the propertiesof this file according
to Table6, makingit writable only by administratorand
alsomakingit pointto averyimportantfile (suchassys-
temconfiguratiorfile, passverdfile) insteadof justafont
file. It turnsoutthatthe programfailsto respondsecurely
underthiservironmentperturbatiorr whenadministrators
runthis module they will actuallydeletethefile specified
by thisregistry key regardlesof whetherthisfile is afont
file or a securitycritical file. The assumptiorbehindof
this “delete” ervironmentinteractionis thatthe program-
mersassumehe file namealways pointsto a font file or
aunimportanfile, however, sinceeverybodyhastheright
to modify the value of this registry key, the assumption
fail to sustain.

Anothervulnerabilitywe havefoundis associatedvith
userlogonmodule. Whena userlogons,the modulewill

find the users profile from a directoryspecifiedin a reg-

istry key. Usingour EAl model,we have managedo per

turb the trustability attribute of the directory and found
outthatthe programdoesnot dealwith thesituationwhen
thedirectoryis nottrusted whichmeanswheneerauser
logons,the logon modulewill go to the untrusteddirec-
tory, andgrab a specifiedprofile for you. Therefore,by
theernvironmentperturbationwe have foundoutthatpro-
grammershave madea fatalassumptioraboutthe trusta-
bility of the profile directory After knowing the fact, it

becomestraightforvardto designa testcaseandfail the
programmersassumptions.

5 RelatedWork

A significantamountof computersecuritytestingis per
formedusingpenetratiortesting. Securityis assessetly
attemptingto breakinto an installed systemby exploit-
ing well-known vulnerabilities. Several researchersin-
cludingLinde andAttanasio[17], Pfleeyer[24], describes
theprocesof penetratiortesting.Pfleggerpointsout that
penetratiortestingis proneto several difficulties. First,
thereis usuallyno simpleprocedureo identify theappro-
priatecasedo test. Error predictiondepend®n the skill,
experienceandfamiliarity with the systemof the creator
of the hypotheses.Secondthereis no well definedand
testedcriterion usedto decidewhento stop penetration
testing. Statisticalanalysisis neededo shov how much
confidenceve cangainafteracertain“quantity” of pene-
trationtestinghasbeendone.Penetratiortestingdoesnot
provide sucha metric. Third, it is difficult to develop a
testplanasit not only needsfamiliarity with systembut
also needsskill and experience. It is also possiblethat
testersdo not know how to develop a testto investigate
somehypotheseslueto thelimitation of their knowledge
of the erwvironment. This might leadto a decreasén our
confidencen thetestresultasattaclersmight know what
thetestersdo notknow.

Our researchattemptsto overcomethe abose men-
tioneddifficulties. It hasadeterministiqgprocedureo con-
duct and test, a criterion to decidewhen testing should
stop. It overcomeghelimitation of thelack of knowledge
of the ernvironmentby emulatingpossibleattacksusing
thefaultsinjectiontechnique Finally, our approactover
comesthe limitation of testers’knowledgeby offering a
setof concretefaultsthatshouldbeinjectedinto applica-
tion.

Adaptive Vulnerability Analysis(AVA) is designedy
Ghoshet al. to quantitatvely assessnformationsystem
securityand survivability. This approachexercisessoft-
warein source-coddorm by simulatingincoming mali-
cious and non-maliciousattacksthat fall undervarious
threatclasseq21, 22, 27, 28]. In this respect,our own

10

work parallelsthe AVA approachA majordivergenceap-
pears however, with respecto how incomingattacksare
simulated. AVA choosedo perturbthe internal stateof
the executingapplicationby corruptingthe flow of data
andthe internal statesassignedo applicationvariables.
Our approachchoosesto perturbthe environmentstate
by changingthe attributesof the ervironmententity and
perturbingthe input thatan applicationreceivesfrom the
ervironment.Our approactshouldbe considereéscom-
plementaryto AVA.

For attacksthat do not affect the internal statesof an
application, AVA appearsncapableof simulatingthem
by only perturbingthe internalstates.For vulnerabilities
thatarecausedurelyby incorrectinternalstatespur ap-
proachcannotsimulatethem by only perturbingthe en-
vironment. Onedisadwantageof the AVA is the seman-
tic gapbetweenthe attacksduring the useof anapplica-
tion andthe perturbationAVA makes during testing. In
otherwords,knowing thatthe applicationfails undercer
tain perturbationjt is difficult to derive whatkind of at-
tackscorrespondo this failure. This makesit difficult to
assesshe validity of the perturbation.Our approachar
rows the semanticgapby perturbingat the environment-
applicationlevel since most attacksreally occur due to
intentionalperturbatiorof the environment.

Fuzzis ablack-boxtestingmethoddesignedy Miller
etal. It feedsrandomlygeneratednput streamto ser-
eral systemutilities, including | ogi n, ftp, tel net.
The resultsshav that 40% of the basicapplicationsand
over 25% of the X- W ndow applicationcan crash[23].
Differentpatternsof input could possiblycausemoreap-
plicationsto fail. Inputs madeunderdifferent environ-
mentalcircumstancesould alsoleadto abnormabeha-
ior. Othertestingmethodscould exposetheseproblems
whererandomtesting, by its very nature,might not [9].
Ratherthanrely on randominputs,our approachexploits
thoseinput patternghatcould possiblycausesecurityvi-
olations.

Bishop and Dilger studiedone classof the time-of-
check-to-time-of-us¢ TOCTTOU) flaws [4]. A TOCT
TOU flaw occurswhenanapplicationchecksor a partic-
ular characteristioof an objectand then takes someac-
tion that assumeshe characteristicstill holds when in
factit doesnot. This approachfocuseson a source-code
basedtechniquefor identifying patternsof code which
could have this programmingconditionflaw. Oneof its
limitationsis that staticanalysiscannotalwaysdetermine
whetherthe ernvironmentalconditionsnecessaryor this
classof TOCTTOU flaws exist [4]. Theauthorsconclude
that dynamicanalyzerscould help testthe ervironment
during executionand warn when an exploitable TOCT-
TOU flaw occurs. Our approachis dynamic. Instead
of detectingdangerouservironmentconditions, we in-

ject dangerouservironmentconditionsand seewhether
theapplicationwill fail.

Fink andLevitt employ application-slicingtechnique
to testprivilegedapplications.Specificationsareusedto
sliceanapplicationto anexecutablesubsetelevantto the
specificationandmanualmethodsare usedto derive test
datafor the slice. By usingapplicationslicesasthe ba-
sis of securitytesting,they assumeahat testinga slice is
equivalentto testingthe whole application[7]. The moti-
vationbehindtheapplication-slicingechniqués to focus
on areducedandlesscomplex portion of the application
suchthatotherstaticanddynamicanalysesaremademore
efficient. We believe this to be a significantstepin secu-
rity testing. However, whatis missingin this approachs
an efficient testingtechniqueusedto testthe slices. This
paperassumegenerakestingmethodscanbeusedto test
theslicesandthe effectivenes®f their approachdepends
ontheeffectivenesof generatestingmethodson reveal-
ing securityflaws, which, asfar aswe know, is still un-
known.

Gligor hasproposedsecuritytestingmethod.It elim-
inatesredundantestcasedy 1) usingavariantof control
synthesigyraphs,2) analyzingdependenciebetweende-
scriptive kernel-callspecificationsand 3) exploiting ac-
cesscheckseparability Themethodis usedto testthe Se-
cureXenix kernel[18]. A key drawbackof this approach
is that it cannotdetectthe fact that entire sequence®sf
functions,i.e. accesxcheckcomputationsmay be miss-
ing [12] asmary securityflaws arecausedy the missing
of accestheckingandinput validity checking.

6 Summary and Future Work

We have presentedh white-box securitytestingmethod-
ology using ervironmentperturbationtechnique,a vari-
ant of the fault injectiontechnique.The methodologyis
basedon the Environment-Applicationinteraction(EAI)
model,which captureghe propertiesof a family of soft-
warevulnerability. We have appliedthis methodologyto
severalreal-world systemsandapplicationsandwe have
successfullydentifieda numberof securityflaws thatex-
ist for severalyearswithout beingdiscovered.

Futurework will concentratenapplyingthismethod-
ology to moreapplications.We arein the progresof de-
velopingandconductinga setof experimentgo evaluate
the effectivenessof this methodology In the future, we
hopeto be ableto develop a prototypetool for security
testingbasedn this methodology

11

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

T. Aslam. A taxonomyof securityfaultsin the unix oper
ation system. Masters thesis,PurdueUniversity, August
1995.

B. Beizer Softwae Testing Techniques Van Nostrand
Reinhold,New York, 1990.

M. Bishop. A taxonomyof unix systemandnetwork vul-
nerabilities. TechnicalReportCSE-95-10Departmenof
ComputerScienceUniversity of Californiaat Davis, May
1995.

M. BishopandM. Dilger. Checkingfor raceconditionsin

file acessesTheUSENIXAssociationComputingSystems
9(2):131-151Spring1996.

J.ClarkandD. PradhanFaultinjection: A methodfor val-

idating computersystemdependability IEEE Computer
pagesA7-56,Junel995.

W. Du andA. Mathur Cateyorizationof software errors
thatled to securitybreachesin 21stNational Information
SystemsSecurityConfeence CrystalCity, VA, 1998.

G. FinkandK. Levitt. Property-basetestingof privileged
programsin Proceeding®fthe10thAnnualComputelSe-
curity ApplicationsConfeence;Orlando, FL, USA; 1994
Dec5-9, 1994.

B. Miller, L. FredriksenandB. So. An empirical study
of thereliability of unix utilities. Communication®f the
ACM, 33(12):32—44Decembe1990.

S. Garfinkel andG. Spaford. Practical UNIX & Internet
Security O'Reilly & Associatesinc., 1996.

J. Goodenougland S. Gerhart. Toward a theory of test-
ing: Dataselectioncriteria. current Trendsin Program-
mingMethodolay, 2:44-79,1977.

H. Zhu, P. Hall andJ. May. Software unit testcoverage
andadequag. ACM ComputingSurves 29(4):366—427,
December997.

W. Howden. Thetheoryandpracticeof functionaltesting.
IEEE Softwae, 2:18—-23,Septembe 985.

W. Kao, R. lyer andD. Tang. FINE: A faultinjectionand
monitoringervironmentfor tracingthe unix systembeha-
ior underfaults. IEEE Transaction®n Softwae Ervineer
ing, 19(11):1105-1118\ovember1993.

S. Dawson, F. Jahaniarand T. Mitton. ORCHESTRA:
A fault injection environmentfor distributed systems. In
26th International Symposiunon Fault-Tolerant Comput-
ing (FTCS) pagest04—-414 SendaiJapan,Junel996.

G. Kanawati, N. Kanawvati and J. Abraham. FERRARI:
A tool for the validation of systemdependabilityproper
ties. In Proceeding®2ndInternational Symposiuntrault
Tolerant Computing pages336—344,July 1992.

I. Krsul. Softwae Vulnerability Analysis PhDthesis,Pur
due University, Departmeniof ComputerSciences\West
Lafayette Indiana,1998.

R. R. Linde. Operatingsystempenetration.In AFIPSNa-
tional ComputerConfeence page9p. 361-368,1975.

12

[18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

V. D. Gligor, C. S. Chandersekarany. Jiang, A. Johri,
G. L. LuchenbaugtandL. E. Reich. A new securitytest-
ing methodand its applicationto the securexenix ker
nel. IEEE Transactionson Softwae Engineering SE-
13(2):169-183February1987.

E. J.McCaulegy andP. J. Drongawski. Thedesignof a se-
cureoperatingsystem.Iln National ComputerConfeence
1979.

C. E. Landwehr,A. R. Bull, J. P. McDermottandW. S.
Choi. A taxonomyof computerprogramsecurity flaws.
ACM ComputingSurves, 26(3), Septembel994.

A. Ghosh,T. O’Connor,G. McGraw. An automatedap-
proachfor identifying potentialvulnerabilitiesin software.
In IEEE Symposiunon Securityand Privacy, Oakland,
CA, 1998.

J. Voas, F. Charron, G. McGrav, K. Miller and
M.Friedman. Predictinghow badly “good” software can
behae. IEEE Softwae, 14(4):73-83August1997.

B. Miller, D. Koski, C. Lee, V. Maganty R. Murthy, A.

NatarajanandJ. Steidl. Fuzzrevisited: A re-examination
of the reliability of unix utilities and services. Technical
report,ComputerSciencePepartmentiJniversity of Wis-

consin,1995.

C.Pflegyer,S.PfleggerandM. Theofinos.A methodology
for penetrationiesting.Computes and Security 8(7):613—
620,1989.

S.Han,K. ShinandH. Rosenbag. Doctor: An integrated
software fault injection ervironmentfor distributed real-
time systems. Technicalreport, University of Michigan,
Departmenbf Elect.Engr andComputerScience 1995.

M. Hsueh,T. TsaiandR. lyer. Faultinjectiontechniques
andtools. IEEE Computey pagesr5-82,April 1997.

J.Voas.Testingsoftwarefor characteristicetherthancor-
rectnessSafety failuretoleranceandsecurity In Proc. of
thelnt'l| Confeenceon TestingComputerSoftwae, 1996.

J.VoasandG. McGraw. Softwae Fault Injection: Incocu-
lating ProgramsAgainstErrors. JohnWiley & Sons,Inc.,
1998.

