
Testingfor SoftwareVulnerability Using Envir onment
Perturbation

WenliangDu
�

Centerfor EducationandResearchin InformationAssuranceandSecurity(CERIAS)
1315RecitationBuilding

PurdueUniversity, W. Lafayette,IN 47907,USA
Email: duw@cs.purdue.edu

Telephone:(765)496-6765,Fax: (765)496-3181
Aditya P. Mathur

�

CERIASCenterandSoftwareEngineeringResearchCenter(SERC)
1398Departmentof ComputerSciences

PurdueUniversity, W. Lafayette,IN 47907,USA

Abstract

We describean methodology for testinga software systemfor possiblesecurityflaws. Basedon theobservation
that mostsecurityflawsare causedby theprogram’s inappropriate interactionswith theenvironment,andtriggered
by user’s maliciousperturbationon the environment(which we call an environmentfault), we view the security
testingproblemas theproblemof testingfor the fault-tolerancepropertiesof a software system.We considereach
environmentperturbationasa fault and the resultingsecuritycompromisea failure in the toleration of such faults.
Our approach is basedonthewell knowntechniqueof fault-injection.Environmentfaultsare injectedinto thesystem
undertestandsystembehaviorobserved.Thefailure to toleratefaults is an indicator of a potentialsecurityflaw in
thesystem.An Environment-ApplicationInteraction (EAI) fault modelis proposedwhich guidesus to decidewhat
faultsto inject. BasedonEAI,wehavedevelopeda securitytestingmethodology, andapplyit to several applications.
We successfullyidentifieda numberof vulnerabilities includevulnerabilities in WindowsNT operating system.

Keywords: Securitytesting,securityflaws, fault injection,environmentperturbation.

Word Count: 7500

Contact: WenliangDu

Thematerialhasbeenclearedthroughauthor’saffiliations.

�
Portionsof thiswork weresupportedby contractF30602-96-1-0334from RomeLaboratory(USAF) andby sponsorsof theCERIASCenter.�
Portionsof this work weresupportedby contractF30602-96-1-0334from RomeLaboratory(USAF),by sponsorsof theCERIASCenter, and

NSFawardCCR-9102331.

Testingfor Software
Vulnerability Using

Envir onmentPerturbation

1 Intr oduction

Security testing

Reportsof securityviolationsdueto softwareerrorsare
becomingincreasinglycommon.We refer to sucherrors
as“securityerrors”or “securityflaws.” This hasresulted
in securityrelatedconcernsamongsoftware developers
andusersregardingthe“robustness”of thesoftwarethey
use. All stagesof software developmentare motivated
by the desireto make the productsecureand invulnera-
ble to maliciousintentionsof someusers. Our work is
concernedwith the testingof software with the goal of
detectingerrorsthatmight leadto securityviolations.

Traditional methodsfor detectingsecurityflaws in-
cludepenetrationanalysisandformalverificationof secu-
rity kernels[17, 19]. Penetrationanalysisreliesonknown
securityflaws in softwaresystemsotherthantheonebe-
ing tested.A teamof individualsis giventheresponsibil-
ity of penetratingthe systemusingthis knowledge. For-
mal methodsusea mathematicaldescriptionof thesecu-
rity requirementsandthatof thesystemthat implements
the requirements.The goal of thesemethodsis to show
formally thattherequirementsareindeedmetby thesys-
tem.

A weaknessof penetrationanalysisis that it requires
oneeither to know or be able to postulatethe natureof
flaws thatmight exist in a system.Further, theeffective-
nessof penetrationanalysisis believed to be asgoodas
thatof the teamthatperformstheanalysis.A lack of an
objectivecriterionto measuretheadequacy of penetration
analysisleadsto uncertaintyin the reliability of thesoft-
waresystemfor whichpenetrationanalysisdid not reveal
any securityflaws.

Attractive due to the precisionthey provide, formal
methodssuffer from the inherentdifficulty in specifying
the requirements,the system,andthenapplyingthe pro-
cessof checkingthe requirementsspecificationagainst
systemspecification.

Recently, several specificsecuritytestingtechniques
have beendeveloped[4, 7, 18, 23, 21, 28]. As discussed
in section5, thesetechniquesareeitherrestrictedto some
specificsecurityflawsor limited by theunderlyingtesting
techniques.

Anotheralternative for securitytestingis to usegen-
eraltestingtechniques,suchaspathtesting,data-flow test-
ing, domain testing, and syntax testing [2]. However,
theeffectivenessof thesetechniquesin revealingsecurity

flaws is still unknown andmorestudiesareneededto jus-
tify their usein testingfor securityflaws.

Outline of our approach

Our approachfor securitytestingemploys a well known
techniquein thetestingof fault-tolerantsystems,na-mely
fault injection.Thisapproachhasdrawn uponyearsof re-
searchandexperiencein vulnerabilityanalysis[1, 3, 6,16,
20]. Our approachrelieson anempiricallysupportedbe-
lief thattheenvironmentplaysasignificantrole in trigger-
ing securityflaws thatleadto securityviolations[9, 16].

The problem

For thepurposeof our discussion,weassumethata “sys-
tem” is composedof an “application” and its “environ-
ment.” Thus,potentially, all codethatis notconsideredas
belongingto the applicationbelongsto the environment.
However, we canreducethe sizeof the environment,by
consideringonly thoseportionsof thecodethathaveadi-
rector indirectcouplingwith theapplicationcode. Such
couplingmightarise,for example,dueto theapplication’s
useof globalvariablesdeclaredin theenvironmentor the
useof commonresourcessuchasfiles andnetwork ele-
ments.

For variousreasons,programmerstend to make as-
sumptionsaboutthe environmentin which their applica-
tion will function. Whentheseassumptionshold, theap-
plication is likely to behave appropriately. But, because
the environment,asa sharedresource,canoften be per-
turbedby othersubjects,especiallymalicioususers,these
assumptionsmight not be true. A secureprogramis one
that toleratesenvironmentperturbationswithout any se-
curity violation.

If we considerenvironmentperturbations,especially
maliciousperturbationto be(malicious)faults,thena se-
curesystemcanberegardedasafault-tolerantsystemthat
is ableto toleratefaultsin theenvironment.Therefore,the
goalof testingthesecurityof asystemis reducedto ensur-
ing thatthesystemis implementedto toleratevariousen-
vironmentfaults;not leadingto securityviolationsis con-
sideredtolerationof suchfaults. In theremainderof this
paper, we will usetheterms“ environmentperturbation”
and “environmentfault” interchangeablywherethereis
noconfusion.

Fault injection–thedeliberateinsertionof faults into
anoperationalsystemto determineits response–offersan
effective solution to validatethe dependabilityof fault-
tolerantcomputerand softwaresystems[5]. In our ap-
proach,faultsareinjectedinto environmenttherebyper-
turbing it. In otherwords,we perturbtheapplicationen-
vironmentduring testingto seehow the it respondsand

1

whethertherewill be a securityviolation underthis per-
turbation.If not thenthesystemis consideredsecure.

Advantagesof our approach

Theuseof environmentfault injectiontechniqueleadsto
severaladvantages.First, in practice,it is hardto trigger
certainanomaliesin the environment,andknowing how
to trigger themdependson the tester’s knowledgeof the
environment. Therefore,testingsoftwaresecurityunder
thoseenvironmentanomaliesbecomesdifficult. Fault in-
jection techniqueprovidesa way of emulatingthe envi-
ronmentanomalieswithout having to be concernedwith
how they could occurin practice. Second,our approach
providesa systematicway of decidingwhen to emulate
environment faults. If we want to test whethera sys-
temwill behave appropriatelyundercertainenvironment
anomalies,we needto setup thoseenvironments.How-
ever, the set up time is often difficult to control. If the
setup is too early, it might changeduringthetestandthe
environmentstatemight not be we is expectedwhenan
interactionbetweenthe applicationandthe environment
takesplace.If theenvironmentis setuptoolate,theeffect
it hason the application’s behavior might not serve the
purposefor which it wassetup. By exploiting staticin-
formationin theapplicationandtheenvironment’ssource
code,ourapproachcan,however, decidedeterministically
whento triggerenvironmentfaults.Third, unlikepenetra-
tion analysis,wheretheprocedureis difficult to automate
andquantify, fault injectiontechniqueprovidesacapabil-
ity of automatingthe testingprocedure.In addition,we
adopta two-dimensionalmetricsto quantify the quality
of our testingprocedure.

Research issues

Fault injectionrequirestheselectionof a fault model[5].
Thechoiceof this modeldependson thenatureof faults.
Softwareerrorsarisingfrom hardwarefaults,for instance,
areoftenmodeledvia bits of zeroesandoneswritten into
adatastructureor aportionof thememory[15, 25], while
protocolimplementationerrorsarisingfrom communica-
tion are often modeledvia messagedropping, duplica-
tion, reordering,delayingetc.[14]. Understandingthena-
tureof securityfaultsprovidesa basisfor theapplication
of fault injection. Several studieshave beenconcerned
with thenatureof securityfaults[1, 3, 6, 16, 20].) How-
ever, we arenot awareof any study that classifiessecu-
rity flaws from the point of view of environmentpertur-
bation.Somegeneralfault modelshave alsobeenwidely
used[13, 26, 21, 28]. The semanticgapbetweenthese
modelsand the environmentfaults that lead to security
violationsis wide andthe relationshipbetweenfaultsin-
jectedandfaultsleadingto securityviolationsisnotknown.

We have developedanEnvironment-ApplicationInterac-
tion
(EAI) faultmodelwhichservesasthebasisthefault injec-
tion techniquedescribedhere.Theadvantageof theEAI
modelis in its capabilityof emulatingenvironmentfaults
thatarelikely to causesecurityviolations.

Anotherissuein fault injection techniqueis the loca-
tion, within the systemundertest,wherefaultsareto be
injected. In certaincases,the location is obvious. For
example,in ORCHESTRA[14], the faultsemulatedare
communicationfaults. Hence,the communicationchan-
nelsbetweencommunicatingentitiesprovide theobvious
locationfor fault injection. In othercases,wherethe lo-
cationis hardto decide,nondeterministicmethods,such
asrandomselection,selectionaccordingto distribution,
areusedto choosethelocations.For example,FERRARI
[15] andFINE [13] usesuchanapproach.Theselection
of location is also a major issuefor us. In the current
stageof our research,we inject environmentfaultsat the
pointswheretheenvironmentandtheapplicationinteract.
In futurework, weplanto exploit staticanalysisto further
reducethe numberof fault injection locationsby finding
the equivalencerelationshipamongthoselocations.The
motivationfor usingstaticanalysismethodis thatwe can
reducethe testingefforts by utilizing static information
from theprogram.

A generalissueaboutsoftwaretestingis “what is an
acceptabletest adequacy criterion?” [10]. We adopta
two-dimensionalcoveragemetric(codecoverageandfault
coverage)to measuretestadequacy.

The remainderof this paperis organizedasfollows:
section2 presentsthefaultmodel.A methodologyfor se-
curity testingis presentedin section3. In section4 wewill
show the resultsof using this methodologyin detecting
real world programs.Finally a brief overview of related
studiesis presentedin section5 followedby summaryof
thisresearchandthepotentialfor futurework in section6.

2 An Envir onmentFault Model

In orderto determinesystembehavior undervariousen-
vironmentconditions,anengineermustbeableto deter-
mine the effectsof environmentperturbationon a given
system. Therefore,it is useful to inject faults that man-
ifest themselvesaserrorsin systemsat the environment-
applicationinteractionlevel. To maintainconfidencein
the validity of the errors, the model usedfor thesein-
jectionsshouldbedrawn from actualenvironmentfaults,
while faults injected into the systemshouldbe able to
emulatethoseenvironmentfaultsappropriately. Oneas-
sumptionbehindthis requirementis thata securityviola-
tion resultingdueto theinjectedfault is similarto onethat
resultsdueto an environmentfault thatarisesduring the

2

intendeduseof thesystem.

2.1 Terminology

Definition 2.1 (Internal Stateand Internal Entity) Any
elementin an application’s codeand dataspaceis con-
sideredan internalentity. A stateconsistingof thestatus
of theseentitiesis calledaninternalstate.

Variable � in a application,for example,is aninternal
entity. Thevalueof � is partof aninternalstate.Thesize
of abufferusedin theapplicationis alsopartof its internal
state.In general,all informationin this application’sdata
space,stackspace,andheapspacearepartof its internal
state.

Definition 2.2 (EnvironmentEntityandEnvironmentState)
Any elementthat is externalto anapplication’s codeand
dataspaceis calledan environmententity. A statethat
consistsof thestatusof theseentitiesis calledanenviron-
mentstate.

For instance,file andnetwork aretreatedasenviron-
mententities.Thepermissionof a file, existenceof a file,
ownershipof a file, real user-id of a process,andthe ef-
fectiveuser-id of processaredifferentpartsof anenviron-
mentstate.

A key differencebetweenan environmentandan in-
ternalentity, whichmakesimplementationof asecuresys-
tem difficult anderror-prone,is the sharednatureof the
environmententity. An applicationis not the only one
that canaccessandchangeanenvironmententity. Other
objects,suchasotherusers,may accessandchangethe
environmententity aswell. Internalentity, on the other
hand,is privateto anapplicationin thesensethatonly the
applicationcan modify and accessthem, assumingthat
the underlyingoperatingsystemprovidesprotectedpro-
cessspace.

In concurrentprogramming,sharedresourcesarehan-
dled by usingthe mutualexclusionandthe sema-phore
mechanismto guaranteeassumptionsaboutthe stateof
sharedresources.However, webelieve thatfew program-
mersusea similar mechanismto guaranteetheir assump-
tion aboutthe stateof the environment. Thereare sev-
eral reasonsfor this. First, programmersmight not have
recognizedthat the environmententities are sharedre-
sources.When, for example,an applicationwrites to a
file, it checksthat it hasthe permissionto write to that
file, andthenassumesthatright in subsequentoperations
to thatfile withoutnoticingthatamaliciousattackercould
have changethe environment therebyrenderingthe as-
sumptionfalse. Most securityflaws resultingfrom race
conditions[4] are causedby suchdubiousassumptions.
Second,althoughsomemechanisms,suchasfile locking,

guaranteethata programmer’s assumptionhold on some
partof theenvironmentstate,thereis no generalmecha-
nismto do thesameastheenvironmententityhasvarious
attributesthanwhat themutualexclusionandsemaphore
mechanismscouldhandle.As a result,programmersof-
ten usead hoc mechanismsto guaranteethe correctness
of their assumptions.This canleadto errorsmoreread-
ily thanwould bethecasewhena standardmechanismis
used.

2.2 Developinga fault model

In orderto provide high confidencein thevalidity of the
securityflaws causedby environmentfaults,themethod-
ology describedheremodelssystemsat a high level. We
refer to this level as the Environment-ApplicationInter-
action(EAI) level. Fault injectionat the interactionlevel
attemptsto emulatewhat a “real” attacker does. Since
mostof thevulnerabilitydatabasesrecordthewayattack-
ers exploit a vulnerability, we transformtheseexploits
to environment faults to be injectedwith little analysis
on thoserecordstherebynarrowing thesemanticgapbe-
tweenfaultsinjectedat theinteractionlevel andfaultsthat
reallyoccurduringtheintendeduseof thesystem.In con-
trast, other studies[21, 28] inject faults at the program
statementlevel therebyleaving a large semanticgapbe-
tweenfaultsinjectedandthosethatmightariseduringthe
intendeduseof theapplication.

2.3 An EAI fault model

In general,environmentfaultsaffectanapplicationin two
differentways. First, anapplicationreceivesinputsfrom
itsenvironment.Theenvironmentfaultsnow becomefaults
in the input, which is theninheritedby an internalentity
of the application.From this point onwardsthe environ-
mentfaultspropagatethroughthe applicationvia the in-
ternalentities.If theapplicationdoesnothandlethefaults
correctly, asecurityviolationmightoccur. Thedirectrea-
son for this violation appearto be faults in the internal
entity. However, this violation is dueto the propagation
of environmentfaults.Stateddifferently, theenvironment
indirectlycausesasecurityviolation,throughthemedium
of theinternalentity. Figure1(a)shows this indirectway
in which theenvironmentfaultsaffectanapplication.

Considerthefollowing example.Supposethatanap-
plication receivesits input from the network. Any fault
in the network messagerelatedto this input is inherited
by an internalentity. Whenthe applicationdoesa mem-
ory copy from this messageto an internalbuffer without
checkingthebuffer’sboundaries,thefault in thenetwork
message,thefaultbeing“messagetoo long,” now triggers
aviolationof securitypolicy.

3

enviroment
 entity

environment
entity

environment
entity

internal
entity

internal
entity

internal
entity

enviroment
 entity

entity
environment

entity

(a) (b)

 Environment Environment
Software System Software System

environment

input from the environment to the software system

execution of the software system execution of the software system

environment entity affects the software system directlyenvironment entity affects the software system via an internal entity

Figure1: InteractionModel

A secondway in which an environmentfault affects
the applicationis when the fault doesnot propagatevia
theinternalentity. Instead,it stayswithin theenvironment
entityandwhentheapplicationinteractswith theenviron-
mentwithout correctlydealingwith thesefaults,security
policy is violated.In this case,theenvironmentfaultsare
thedirect causeof securityviolation andthemediumfor
environmentfaults is the environmententity itself. Fig-
ure1(b) shows this directway in which the environment
faultsaffectanapplication.

Let usnow aconsideranexampleto illustratethissec-
ondkind of interaction.Supposethatanapplicationneeds
to executeafile. Therearetwo possibilitiesonebeingthat
thefile belongsto theuserwhorunstheapplication.Here
the environmentattribute is the file’s ownership. In this
casethe executionis safe. The other possibility is that
the file belongsto somemalicioususer. This is an en-
vironmentfault createdby the malicioususer. Now the
individual who runsthe applicationassumesthat the file
belongsto the application. If the applicationdoesnot
deal with this environmentfault, it might executearbi-
trary commandsin thatfile therebyresultingin a security
violation.

The most error-prone interactionbetweenan appli-
cation and the environmentis that involving files. Pro-
grammerstendto useanabstractionof afile thatincludes
only a subsetof thefile attributes.A file namewith a lo-
cationor file content,for example,is a commonlyused
abstractionof a file. The environmentfaults, suchas a
long file nameor a file namewith specialcharacters,as-
sociatedwith thisabstractionwill propagatevia theinter-
nal entity. If the applicationdoesnot placeappropriate
checkson theseinternalentities,suchenvironmentfaults

will causesecurityviolationssuchasthosedueto buffer
overflow and the executionof an unintendedcommand.
Theenvironmentfaultsassociatedwith theremainingfile
attributes,suchaswhetherthefile is a symboliclink, the
ownershipof the file, existenceof the file, and the per-
missionsassociatedwith the file, will not propagatevia
an internalentity. Although theseattributesareextrinsic
to the application,if not dealt correctly, they are likely
to directly affect the interactionbetweenapplicationand
environment.

In summary, wehavecategorizedtheenvironmentfaults
accordingto the way they affect applications. Environ-
mentfaultswhichaffectprogramsvia internalentitiesare
calledindirectenvironmentfaults. Environmentfaultswhich
affect programsvia environmententitiesarecalleddirect
environmentfaults.

2.3.1 Indir ectenvir onment faults

Wecategorizeindirectenvironmentfaultsaccordingto the
waythey propagatein theinternalspace.Thepropagation
includesinitialization anduseof an internalentity corre-
spondingto anenvironmentfault. Dif ferentwaysof prop-
agationaresummarizedin thefollowing.

First, differentkinds of environmentfaultsaretrans-
ferredto an internalentity, which hasbeeninitialized, in
differentways. Most commoninitializationsarethrough
theinteractionof theapplicationwith theenvironment,in
whichcase,theremustbea statementin theprogramthat
performsthis initialization. However, for otherinitializa-
tions, thereis no suchstatementin the application. The
initialization of an environmentvariable,for example,is
carriedout by the operatingsystem. The aspectof this

4

kind of internalentitycaneasilycausemis-handlingsince
programmersrarelynoticethe initialization or eventheir
existence.

Second,environmentfaults inheritedby internalen-
tities propagatein different ways since internal entities
comefromdifferentsourcesandareuseddifferently. Some
internalentitiesareusedby theapplicationdirectly in that
thereareexplicit statementsin theapplicationthatusethe
internal entities. Other internal entitiesare usedby the
applicationindirectly, meaningthat there is no explicit
statementin the applicationthat usesthe internal enti-
ties. Implicit usagemight be causedby systemcalls as
systemcallsusesomeinternalentitieswithout beingno-
ticed. When,for instance,a systemcall is madein UNIX
to executeacommandwithoutusinganabsolutepath,one
mightnotnoticefrom theapplicationthatthissystemcall
usesthePATH environmentvariableto find thelocationof
that command.Without this knowledgeon how the sys-
tem call works, programmeris unawareof this invisible
useof theinternalentity andhencemight make incorrect
assumptionsaboutit.

As per the above discussion,an understandingof se-
curity flawsis facilitatedby dividing indirectenvironment
faultsinto the following five sub-categoriesaccordingto
their origins: 1) user input , 2) envir onmentvariable, 3)
file systeminput , 4) network input , 5) processinput .

Accordingto vulnerability analysisreportedin [1, 3,
6, 16, 20] and our analysisof a vulnerability database,
faultslikely to causesecurityviolationsdependon these-
manticsof eachentity. PATH, for example,is anenviron-
mentvariable,andcomprisesa list of pathsusedto search
acommandwheneveranapplicationneedsto executethat
command. In this case,the order of pathsis important
sincethesearchwill look for thatcommandusingtheor-
derspecifiedin PATH, andthesearchwill stopright after
it hasfoundit. Thesecuritycouldmostlikely beaffected
by changingthe orderof pathsin the PATH variableor
appendinganew pathto it. Certainly, anarbitrarymodifi-
cationof PATH will rarelycausea securitybreach.

Differentsemanticsof eachinternalentity is summa-
rizedin Table5.

2.3.2 Dir ectenvir onment faults

Direct environment faults are perturbationsof environ-
mententitiesthataffectanapplication’sbehavior directly.
Unlike the internal entities,which consistonly of vari-
ables,environmententitiesaremorecomplex. For each
type of entity, the attributesvary. Thereare threetypes
of environmententitiesin a traditionaloperationsystem
model. We categorize environment faults accordingto
this model. Thesecategoriesareenumeratedas: 1) file
system, 2) process, 3) network .

Table1: high-level classification(total 142)

Categories Indirect En-
vironment
Fault

Direct En-
vironment
Fault

Others

number 81 48 13
percent ���	�
��
� ���

Table3: Direct EnvironmentalFaultsthatCauseSecurity
Violations(total 48)

Categories File System Network Process
Number 42 5 1
Percent ���	� ���
� �	�

Studiesof securityviolationreports,vulnerabilitydatabases,
andvulnerabilityanalysessuggestseveralsecurity-related
attributescorrespondingto eachenvironmententity. These
are summarizedin Table 6. This list is not exhaustive,
neverthelessit providesthecommonattributesthatappear
in reportsof securityviolations.Futurevulnerabilityanal-
yses,however, mightaddnew entriesto thelist.

2.4 Data Analysis

A securityvulnerabilitydatabase[16] is maintainedin the
CERIASCenterat PurdueUniversity. Currentlythereare
195entriesin this databasewhich includevulnerabilities
of applicationsfrom differentoperatingsystems,suchas
Windows NT, Solaris, HP-UX, andLinux. A use-
ful propertyof this databaseis that most of the vulner-
abilities areanalyzedin detail eitherusingthe first hand
knowledgefromactualpenetrationtestingor usingsecond
handknowledge.

Among the 195 entriesin the database26 entriesdo
not provide sufficient information for our classification,
22entriesarecausedby incorrectdesign,and5 entriesare
causedby incorrectconfiguration.Both designandcon-
figurationerrorsexcludedfrom thescopeof our research.
We thereforeclassifyonly thoseerrorsthat manifestdi-
rectly asincorrectcodein the applicationusingthe fault
modelpresentedabove. Hencethetotalnumberof entries
usedfor ourclassificationis 142.

Table1 showsthehigh-level classificationof environ-
ment faults. ����� of the 142 securityflaws are classi-
fied by usingtheEAI fault model; the remaining��� are
causedby software faults irrelevant to the environment.
Theseincludeerrorssuchasthosedueto mistypingof the
codein theapplication.

Table 2 shows the classificationof indirect environ-
mentfaults.Table3 shows theclassificationof directen-
vironmentfaults. Datain Table3 indicatesthata signifi-
cantnumberof partof softwarevulnerabilitiesarecaused

5

Table2: IndirectEnvironmentFaultsthatCauseSecurityViolations(total 81)

Categories User Input Environment Vari-
able

File System Input Network Input Process Input

Number 51 17 5 8 0
Percent ��
�� �
��� �	� ���	� �
�

by theinteractionwith thefile system environment.
Interactionwith the network contributesonly ����� of
all software vulnerabilitiesin our database.The reason
for the low percentagenetwork-causedvulnerabilitiesis
thatmostof thenetwork vulnerabilitiesareintroducedby
a weakprotocoldesignwhich doesnot fall into thescope
of our classification.Table4 providesfurther classifica-
tion of file system environmentfaultsaccordingto
Table6.

3 Envir onmentFault Injection Method-
ology

3.1 Fault injection

LiketheEAI model,whichmodelstheenvironmentfaults
at theinteractionlevel, fault injectionsarealsodoneat the
interactionlevel. Theprevioussectionclassifiestheenvi-
ronmentfaultsinto directandindirectenvironmentfaults.
Thesefaultsareinjectedusingthefollowing mechanisms:

1. Indir ect Envir onment Fault Injections: An in-
direct environment fault occursat the interaction
pointwhereanapplicationrequestsits environment
for an input. The input that the environmentpro-
videsto the applicationwill most likely affect the
application’sbehavior. A secureapplicationshould
tolerateanunexpectedanomalyin theenvironment
input. Onewayto perturbtheinput is to userandom
input as in Fuzz [8, 23]. However, this approach
dramaticallyincreasesthetestingspace,which and
calls for a significantlylarge amountof testingef-
fort. The Fuzz approachdoesnot exploit the se-
manticsof eachinput. Our vulnerability analysis,
however, hasshown thatinputsmostlikely to cause
securityviolationstendto have patternsaccording
to their semantics.If, for instance,the input is a
list of pathsusedto searchfor a command,thense-
curity failurewill mostlikely occurwhentheorder
of thesepathsis altered,a new pathis insertedor
deleted,or thelengthof thelist is increased.Other
kindsof perturbationsarelesslikely to causesecu-
rity failure. Thus,by an examinationof rarecases
and by concentratinginsteadon fault patternsal-
readyobserved, we reducethe testingspacecon-
siderably.

Faultsinjectedinto theapplicationarebasedonpat-
ternsthatarelikely to causesecurityfaults. These
patternscomefrom our investigationof a vulnera-
bility databaseandotherstudiesreportedin thelit-
erature.Thefaultsaresummarizedin Table5.

2. Dir ect Envir onment Faults Injections: A direct
environmentfaultoccursattheinteractionpointwhere
the applicationaccessesan environmententity for
creation,modification,readingor executionof an
environmententity. Dif ferentstatusof environment
entityattributeswill affecttheconsequencesof those
interactions.Thus,theenvironmentfault injections
areusedto perturbtheattributesof anenvironment
entity at pointsof interactionand to observe how
the applicationrespondsto the perturbation. For
example,beforean applicationexecutesan open
operationto a namedfile, several perturbations
areperformedon this file by changingits attributes
suchas its existence,permissions,ownership,and
the typeof the file sincefailure to handletheseat-
tributesis most likely to causesecurityviolations.
Theseattributesareandtheir their perturbationare
presentedin Table6.

3.2 Testadequacycriterion

An importantissuein themanagementof softwaretesting
is to “ensurethat prior to the start of testingthe objec-
tivesof testingareknown andagreeduponandthat the
objectivesareset in termsthat canbe measured.” Such
objectives“shouldbequantified,reasonable,andachiev-
able” [11].

We usefault coverage andinteractioncoverage mea-
suretestadequacy. Fault coverageis definedasthe per-
centageof the numberof faultstoleratedwith respectto
thatof thefaultsinjected.Ourconjectureis thatthehigher
the fault coveragethe moresecurethe applicationis. In
additionto fault coverage,an additionalmeasurementof
the testingeffort is the interactioncoverage. Interaction
coverageis definedasthepercentageof thenumberof in-
teractionpointswherewe injectedfaultswith respectto
the total numberof interactionpoints. Onceagain,we
conjecturethat the higher the interactioncoverage,the
moredependablethe testingresultare. Of coursewe as-
sumethat faultsfoundduringtestingareremoved. These

6

Table4: File SystemEnvironmentalFaults(total 42)

Categories file symbolic permission ownership file working
existence link invariance directory

Number 20 6 6 3 6 1
Percent �	��� ���	� ���	� �	� ���
� ���

Table5: IndirectEnvironmentFaultsandEnviromnetPerturbations

Inter nal Entity SemanticAttrib ute Fault Injections
User Input file name + direc-

tory name
changelength,userelative path,useabsolutepath, insertspecialcharacterssuchas“..”,
“ � ” in thename

command changelength,userelative path,useabsolutepath, insertspecialcharacterssuchas“ ”,
“ ! ”, “ " ” or newline in thecommand

file name + direc-
tory name

changelength,userelativepath,useabsolutepath,usespecialcharacters,suchas“ ”, “ ! ”
or “ " ” in thename

Environment
Variable

execution path + li-
brary path

changelength, rearrangeorder of path, insert a untrustedpath, use incorrectpath, use
recursivepath

permission mask changemaskto 0 soit will not maskany permissionbit
File Sys-
tem Input

file name + direc-
tory name

changelength,userelativepath,useabsolutepath,usespecialcharactersin thenamesuch
as“ ”, “&” or “ " ” in name

file extension changeto otherfile extensionslike “.exe” in Windowssystem;changelengthof file exten-
sion

IP address changelengthof theaddress,usebad-formattedaddress
Network packet changesizeof thepacket,usebad-formattedpacket
Input host name changelengthof hostname,usebad-formattedhostname

DNS reply changelengthof theDNS reply, usebad-formattedreply
Process
Input

message changelengthof themessage,usebad-formattedmessage

Table6: DirectEnvironmentFaultsandEnvironmentPerturbations

Envir onment Entity Attrib ute Fault Injections
file existence deleteanexisting file or make anon-existing file exist
file ownership changeownershipto theownerof theprocess,othernormalusers,or root

File file permission flip thepermissionbit
System symbolic link if thefile is a symboliclink, changethetarget it links to; if thefile is not a symboliclink,

changeit to asymboliclink
file content invari-
ance

modify file

file name invariance changefile name
working directory startapplicationin differentdirectory
message authenticity make themessagecomefrom othernetwork entity insteadof whereit is expectedto come

from
protocol purposelyviolatesunderlyingprotocolby omitting a protocolstep,addingan extra step,

reorderingsteps
socket sharethesocketwith anotherprocess

Network service availability deny theservicethatapplicationis askingfor
entity trustability changetheentity with which theapplicationinteractsto auntrustedone
message authenticity make themessagecomefrom otherprocessinsteadof whereit is expectedto comefrom

Process process trustability changetheentity with which theapplicationinteractsto auntrustedone
service availability deny theservicethatapplicationis askingfor

7

two coveragecriteria lead to a 2-dimensionalmetric for
measuringtestadequacy.

3

42

1

1.0

1.0

Interaction Coverage

F
au

lt
C

ov
er

ag
e

Figure2: TestAdequacy Metric

Figure2showsthe2-dimensionalmetricandfoursam-
ple pointsof significance.Themetricservesasa quanti-
tative evaluationof a testset. Point1 is representative of
the region wheretestingresultedin low interactionand
fault coverage. In this casetestingis consideredinade-
quate. Point 2 is representative of the region wherethe
faultcoverageis highbut interactioncoverageis low. The
testis consideredinadequatesincein this test,only a few
interactionsareperturbed,how thesystembehavesunder
perturbationof otherinteractionsis still unknown.

Point3 is representativeof aninsecureregionbecause
thefault coverageis so low thatwe considertheapplica-
tion is likely to bevulnerableto theperturbationof theen-
vironment.Thesafestregionis indicatedby point4 which
correspondsto a high interactionandfault coverage.

3.3 Procedure

Theprocedureof ourEnvironmentFaultInjectionMethod-
ologyconsistsof thefollowing steps:

1. Setcount andn to 0.

2. For eachtestcase,dostep3 to 9.

3. Foreachinteractionpointin theexecutiontrace,de-
cide if theapplicationasksfor an input. If thereis
no input, only inject direct environmentfaults; if
thereis an input, inject bothdirectandindirecten-
vironmentfaults.

4. Decidetheobjectwherefaultswill beinjected.

5. Establishafault list correspondingto thisobjectus-
ing Table5andTable6.

6. For eachfault in the list, inject it beforethe inter-
actionpoint for thedirectenvironmentfaults;inject
eachfault aftertheinteractionpoint for theindirect
environmentfaults since in this case,we want to
changethe value the internal entity receives from
theinput.

7. Increasen by 1.

8. Detectif securitypolicy is violated. If so, increase
count by 1.

9. Calculateinteractioncoverage.If thetestadequacy
criteriafor interactioncoverageissatisfiedthenstop
elserepeatsteps3-9 until theadequacy criteria for
interactioncoverageis achieved.

10. Divide count by n yielding # to obtainthevulner-
ability assessmentscore(faultcoverage)for theap-
plication.

3.4 Example

To illustratethestepsshown above,weconsideranexam-
ple of fault injection. The following codeis taken from
BSD versionof lpr.c. Notice thatlpr is a privileged
application. It is a set-UID applicationwhich means
that it runsin theroot’s privilegeevenwhenit is invoked
by auserwhodoesnothavethesameprivilegeastheroot.

f = create(n, 0660);
if (f<0) {

printf(‘‘%s: cannot create %s’’, name, n);
cleanup();

}
... (code skipped here)
if (write(f, buf, i)!=i) {

printf(‘‘%s: %s: temp file write error\n’’,
name, n);

break;
}

Supposethatwe have decidedto perturbtheenviron-
mentat a placewherethecreate systemcall is issued.
This is an interactionpoint wherelpr interactswith the
file system. Thereis no input in this caseandhence
wesimply carryout directenvironmentfault injections.

The next stepis to identify the object. Here,n is a
file name,andhencetheobjectis thefile referredto using
thisfile name.Thenwereferto Table6 andgeta list of at-
tributesthatneedto beperturbed.This list includes1) file
existence,2) file ownership,3) file permission,4) sym-
bolic link, 5) file contentinvariance,6) file nameinvari-
anceand7) working directory. A further analysisshows
thatattributes5 and6 arenotapplicablein thiscaseasthis
is supposedto bethefirst time thefile is encountered.

We thenperturbthe remainingfour attributesof the
file andinject thefaultsinto theapplication.For example,
the perturbationof the “existence”meansthat we make

8

thefile exist or not exist beforetheapplicationcreatesit.
Theperturbationof “symbolic link” meansthatwe make
thefile link to someotherfile, suchasthepassword file,
beforetheapplicationcreatesit.

After fault injection, we executethe applicationand
detectif thereis any violation of the securitypolicy. In
this casethe violation is detectedwhen we perturb at-
tributes1, 2, 3 and4. Doing so causeslpr to write to
a file even when the userwho runs it doesnot have the
appropriateownershipandfile permissions.Thuswhen
thefile is linkedto thepassword file, thepassword file is
bemodifiedbylpr. Theproblemhereis thattheapplica-
tion assumesthatthefile doesnotexist beforethecreation
or assumesthat the file belongsto the userwho runsthe
application.In a realenvironment,this assumptioncould
easilybefalseandthefault injectiontestpointsout a se-
curity vulnerability.

4 Result

4.1 Turnin

Turnin is a programusedin Purduefor electronically
submittingfiles for grading. Before studentsin a class
canusethis program,the teachingassistant(TA) for this
classshouldhavesetuphisaccount(or adedicatedcourse
account)correspondly. This includescreatingasubmit
directoryunderthe homedirectoryof this account,cre-
ating a Projlist file undersubmit directory, which
specifiesa list of projectsstudentscouldbeableto turnin.
Studentscantype “turnin -c coursename-l” to view the
list of projects;studentscantype“turnin -c coursename-p
projectnamefiles” to turnin their projectfiles. After sub-
mission,thesubmittedfiles will becopiedto TA’ssub-
mit directory.

Sinceturnin programallows studentsto copy their
files to TA’s protecteddirectory, the programis running
asSUID, which meansits effective useris root. The
programconsistsof 1310linesof code.

Following our method,we have identified8 interac-
tion placeswhereprogrammerscouldpossiblyhavemade
assumptionsabouttheenvironment.Wemake41environ-
mentperturbationto checkwhetherprogrammersindeed
madethe assumptions,and whetherthe failure of these
assumptionscanaffect program’s security. Amongthose
perturbations,9 perturbationlead to security violation,
which meansthe failureof assumptionson these9 situa-
tion couldleadto avulnerabilityin theprogram.Thenwe
investigatedeachassumptionsby askingwhetherthey are
reasonable.For example,programmersobviously made
anassumptionthat/usr/local/lib/turnin.cf file
is trusted. Our perturbationtestingfound out if this as-
sumptionsis false,thesystem’s securitywill beviolated.

Sincetheturnin.cf will alwaysbeprotected,sois its
directory, we believe the assumptionis quite reasonable,
thereis no vulnerabilityregardingto this assumption.

However, oneassumptionseemsunreasonableto us,
it turnsout to beavulnerability, andis henceexploitedby
usafterwe haveknown theassumption.Theproblematic
codeis list in thefollowing:

if ((FILE *)0 == (fp = fopen(pcFile, "r"))) {
printf("can not find project list file\n");
exit(9);

}

Sincefopen is an interactionpoint wherepotential
assumptionmight be made,we perturbthe environment
statusof pcFile, making it only readableby root, not
by thepeoplewho is runningtheturnin program.The
result is that by running “turnin -c coursename-l”, we
cansuccessfullyreadthe contentsof the file we arenot
supposedto be able to read. So, herethe programmers
have madeanassumptionthatpeopleareallowedto read
file pointedby pcFile usingturnin program,andits
failure can causesecurityviolation. Now, the question
is: is this assumptionreasonable?Theresultturnsout to
be NO sinceTA canmake pcFile point to any file he
wants,thenusingturnin programto readthe contents
of thatfile.

Knowing this fact,we designeda following scenario:
aTA makestheProjlist asymboliclink to/etc/shadow,
which is not readableby anyoneexceptroot. Thenthe
TA runs “turnin -c coursename-l”, Voila, the program
printsout thecontentof /etc/shadow!

Anotherperturbationwe have doneis perturbingthe
attributesof theargumentin thefollowing code:

execve (acTar, nargv, environ);

Sincenargvcontainsfile names,accordingto table5,
we have insertedspecialcharacters,suchas“/“, “../”, in
front of the file names.The programdoesa goodjob in
forbiddingthe“/” character, however, it doesnotresistthe
perturbationof inserting“../” in the front. Knowing this
fact,astudentcansubmitseveral“.login” fileswith differ-
entnumberof “../” in front of the “.login” file, suchthat
when his TA unpacksthe submittedfile, the TA’s “.lo-
gin” will be overwrittenby the student’s malicious“.lo-
gin” file, which cando anythingevil to theTA.

Theturnin programhasbeenusedin PurdueUni-
versitywidelysince1993,andwebecamethefirst to iden-
tify thesevulnerabilities.After our discovery, the unver-
sityquickly verifiedandproblemandpatcheditsturnin
program.

4.2 WindowsNT Registry

In Windows NT operationsystem,registry directory is
a critical part to the systemsecurity. Registry directory

9

is essentiallyan organizedstoredfor operatingsystem’s
andapplication’s datawhich areglobally sharedby dif-
ferentapplicationsanddifferentcomponentsof theoper-
ating system.An appropriateconfigurationon eachreg-
istry key in theregistry directoryis a key factorfor secu-
rity. Many securityvulnerabilitieshasbeenreporteddue
to an inappropriateconfigurationof the registry keys. In
the Windows NT 4.0 (SP3),therearestill keys that are
not protected.Our task is to test the relatedmodulesof
theoperatingsystem,andfind if it is secureto leavethose
registrykeysunprotected.

Firstof all, weusestaticanalysistechniqueto find out
wheretheseunprotectedkeysareused,thenwe applythe
EPA methodto find if programmershave madeassump-
tionsthatcanfail.

The result is a surprise! We have identified9 unpro-
tectedregistry keys that could be exploited to breakthe
systemsecurity, and indeedwe cameup with testcases
to actuallyexploit thevulnerabilities.Furthermore,based
on the similarities of these9 registry keys andother20
unprotectedkeys,we speculatethat thesamevulnerabili-
tiesexist for those20keysaswell. However, wehavenot
beenable to perturbthe modulesthat usedthe other20
keys yet dueto thelack of knowledgeof how thosemod-
uleswork. The9 registry keys thatwe haveexploitedare
theresultsof applyingourperturbationtechnique.

Due to the agreementwith Microsoft, we arenot re-
vealingtheexactkeysandsourcecodesthathavethevul-
nerabilities.So, in the next discussion,we will not refer
to any specifickey, exceptthepurposeof thekey andthe
problemwith thekey.

One of the keys in the registry directory specifiesa
file namefor a font. It seemspretty safeto give every-
body the right to modify this registry key until we have
founda modulein thesystemthat invokesa functioncall
to actuallydeletethis file. To know whethertheprogram
hasdonethecorrectcheckingbeforethedeleteor not,we
did a perturbationon thepropertiesof this file according
to Table6, makingit writableonly by administrator, and
alsomakingit point to a very importantfile (suchassys-
temconfigurationfile, passwordfile) insteadof justa font
file. It turnsout thattheprogramfails to respondsecurely
underthisenvironmentperturbation- whenadministrators
run thismodule,they will actuallydeletethefile specified
by this registrykey regardlessof whetherthisfile is a font
file or a securitycritical file. The assumptionbehindof
this “delete” environmentinteractionis that theprogram-
mersassumethe file namealwayspointsto a font file or
aunimportantfile, however, sinceeverybodyhastheright
to modify the valueof this registry key, the assumption
fail to sustain.

Anothervulnerabilitywehavefoundisassociatedwith
userlogonmodule.Whena userlogons,themodulewill

find theuser’s profile from a directoryspecifiedin a reg-
istry key. UsingourEAI model,wehavemanagedto per-
turb the trustability attribute of the directory, and found
outthattheprogramdoesnotdealwith thesituationwhen
thedirectoryis not trusted,whichmeans,wheneverauser
logons,the logon modulewill go to the untrusteddirec-
tory, andgraba specifiedprofile for you. Therefore,by
theenvironmentperturbation,wehavefoundout thatpro-
grammershave madea fatalassumptionaboutthetrusta-
bility of the profile directory. After knowing the fact, it
becomesstraightforwardto designa testcaseandfail the
programmers’assumptions.

5 RelatedWork

A significantamountof computersecuritytestingis per-
formedusingpenetrationtesting.Securityis assessedby
attemptingto breakinto an installedsystemby exploit-
ing well-known vulnerabilities. Several researchers,in-
cludingLindeandAttanasio[17], Pfleeger[24], describes
theprocessof penetrationtesting.Pfleegerpointsout that
penetrationtestingis proneto several difficulties. First,
thereis usuallynosimpleprocedureto identify theappro-
priatecasesto test.Error predictiondependson theskill,
experience,andfamiliarity with thesystemof thecreator
of the hypotheses.Second,thereis no well definedand
testedcriterion usedto decidewhen to stoppenetration
testing. Statisticalanalysisis neededto show how much
confidencewecangainafteracertain“quantity” of pene-
trationtestinghasbeendone.Penetrationtestingdoesnot
provide sucha metric. Third, it is difficult to develop a
testplan asit not only needsfamiliarity with systembut
also needsskill and experience. It is also possiblethat
testersdo not know how to develop a test to investigate
somehypothesesdueto thelimitation of their knowledge
of theenvironment.This might leadto a decreasein our
confidencein thetestresultasattackersmightknow what
thetestersdonot know.

Our researchattemptsto overcomethe above men-
tioneddifficulties. It hasadeterministicprocedureto con-
duct and test, a criterion to decidewhen testingshould
stop.It overcomesthelimitation of thelackof knowledge
of the environmentby emulatingpossibleattacksusing
thefaultsinjectiontechnique.Finally, our approachover-
comesthe limitation of testers’knowledgeby offering a
setof concretefaultsthatshouldbeinjectedinto applica-
tion.

AdaptiveVulnerabilityAnalysis(AVA) is designedby
Ghoshet al. to quantitatively assessinformationsystem
securityandsurvivability. This approachexercisessoft-
ware in source-codeform by simulatingincomingmali-
cious and non-maliciousattacksthat fall under various
threatclasses[21, 22, 27, 28]. In this respect,our own

10

work parallelstheAVA approach.A majordivergenceap-
pears,however, with respectto how incomingattacksare
simulated. AVA choosesto perturbthe internal stateof
the executingapplicationby corruptingthe flow of data
and the internalstatesassignedto applicationvariables.
Our approachchoosesto perturb the environmentstate
by changingthe attributesof the environmententity and
perturbingthe input thatanapplicationreceivesfrom the
environment.Ourapproachshouldbeconsideredascom-
plementaryto AVA.

For attacksthatdo not affect the internalstatesof an
application,AVA appearsincapableof simulating them
by only perturbingthe internalstates.For vulnerabilities
thatarecausedpurelyby incorrectinternalstates,ourap-
proachcannotsimulatethemby only perturbingthe en-
vironment. Onedisadvantageof the AVA is the seman-
tic gapbetweenthe attacksduring the useof an applica-
tion and the perturbationAVA makesduring testing. In
otherwords,knowing thattheapplicationfailsundercer-
tain perturbation,it is difficult to derive what kind of at-
tackscorrespondto this failure. This makesit difficult to
assessthevalidity of theperturbation.Our approachnar-
rows thesemanticgapby perturbingat theenvironment-
applicationlevel sincemost attacksreally occur due to
intentionalperturbationof theenvironment.

Fuzzis ablack-boxtestingmethoddesignedby Miller
et al. It feedsrandomlygeneratedinput streamto sev-
eral systemutilities, including login, ftp, telnet.
The resultsshow that $%�&� of the basicapplicationsand
over ')(%� of theX-Window applicationcancrash[23].
Dif ferentpatternsof input couldpossiblycausemoreap-
plicationsto fail. Inputs madeunderdifferent environ-
mentalcircumstancescouldalsoleadto abnormalbehav-
ior. Other testingmethodscould exposetheseproblems
whererandomtesting,by its very nature,might not [9].
Ratherthanrely on randominputs,our approachexploits
thoseinput patternsthatcouldpossiblycausesecurityvi-
olations.

Bishop and Dilger studiedone classof the time-of-
check-to-time-of-use(TOCTTOU) flaws [4]. A TOCT-
TOU flaw occurswhenanapplicationchecksfor apartic-
ular characteristicof an object and then takessomeac-
tion that assumesthe characteristicstill holds when in
fact it doesnot. This approachfocuseson a source-code
basedtechniquefor identifying patternsof code which
could have this programmingconditionflaw. Oneof its
limitationsis thatstaticanalysiscannotalwaysdetermine
whetherthe environmentalconditionsnecessaryfor this
classof TOCTTOU flawsexist [4]. Theauthorsconclude
that dynamicanalyzerscould help test the environment
during executionand warn when an exploitable TOCT-
TOU flaw occurs. Our approachis dynamic. Instead
of detectingdangerousenvironmentconditions,we in-

ject dangerousenvironmentconditionsand seewhether
theapplicationwill fail.

Fink andLevitt employ application-slicingtechnique
to testprivilegedapplications.Specificationsareusedto
sliceanapplicationto anexecutablesubsetrelevantto the
specification,andmanualmethodsareusedto derive test
datafor the slice. By usingapplicationslicesasthe ba-
sis of securitytesting,they assumethat testinga slice is
equivalentto testingthewholeapplication[7]. Themoti-
vationbehindtheapplication-slicingtechniqueis to focus
on a reducedandlesscomplex portionof theapplication
suchthatotherstaticanddynamicanalysesaremademore
efficient. We believe this to bea significantstepin secu-
rity testing.However, what is missingin this approachis
anefficient testingtechniqueusedto testtheslices.This
paperassumesgeneraltestingmethodscanbeusedto test
theslicesandtheeffectivenessof their approachdepends
on theeffectivenessof generaltestingmethodson reveal-
ing securityflaws, which, asfar aswe know, is still un-
known.

Gligor hasproposedasecuritytestingmethod.It elim-
inatesredundanttestcasesby 1) usingavariantof control
synthesisgraphs,2) analyzingdependenciesbetweende-
scriptive kernel-callspecifications,and3) exploiting ac-
cesscheckseparability. Themethodis usedto testtheSe-
cureXenix kernel[18]. A key drawbackof this approach
is that it cannotdetectthe fact that entire sequencesof
functions,i.e. accesscheckcomputations,may be miss-
ing [12] asmany securityflawsarecausedby themissing
of accesscheckingandinput validity checking.

6 Summary and Futur e Work

We have presenteda white-boxsecuritytestingmethod-
ology usingenvironmentperturbationtechnique,a vari-
ant of the fault injection technique.The methodologyis
basedon the Environment-ApplicationInteraction(EAI)
model,which capturesthepropertiesof a family of soft-
warevulnerability. We have appliedthis methodologyto
severalreal-world systemsandapplications,andwe have
successfullyidentifiedanumberof securityflaws thatex-
ist for severalyearswithoutbeingdiscovered.

Futurework will concentrateonapplyingthismethod-
ology to moreapplications.We arein theprogressof de-
velopingandconductinga setof experimentsto evaluate
the effectivenessof this methodology. In the future, we
hopeto be able to develop a prototypetool for security
testingbasedon this methodology.

11

References
[1] T. Aslam. A taxonomyof securityfaultsin theunix oper-

ation system. Master’s thesis,PurdueUniversity, August
1995.

[2] B. Beizer. Software TestingTechniques. Van Nostrand
Reinhold,New York, 1990.

[3] M. Bishop. A taxonomyof unix systemandnetwork vul-
nerabilities. TechnicalReportCSE-95-10,Departmentof
ComputerScience,Universityof Californiaat Davis, May
1995.

[4] M. BishopandM. Dilger. Checkingfor raceconditionsin
file acesses.TheUSENIXAssociationComputingSystems,
9(2):131–151,Spring1996.

[5] J.ClarkandD. Pradhan.Fault injection:A methodfor val-
idating computer-systemdependability. IEEE Computer,
pages47–56,June1995.

[6] W. Du andA. Mathur. Categorizationof softwareerrors
thatled to securitybreaches.In 21stNationalInformation
SystemsSecurityConference, CrystalCity, VA, 1998.

[7] G. Fink andK. Levitt. Property-basedtestingof privileged
programs.In Proceedingsof the10thAnnualComputerSe-
curity ApplicationsConference;Orlando,FL, USA;1994
Dec5-9, 1994.

[8] B. Miller, L. FredriksenandB. So. An empirical study
of the reliability of unix utilities. Communicationsof the
ACM, 33(12):32–44,December1990.

[9] S. Garfinkel andG. Spafford. Practical UNIX & Internet
Security. O’Reilly & Associates,Inc., 1996.

[10] J. GoodenoughandS. Gerhart. Toward a theoryof test-
ing: Dataselectioncriteria. current Trendsin Program-
mingMethodology, 2:44–79,1977.

[11] H. Zhu, P. Hall andJ. May. Softwareunit testcoverage
andadequacy. ACM ComputingSurveys, 29(4):366–427,
December1997.

[12] W. Howden.Thetheoryandpracticeof functionaltesting.
IEEE Software, 2:18–23,September1985.

[13] W. Kao,R. Iyer andD. Tang. FINE: A fault injectionand
monitoringenvironmentfor tracingtheunix systembehav-
ior underfaults. IEEETransactionsonSoftwareEnvineer-
ing, 19(11):1105–1118,November1993.

[14] S. Dawson, F. Jahanianand T. Mitton. ORCHESTRA:
A fault injection environmentfor distributedsystems.In
26th InternationalSymposiumon Fault-Tolerant Comput-
ing (FTCS), pages404–414,Sendai,Japan,June1996.

[15] G. Kanawati, N. Kanawati and J. Abraham. FERRARI:
A tool for the validationof systemdependabilityproper-
ties. In Proceedings22ndInternationalSymposiumFault
TolerantComputing, pages336–344,July 1992.

[16] I. Krsul. Software Vulnerability Analysis. PhDthesis,Pur-
dueUniversity, Departmentof ComputerSciences,West
Lafayette,Indiana,1998.

[17] R. R. Linde. Operatingsystempenetration.In AFIPSNa-
tional ComputerConference, pagespp.361–368,1975.

[18] V. D. Gligor, C. S. Chandersekaran,W. Jiang,A. Johri,
G. L. LuchenbaughandL. E. Reich. A new securitytest-
ing methodand its applicationto the securexenix ker-
nel. IEEE Transactionson Software Engineering, SE-
13(2):169–183,February1987.

[19] E. J.McCauley andP. J.Drongowski. Thedesignof a se-
cureoperatingsystem.In NationalComputerConference,
1979.

[20] C. E. Landwehr,A. R. Bull, J. P. McDermott andW. S.
Choi. A taxonomyof computerprogramsecurityflaws.
ACM ComputingSurveys, 26(3),September1994.

[21] A. Ghosh,T. O’Connor,G. McGraw. An automatedap-
proachfor identifyingpotentialvulnerabilitiesin software.
In IEEE Symposiumon Securityand Privacy, Oakland,
CA, 1998.

[22] J. Voas, F. Charron, G. McGraw, K. Miller and
M.Friedman. Predictinghow badly “good” softwarecan
behave. IEEE Software, 14(4):73–83,August1997.

[23] B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy, A.
NatarajanandJ. Steidl. Fuzzrevisited: A re-examination
of the reliability of unix utilities andservices. Technical
report,ComputerSciencesDepartment,Universityof Wis-
consin,1995.

[24] C.Pfleeger,S.PfleegerandM. Theofanos.A methodology
for penetrationtesting.ComputersandSecurity, 8(7):613–
620,1989.

[25] S.Han,K. ShinandH. Rosenberg. Doctor: An integrated
software fault injection environment for distributed real-
time systems. Technicalreport,University of Michigan,
Departmentof Elect.Engr. andComputerScience,1995.

[26] M. Hsueh,T. TsaiandR. Iyer. Fault injection techniques
andtools. IEEE Computer, pages75–82,April 1997.

[27] J.Voas.Testingsoftwarefor characteristicsotherthancor-
rectness:Safety, failuretolerance,andsecurity. In Proc.of
theInt’l Conferenceon TestingComputerSoftware, 1996.

[28] J.VoasandG. McGraw. Software Fault Injection: Incocu-
lating ProgramsAgainstErrors. JohnWiley & Sons,Inc.,
1998.

12

