A STUDY OF SEVERAL SPECIFIC

SECURE TWO-PARTY COMPUTATION PROBLEMS

A Thesis
Submitted to the Faculty
of
Purdue University
by

Wenliang Du

In Partial Fulfillment of the
Requirements for the Degree
of

Doctor of Philosophy

August 2001

To my Father, my Mother and Jing.

ii

iii

ACKNOWLEDGMENTS

Throughout my graduate experience, I have been very fortunate to cross paths
with great people, who have had a dramatic impact on my research and my accom-
plishments.

The person who contributed most to my thesis research was my major advisor
Professor Mikhail Atallah. I was very lucky to discuss an interesting problem with
him when I was still painfully looking for a thesis topic. It was that discussion that led
to the discovery of my thesis topic. Ever since, it has been a privilege and a pleasure
to work with him, to talk with him, and to learn from him. His amazing quickness
when coming up with ideas has always been inspiring, his insights and suggestions
have been invaluable for my work, and his willingness to discuss with me at anytime
has been very helpful. T am very grateful to him.

The person who always advised me, supported me and helped me during my
five years’ graduate research is my other advisor, Professor Eugene Spafford, whose
research in the security area was the major reason that attracted me to Purdue
University. During these five years, he has provided me with a lot of support and
the freedom I needed to be successful in my research; he has taught me a great deal
about how to do research, how to think of problems, and most of all, how to become

a respected scholar. I am greatly indebted to him.

v

My graduate studies were conducted in the Center for Education and Research
in Information Assurance and Security (CERIAS), formerly known as the Computer
Operations, Audit and Security Technology (COAST) Laboratory. I benefited a lot
from the research and education environment that CERIAS provided. I thank all
of my colleagues in CERIAS, especially Hoi Chang, Tom Daniels, Chapman Flack,
Benjamin Kuperman, Mahesh Tripunitara and Diego Zamboni for accompanying me
from COAST to CERIAS, and for invaluable discussions during the last five years.

Several people deserve special mention: Professor Aditya Mathur for advising
me during the first two years of my research in the security testing area; Professor
Jens Palsberg and Professor Sunil Prabhakar for serving on my thesis committee
and for reading my thesis; Dr. William J. Gorman in the graduate student office for
helping me through a lot of official paper work; Marlene Walls for administrative
support; Vince Koser, Susana Soriano and Kent Wert for their excellent systems
administration support; Professor Clay Shields for giving me valuable job-hunting
advice; Jared Crane, Rajeev Gopalakrishna and Florian Kerschbaum for the research
discussions.

Most of all, I would like to thank my beloved wife, my parents and my brothers
for their unconditional love, encouragement and support.

Portions of this work were supported by Grant EIA-9903545 from the National
Science Foundation, and by the various sponsors of CERIAS; that support is gratefully

acknowledged.

TABLE OF CONTENTS

LIST OF FIGURES o o e
ABSTRACT . . . e

1

2

3

INTRODUCTION e e e
1.1 Contributions
1.2 Thesis Statement Lo
1.3 OurResults
1.3.1 Privacy-Preserving Scalar Product Problems
1.3.2 Scientific Computation Problems
1.3.3 Geometric Computation Problems
1.3.4 Basic Statistical Analysis
1.3.5 Database Query Based on Approximate Matching
1.3.6 Other Secure Two-Party Computation Problems
1.4 Organization of the Dissertation
PRELIMINARIES e
2.1 Semi-Honest Model and Malicious Model
2.2 Definitionso Lo
2.3 Secure Multi-Party Computation
2.4 Cryptography Primitives
2.5 Specific Secure Two-Party and Multi-Party Computation Problems
BUILDING BLOCKS e
3.1 Secure Two-Party Permutation Protocols
3.1.1 Secure Two-Party Permutation Problem
3.1.2 Secure Two-Party Permutation Protocol 1

3.1.3 Secure Two-Party Permutation Protocol 2

vi

3.2 Secure Two-Party Scalar Product Protocols 22
3.2.1 Secure Two-Party Scalar Product Protocol 1 23
3.2.2 Secure Two-Party Scalar Product Protocol 2 24
3.2.3 Secure Two-Party Scalar Product Protocol 3 26
3.2.4 Complexity Analysis 29
3.2.5 Applicationso 30

3.3 Secure Two-Party Vector Dominance Protocol 31
3.3.1 Secure Two-Party Vector Dominance Protocol 1 34
3.3.2 Secure Two-Party Vector Dominance Protocol 2 48
3.3.3 Complexity Analysis, 51
3.3.4 Applications oo 51

3.4 Chapter Summary 54

SECURE TWO-PARTY SCIENTIFIC COMPUTATIONS 95

4.1 Secure Two-Party Linear System of Equations Problem o7

4.2 Secure Two-Party Linear Least-Squares Problem 64

4.3 Secure Two-Party Linear Programming Problem 70

4.4 Protocol Efficiency oo 74

4.5 Applications 75

4.6 Chapter Summary and Future Work 7

SECURE TWO-PARTY COMPUTATIONAL GEOMETRY PROBLEMS 78

5.1 Secure Two-Party Point-Inclusion Problem 79
5.2 Secure Two-Party Intersection Problem 81
5.3 Secure Two-Party Closest Pair Problem 85

5.3.1 Find Minimum Protocol (FindMin) 86
5.4 Protocol Efficiency oo 91
5.5 Applications 91
5.6 Chapter Summary and Future Work 93

SECURE TWO-PARTY STATISTICAL ANALYSIS AND
PRIVACY-PRESERVING SURVEY PROBLEMS 94

vii

6.1 Secure Two-Party Statistical Analysis Problem 96

6.1.1 Statistical Analysis Background 96

6.1.2 Two Models of Cooperation 97

6.1.3 Heterogeneous Model 98

6.1.4 Homogeneous Model 100

6.2 Privacy-Preserving Survey Problem 104

6.3 Chapter Summary and Future Work 109
SECURE REMOTE DATABASE QUERY WITH APPROXIMATE MATCH-

ING . . e 110

7.1 Frameworko 117

71.1 Models o 117

7.1.2 Notation L 119

7.2 Protocols 120

721 PIM/ApPpProx e 120

7.2.2 SSO/ADPProx oo 127

723 SSCO/ADPDPrOX . . . o v v v v ittt 131

7.3 Chapter Summary and Future Work 134

OTHER SECURE TWO-PARTY COMPUTATION PROBLEMS 136

81 Framework. 136

8.2 Other Secure Two-Party Computation Problems 139

CONCLUSIONS AND FUTURE WORK 141

9.1 Summary of Main Results 141

9.2 Summary of Findings, Experience, and Challenges 142

9.2.1 Findings and Experience 142

9.2.2 Challengeso 147

9.2.3 'Trading Privacy for Efficiency 148

9.3 Future Work Lo 149

LIST OF REFERENCES 151

Figure
3.1
3.2
4.1
4.2
6.1
6.2
7.1
8.1

viii

LIST OF FIGURES

Page
Scalar Product Protocol 2o 0oL 25
Example oL 44
Various Ways of Cooperation 56
Private Evaluation of P(M; + M2)Q 61
Two Models of Cooperation 97
Survey Models Lo 105
Secure Remote Database Query Models 117
Models o 137

X

ABSTRACT

Du, Wenliang. Ph.D., Purdue University, August, 2001. A Study of Several Specific
Secure Two-party Computation Problems. Major Professors: Mikhail J. Atallah
and Eugene H. Spafford.

Alice has a private input z (of any data type, such as a number, a matrix or a
data set). Bob has another private input y. Alice and Bob want to cooperatively
conduct a specific computation on z and y without disclosing to the other person any
information about her or his private input except for what could be derived from the
results. This problem is a Secure Two-party Computation (STC) problem, which has
been extensively studied in the past. Several generic solutions have been proposed to
solve the general STC problem; however the generic solutions are often too inefficient
to be practical. Therefore, in this dissertation, we study several specific STC problems
with the goal of finding more efficient solutions than the generic ones.

We introduce a number of specific STC problems in the domains of scientific
computation, statistical analysis, computational geometry and database query. Most
of the problems have not been studied before in the literature.

To solve these problems:

e We investigate how data perturbation could be used to hide data. Data pertur-

bation hides a datum by adding to it a random number. We show that this

technique is effective in preserving privacy.

e We explore how domain specific knowledge can improve the efficiency of the
solutions that we develop over the generic solutions that do not consider domain
specific knowledge. We show that such knowledge is important in both hiding

data and achieving higher efficiency.

e We also introduce a number of common building blocks that are useful in solving

secure two-party computation problems in various computation domains.

1. INTRODUCTION

The growth of the Internet opens up tremendous opportunities for cooperative
computation, where the answer depends on the private inputs of separate entities.
These computations could sometimes occur between mutually untrusting entities.
The problem is trivial if the context allows the conduct of these computations by
a trusted entity that would know the inputs from all the participants. However, if
the context disallows this then the techniques that allow this type of computation
without disclosing each entity’s private input become relevant and can provide useful
solutions.

The above problem is referred to as the Secure Multi-party Computation problem
(SMC) in the literature [105]. Generally speaking, a secure multi-party computation
problem deals with computing a function on any input in a distributed network where
each participant holds one of the inputs, and that no more information is revealed to
a participant in the computation than can be inferred from that participant’s input
and output [54].

In theory, the general secure multi-party computation problem is solvable using
circuit evaluation protocols [105, 57, 55]. While this approach is appealing in its
generality and simplicity, the communication complexity of the protocol it generates

depends on the size of the circuit. This size depends on the size of the input and

on the complexity of expressing F' as a circuit. In addition, the solution involves
large constant factors in its complexity. Therefore, as Goldreich points out in [55],
using the solutions derived by these general results for special cases of multi-party
computation can be impractical; special solutions should be developed for special

cases for efficiency reasons.

This dissertation is a first step in this direction for several specific computation
domains including computational geometry, scientific computation, statistical analy-
sis and database query (approximate). In this study, we mainly focus on the secure
two-party computation problems, instead of on the more general secure multi-party
computation problems although we believe the extension from two-party to multi-
party is a minor modification (for the circuit evaluation protocol, the construction
of multi-party protocols for the semi-honest model is a minor modification of the
construction used in the two-party case [55]). We will leave such an extension as our
future work, and primarily focus on the secure two-party computation problems in

this dissertation.

1.1 Contributions

First of all, we defined a new field of research by applying the secure two-party
computation concept to specific computation problems in the area of scientific compu-
tation, computational geometry, statistical analysis and database query (approximate
matching). Although general secure two-party computation problems have been stud-
ied extensively, the specific problems defined in this dissertation have not been studied

in the literature; this dissertation is the first to introduce and study them.

Second, in this dissertation, we have proposed methods to solve those specific
secure two-party computation problems that we have introduced. We have shown
that the solutions of our methods are more efficient than the generic solutions (the
circuit evaluation protocols).

Third, throughout this study, we have identified a number of building blocks that
are commonly used to solve various secure two-party computation problems. We have

demonstrated how to use them to solve various problems.

1.2 Thesis Statement

It is possible to solve, in a way more efficient than the general solution, secure
two-party computation problems for specific domains such as scientific computation,

geometric computation, basic statistical analysis and database query, given that:

e Both parties are semi-honest: informally speaking, they follow the protocol
properly but may try to derive the other party’s inputs from intermediate results

they see.

e Each party’s computation is polynomial time-bounded.

e The efficiency is measured using the communication complexity—the amount of

data exchanged between the two parties.
1.3 Our Results
1.3.1 Privacy-Preserving Scalar Product Problems

Throughout this study, we find scalar product computation is useful in many

situations. Therefore, we have extensively studied the scalar product problem in the

Secure Two-party Computation context. This problem consists of two parties, each
having a private vector: they want to jointly compute the scalar product of their

private vectors, but neither one wants to disclose its private vector to the other.

We have explored several ways to solve this problem. Our first solution uses an
untrusted third party, who does not learn anything about the vectors; our second
solution uses the 1-out-of-N Oblivious Transfer protocol to achieve the privacy of the
vectors; our third solution uses a homomorphic encryption system to achieve privacy.
These three approaches not only provide solutions to the scalar product problem, but
also demonstrate three useful techniques in solving secure two-party computation

problems.
1.3.2 Scientific Computation Problems

We introduce the Secure Two-Party Scientific Computations (STPSC) problem.
The general definition of the STPSC problem is that two or more parties want to
conduct a scientific computation based on their private inputs, but neither party is
willing to disclose its own input to anybody else. We have further defined three specific
STPSC problems, including the Secure Two-Party Linear System of Equations (STP-
LSE) problem, the Secure Two-Party Linear Least-Square (STP-LLS) problem, and
the Secure Two-Party Linear Programming (STP-LP) problem.

These three STPSC problems all involve a Matrix M = M; + M,, where M;
belongs to one party and M, belongs to the other party. The difficulty of these
problems is that no one knows M, so there is no easy way to directly use the algorithms

intended for the usual environment (without the privacy requirements). We have

devised a technique to transform M to M’ in an “one-way fashion” such that for
the party who knows M’, it is computationally impossible to derive the value of M;
unknown to this party. This transformation also allows the party who knows M’ to

solve the problem using the usual algorithms.

The approach used here represents one of the important techniques: transforming
the two-party problem to a one-party problem such that the algorithms intended for
the usual environment can be used directly, while the final output could be derived

from the results of the one-party problem.
1.3.3 Geometric Computation Problems

In this dissertation, we have also studied three secure two-party geometric com-
putation problems: the point-inclusion problem, the intersection problem and the
closest-pair problem. In the point-inclusion problem, one party has a point and an-
other party has a region; they want to find out whether the point is inside the region
or not. In the intersection problem, two parties each have a private shape and they
want to know whether these two shapes intersect. In the closest-pair problem, one
party has a set of red points in a plane, and the other party has a set of blue points in
the same plane; they want to find the closest red-blue pair. In these problems, neither
party wants the other party or any third party to know any information about his or

her private geometric elements.

The approach used here represents another important technique: computing based

”

on “shared secrets.” The computation of geometric computation problems usually

contains a procedure consisting of a few steps. It is not difficult to conduct each

individual step securely, but doing this has to disclose the result of each step, a
disclosure leading to a privacy compromise. In our approach, we use a secure two-
party protocol to conduct the computation of each step, but at the end nobody has
full knowledge of the result: namely, both parties have a piece of the result, and from
a single piece it is impossible to derive the whole result. The next challenge is how to
conduct the subsequent steps based on the “shared secret.” We have demonstrated

several approaches to achieve this.
1.3.4 Basic Statistical Analysis

Statistical analysis is useful in many areas, but current techniques usually require
one to know the whole data set to conduct the analysis. We have studied statistical
analysis problems under a different environment, an environment where one cannot
obtain the whole data set. More specifically, in this environment, two parties each
have a private data set, and they do not want to share the data sets. The parties
are interested in learning statistical analysis results based on the joint data set. Such

results include mean values, variance, correlation coefficient and linear regression line.
1.3.5 Database Query Based on Approximate Matching

We have also worked on the privacy-preserving remote database query problem.
In this problem, one party wants to query a remote database belonging to another
party, but neither party is willing to disclose to the other party their own inputs,
namely the query and the contents of the database that cannot be derived from the
results. Practical protocols for solving such a problem make possible new forms of e-

commerce between proprietary database owners and customers with privacy concerns

who seek to interrogate the database. Our research focuses on approximate match,
i.e., the result of the database query is the one that most closely matches the query.
We solve the problem using an untrusted third party—a party who should not learn
any useful information about either participant’s inputs.
1.3.6 Other Secure Two-Party Computation Problems
Apart from the above problems, there are many other secure two-party computa-
tion problems that have not been studied before. To facilitate the discovery and the
study of these problems, we have proposed a framework that helps one to identify
secure two-party computation problems in various computation domains. Using this

framework, we have identified a list of problems for further studies.

1.4 Organization of the Dissertation

This dissertation is organized as follows. In Chapter 2, we define some general
notations, terminologies, assumptions, and known results that will be used throughout
the dissertation. In Chapter 3, we describe protocols for two important building
blocks: the Scalar Product Protocol and the Vector Dominance Problem. In Chapter
4, 5, 6 and 7, we study several specific secure two-party computation problems in
four different computation domains. In Chapter 8, we describe a list of other specific
secure two-party computation problems, and a framework that helps us to identify
those problems. Finally, in Chapter 9, we present the conclusions, summarize our

findings and experiences, and discuss future directions.

2. PRELIMINARIES

In this chapter we provide some general notations, definitions, and known results
that will be used throughout the dissertation. Additional definitions and preliminar-
ies, specific to some parts of the dissertation, appear within the following chapters as
appropriate.

2.1 Semi-Honest Model and Malicious Model

In the study of secure two-party and multi-party computation problems, two mod-
els are commonly assumed: the semi-honest model and the malicious model. A semi-
honest party is one who follows the protocol properly with the exception that it keeps
a record of all its intermediate computations; the record could be used later for de-
riving additional information about other parties’ inputs. In the malicious model,
a malicious party does not need to follow the protocol properly, for example, it can
substitute its local input and enter the protocol with an input other than the one
provided to them.

It has been shown that any protocol secure in the semi-honest model can be
transformed into a protocol secure in the malicious model [55]. However, the semi-
honest model is not merely an important methodological locus, it may also provide a
good model of certain settings. In particular, in reality deviating from the specified

program-which may be invoked inside a complex application software-may be more

difficult than merely recording the contents of some communication registers. Thus,
whereas totally-honest behavior may be difficult to enforce, semi-honest behavior may

be assumed in many settings [55].

2.2 Definitions

SEMI-HONEST PARTY. A semi-honest (also termed passive) party is one who fol-
lows the protocol properly with the exception that it keeps a record of all its in-
termediate computations in an attempt to later derive additional information. This
dissertation discusses secure two-party computation problems with the assumption

that all participants are semi-honest.

UNTRUSTED THIRD PARTY. In some two-party protocols, an untrusted third
party is introduced for efficiency. An untrusted third party is semi-honest, i.e., it
properly executes the protocol and records any intermediate results, but it should
not be able to derive the inputs or the results of the protocol from what it has

recorded. The untrusted third party does not collude with any party.

PRIVACY. A formal definition of privacy for secure two-party computation is given
in [55]. The definition says that a protocol privately computes f if whatever a semi-
honest polynomial-time bounded party can be obtained after participating in the pro-
tocol could be essentially obtained from the input and output available to that party.
This is stated using the simulation paradigm. Furthermore, it suffices to (efficiently)
“simulate the view” of each (semi-honest) party, because anything that can be ob-

tained after participating in the protocol is obtainable from the view.

10

In this dissertation, we add to the privacy definition the following assumption:

Data Perturbation Assumption: If an input is x € X', we assume that
x + r effectively preserves the privacy of z if r is a secret random number

uniformly distributed in a domain F, where |F| > |X|.

In both finite and infinite domains, the data perturbation assumption achieves the
same level of privacy as the formal definition in [55]. However in an infinite domain,
we do not know how to generate uniformly distributed random numbers; if instead
we generate r in a finite domain, say [—7, T, then £+ does reveal some information
about z. For example, if z +r > T, the information about the range of x is disclosed
because one can derive x > 0. This is not a problem in a finite computation domain
because the result will wrap to a number within the domain. By making the range of r
big enough, the data perturbation could approximate the privacy definition from [55].

Even if we know how to generate r in an infinite domain, certain statistic infor-
mation about x will still be disclosed if = consists of a set of data. For example, if
zi,-...,T, are n numbers in the inputs, r,...,r, are uniformly distributed random
numbers, and the addition is performed in an infinite domain, the sum of these z;’s
will be disclosed, certain properties of the distribution of x;’s will also be disclosed.
Although the disclosure of this type of aggregate information is not acceptable in cer-
tain applications, we believe in many situations the participants are more concerned
about the disclosure of information of each single item rather than the disclosure of

the aggregate information.

11

Therefore, our definition of privacy is slightly different from the definition in [55],
but we believe the degree of privacy provided in our work is still acceptable in many

applications.

In implementations, many other factors regarding the random number generation
need to be considered, including randomness, precision and the choice of the domains.
Because these factors are implementation issues, we do not discuss them in details in

this dissertation.

SECURE TWO-PARTY PROTOCOL. A secure two-party protocol is a protocol for
solving a secure two-party computation problem. It only involves two parties, and

both parties are semi-honest and polynomial-time bounded.

SECURE TWO-PARTY PROTOCOL WITH AN UNTRUSTED THIRD PARTY.
A secure two-party protocol with an untrusted third party is a protocol for solving
a secure two-party computation problem with the help of an untrusted third party.
All three parties are semi-honest and polynomial-time bounded. The inputs and the

results of the protocol should not be disclosed to the untrusted third party.

2.3 Secure Multi-Party Computation

Secure Multi-party Computation (SMC) is the problem of evaluating a function
to which each party has one secret input, such that the output becomes commonly
known while the inputs remain secret. SMC is a very general and powerful notion,

and it was preceded by numerous investigations of protocols for a variety of special-

12

purpose tasks, including secret sharing, bit commitment, coin flipping, mental poker,
oblivious transfer, secret exchange, and secret-ballot election.

The first general secure two-party computation protocol result was described by
Yao [105]. Assuming the intractability of factoring, Yao showed that every two-party
interactive computational problem has a private protocol. Goldreich, Micali, and
Wigderson [57] generalized the two-party problem to the multi-party problem, and
showed how to weaken the intractability assumption from factoring the existence of
any trapdoor permutation. These solutions are all based on the circuit evaluation
protocol (in this protocol, the functionality that needs to be computed is represented
as a Boolean circuit, and the two parties then jointly evaluate the circuit without
disclosing their own inputs of the circuit to the other party). Later Kilian [67] shows
how to base circuit evaluation solely on oblivious transfer as a primitive, thereby
reducing the oblivious circuit evaluation to the oblivious transfer problem.

2.4 Cryptography Primitives
Circuit Evaluation

Circuit evaluation protocols are used in solving general secure two-party computa-
tion problems [105, 57, 55]. Two types of circuit evaluation protocols are well known
in the literature. In the first type [57], one party, Alice, “scrambling” the circuit in a
manner such that for each input of a gate two random numbers are used to represent
0 and 1, respectively. By getting only the random numbers, it is impossible to tell
whether it represents 0 or 1. Each gate also has a table associate with it, such that

given the random numbers from the input wire, it is possible to compute the result for

13

the output wire; however, because the output is also “scrambled” (appears as another
random number), it is impossible to figure out whether the result is 0 or 1. After
“scrambling” the circuit, Alice sends the circuit to Bob along with her own scrambled
inputs (the random numbers corresponding the actual inputs). Bob, after getting the
circuit, needs to get the random numbers corresponding to his own input to be able to
“evaluate” the scrambled circuit. Bob uses 1-out-of-2 Oblivious Transfer Protocol to
get the corresponding random numbers according to his input. The 1-out-of-2 Obliv-
ious Transfer protocol guarantees that Alice does not know which number Bob gets,
and thus prevents Alice from knowing Bob’s inputs; the protocol also guarantees that
Bob only gets one of the numbers, and thereby prevents Bob from deriving Alice’s

inputs.

The second type [55] is an interactive gate-by-gate evaluation of the circuit for
encrypted inputs. The construction takes this Boolean circuit and produces a protocol
for evaluating this circuit. The circuit evaluation protocol scans the circuit from the
input wires to the output wires, processing a single gate in each basic step. When
entering each basic step, the parties hold shares of the values of the input wires, and
when the step is completed they hold shares of the output wire. Therefore, during the
evaluation of any basic step, no intermediate result is disclosed; only at the last step,
do two parties put their shares of the output together to compute the final results.
The critical part of this protocol is how to compute shares of the output wire from
shares of input wires without disclosing one party’s share to the other party. This is

achieved using 1-out-of-n Oblivious Transfer protocol.

14

From the way the circuit evaluation protocol works, it is not difficult to see that the
communication cost of the protocol is linear to the size of the circuit, which depends
on the complexity of expressing the functionality as a circuit. Therefore, for a complex
functionality, using the circuit evaluation approach can be impractical. However, we
stress that secure computation of small and simple circuits can be practical using the

circuit evaluation protocol.
Oblivious Transfer

Kilian [67] showed that the secure two-party computation problem can be reduced
to Oblivious Transfer in the semi-honest model, namely when parties are guaranteed
to behave according to the protocols.

The notion of Oblivious Transfer (OT) was first introduced by Rabin [88]. In the
original OT problem, the sender, Alice, has a secret, the receiver will receive this
secret with probability 1/2, and Alice does not know whether or not Bob received it.

The Oblivious Transfer notion has several versions, which were shown to be equiv-
alent to one another by Crépeau [33]. One version is called 1-out-of-2 Oblivious
Transfer. It was introduced by Even, Goldreich, and Lempel [42]. 1-out-of-2 Obliv-
ious Transfer is a protocol between two parties, a sender Alice and a receiver Bob.
Alice has two bits (bo, b1), and Bob wants to get one of the bits b; of his choice. At
the end of the protocol, Alice should not learn anything about ¢, and Bob should not
learn anything about the other bit.

1-out-of-2 Oblivious Transfer was further generalized to 1-out-of-n Oblivious Trans-

fer by Brassard, Crépeau, and Robert [20]. 1-out-of-n Oblivious Transfer protocol

15

refers to a protocol where at the beginning of the protocol one party, Bob has n
inputs X1,..., X, and at the end of the protocol the other party, Alice, learns one of
the inputs X; for some 1 < ¢ < n of her choice, without learning anything about the
other inputs and without allowing Bob to learn anything about :.

An efficient 1-out-of-n Oblivious Transfer protocol was proposed in [82] by Naor
and Pinkas. This protocol invokes 1-out-of-2 Oblivious Transfer protocol logn times;
combining with the PIR protocol [22], this protocol achieves polylogarithmic (in n)
communication complexity. This protocol serves as an important building block for
our protocols. The idea of using the l-out-of-n Oblivious Transfer protocol as a
building block was pioneered by various researchers such as Goldreich [55], and Naor
and Pinkas [82].

Homomorphic Encryption Schemes

We need a public-key cryptosystem with a homomorphic property for some of our
protocols. An encryption scheme is homomorphic if Ex(x) * Ex(y) = Ex(z +y). Such
encryption systems are called homomorphic cryptosystems, and examples include the
systems by Benaloh [15], Naccache and Stern [80], Okamoto and Uchiyama [84] and
Paillier [85]. A good property of homomorphic encryption schemes is that “addition”

can be conducted based on the encrypted data without decrypting them.

2.5 Specific Secure Two-Party and Multi-Party Computation Problems

Goldreich pointed out [55] “We view the general solutions as asserting that very
wide classes of problems are solvable in principle. However, we do not recommend

using the solutions derived by these general results in practice. For example, although

16

Threshold Cryptography (cf., [50, 36]) is merely a special case of multi-party com-
putation, it is indeed beneficial to focus on its specific.” In this section, we review
some specific two-party and multi-party computation problems that are related to

our work.
Private Information Retrieval

Among various secure multi-party computation problems, the Private Information
Retrieval (PIR) problem is one that has been widely studied. The PIR problem
consists of devising a protocol involving a user and a database server, each having a
secret input. The database’s secret input is called the data string, an n-bit string B =
bibs ... b,. The user’s secret input is an integer ¢z between 1 and n. The protocol should
enable the user to learn b; in a communication-efficient way and at the same time
hide i from the database. The trivial solution has an O(n) communication complexity.
Much work has been done for reducing this communication complexity [26, 24, 25,
62, 37, 73, 22, 52, 51].

In [26] it was shown that if there is only one server holding the database, then
Q(n) bits of communication are needed to achieve information-theoretic user privacy.
However, if there are £ > 2 non-communicating servers, each holding a copy of the
database, then there are solutions with sub-linear communication complexity. Unlike
the information-theoretic model, computational PIR schemes with sub-linear com-
munication complexity exist using a single server holding the dataset, and relying
on some intractability assumptions, as was first proved by Kushilevitz and Ostro-

vsky [73].

17

Private Comparison

Two types of comparisons are useful in this dissertation. The first one is to
compare whether two numbers (or two datums) are exactly the same; the second one

is to compare two numbers, and decide which one is bigger.

The first comparison problem was thoroughly discussed by Fagin, Naor and Win-

kler in [43] as well as by Naor and Pinkas in [82].

The second comparison problem is called Yao’s Millionaire Problem from Yao [104].
Two millionaires wish to know who is richer, without revealing any other informa-
tion about each other’s net worth. The early cryptographic solution by Yao [104]
has communication complexity that is exponential in the number of bits of the num-
bers involved, and the later solutions using general secure multi-party computation
techniques also have problems with achieving privacy efficiently. Their advantage, of
course, is that they do so without using an untrusted third party. Cachin proposed a
much more efficient solution in [21] based on the ®-hiding assumption; the protocol
uses an untrusted third party. The communication complexity of Cachin’s scheme is

O(¥), where £ is the number of bits of each input number.

Oblivious Evaluation of Polynomials

Naor and Pinkas [82] have studied an oblivious evaluation of polynomials problem,
where a polynomial P is known to Bob and he would like to let Alice compute the
value P(«) for an input o known to her in such a way that Bob does not learn o and

Alice does not gain any additional information about P (except P(c)).

18

The solution is based on the Oblivious Transfer protocol. In the solution, B
hides P in a bivariate polynomial Q(x,y), such that Q(0,-) = P(-); A hides « in an
univariate polynomial S(z), such that S(0) = «. A’s plan is to use the univariate
polynomial R(z) = Q(z,S(z)) to learn P(«): it holds that R(0) = P(«). If the
degree of polynomial R is d, once Alice learns d + 1 values of the form (x;, R(x;)),
she can compute R(0). Alice can learn these d + 1 values using 1-out-of-n Oblivious

Transfer Protocol to avoid disclosing information about « to Bob.

Privacy-Preserving Data Mining

The privacy-preserving data mining problem is another specific secure multi-party
computation problem that has been discussed in the literature. Two different privacy-
preserving data mining problems have been proposed. In Lindell and Pinkas’ pa-
per [75], the problem is defined as this: Two parties, each having a private database,
want to jointly conduct a data mining operation on the union of their two databases.
How could these two parties accomplish this without disclosing their database to the
other party, or any third party? In Agrawal’s paper [5], the privacy-preserving data
mining problem is defined as this: Alice is allowed to conduct data mining operations
on a private database owned by Bob. How could Bob prevent Alice from accessing
precise information in individual data records, while Alice is still able to conduct the
data mining operations? The solution to these two similar problems are quite differ-
ent: Lindell and Pinkas use secure multi-party computation protocols to solve their

problem, while Agrawal uses the data perturbation method.

19

Cryptographic Tasks

Secure multi-party computation was preceded by numerous investigations of pro-
tocols for a variety of special-purpose cryptographic tasks. Secret sharing [95, 98]
is a multi-party protocol in which a designated party distributes a message for later
recovery by some authorized subcollection of the remaining parties. Bit commit-
ment [19, 81] is a two-party version of secret sharing. Mental poker [106, 45, 29, 31, 32]
is a multi-party protocol for producing, and partially applying, a random permuta-
tion (i.e., shuffle and deal a deck of cards). Secret ballot election schemes [28, 17| are
essentially a special case of secure multi-party computation in which the function is

a simple sum of ones and zeros.

20

3. BUILDING BLOCKS

3.1 Secure Two-Party Permutation Protocols
3.1.1 Secure Two-Party Permutation Problem
Problem 3.1.1. (Secure Two-Party Permutation Problem) Alice has a private vector
X = (x1,...,2,); Bob has a private permutation function 7 and private vector R =
(r1y...,75). Alice needs to get m(X + R). Alice should not learn 7 or the value of

any 7;; Bob should not learn the value of any z;.

To Alice, this is an oblivious permutation, namely Alice has her vector permuted
but she does not know how it is permuted. As we will see later, this type of oblivious
permutation is useful for solving many secure two-party computation problems.

We have developed two protocols to solve this problem. The first one is based on 1-
out-of-n Oblivious Transfer Protocol, and the second one is based on a homomorphic
encryption scheme.

3.1.2 Secure Two-Party Permutation Protocol 1

Protocol 3.1.1. (Secure Two-Party Permutation Protocol 1)

Inputs: Alice has a secret vector X. Bob has a secret permutation 7 and a secret
vector R.

Outputs: Alice gets 7(X + R).

21

1. Alice and Bob agree on two numbers p and m, such that p™ is so big that

conducting p™ additions is computationally infeasible.
2. Alice generates m random vectors Vi, ..., V,,, such that X = Z;nzl Vj.
3. Bob generates m random vectors Ry, ..., R,,, such that R = Z;n:1 R;.

4. For each j =1,...,m, Alice and Bob conduct the following sub-steps:

(a) Alice generates a secret random number k, 1 < k < p.

(b) Alice sends (Hj, ..., H,) to Bob, where H; =V}, and the rest of H,’s are
random vectors. Because k is a secret number known only to Alice, Bob
does not know which one of H,’s is V.

(c) Bob computes Z;; = n(H; + R;) fori=1,...,p.

(d) Using 1-out-of-p Oblivious Transfer Protocol, Alice gets Z;= Z; = n(V; +

R;) from Bob.
5. Alice computes Y 7", Z; =7 (372, (V; + Rj)) = n(X + R).

3.1.3 Secure Two-Party Permutation Protocol 2
This protocol, developed by Kerschbaum [38], is based on a homomorphic public
key system. In what follows, we define E(Z) = (E(2),..., E(2,)) and D(Z) =

(D(#1),.-.,D(2y)), for a vector Z = (z1,...,2,)-

22

Protocol 3.1.2. (Secure Two-Party Permutation Protocol 2)
Inputs: Alice has a secret vector X. Bob has a secret permutation 7 and a secret

vector R.

Outputs: Alice gets 7(X + R).

1. Alice generates a key pair for a homomorphic public key system and sends the
public key to Bob. The corresponding encryption and decryption is denoted as

E(-) and D(-).
2. Alice encrypts X and sends the result F(X) to Bob.

3. Bob computes E(X) * E(R) = E(X + R), permutes E(X + R) using 7, and

then sends the result 7(E(X + R)) to Alice.

4. Alice decrypts m(E(X + R)) and gets D(w(E(X + R))) = m(D(E(X + R)))
=7n(X + R).

3.2 Secure Two-Party Scalar Product Protocols
Problem 3.2.1. (Secure Two-Party Scalar Product Problem) Alice has a vector X =
(x1,...,2,) and Bob has a vector Y = (y1,...,9,). Alice needs to get the result of
u=X Y+4+v= Z?:l z;y; + v, where v is a random number that Bob knows. Alice
should not be able to derive the result of X - Y or any value of y; from » and the
execution of the protocol; similarily Bob should not be able to derive the result of

X -Y or any value of z; from v and the execution of the protocol.

Instead of computing the usual scalar product, our definition of the problem is

slightly different and more general: We assume the goal of the protocol is for Alice

23

(but not Bob) to get X - Y + v where v is random and known to Bob only (of course
without either side revealing to the other the private data they start with). Our
protocols can easily be modified to work for the version of the problem where the
random v is given ahead of time as part of Bob’s data (the special case v = 0 puts
us back in the usual scalar product definition). The purpose of Bob’s random v is as
follows: If X -Y is a partial result that Alice is not supposed to know, then giving
her X - Y + v prevents Alice from knowing the partial result (even though the scalar
product has in fact been performed); later, at the end of the multiple-step protocol,
the effect of v can be effectively “subtracted out” by Bob without revealing v to Alice
(this should become clearer with example protocols that we later give).

We have developed three protocols to solve this scalar product problem. The first
protocol uses an untrusted third party, Ursula, with the assumption that Ursula should
not collude with either Alice or Bob. Because Ursula is not trusted, so she should not
learn the value of either vector X or vector Y from the execution of the protocol. The
second protocol and the third protocol do not use a third party. They are based on
the 1-out-of-n Oblivious Transfer protocol and the hormomorphic encryption scheme,
respectively. The comparison of these three protocols will be discussed following the

descriptions of the protocols.
3.2.1 Secure Two-Party Scalar Product Protocol 1

Protocol 3.2.1. (Secure Two-Party Scalar Product Protocol Using a Untrusted Party)

Inputs: Alice has a secret vector X, and Bob has a secret vector Y.

24
Outputs: Alice gets u, and Bob gets v, where u = X - Y + v.
1. Alice and Bob agree upon two random vectors R, and R,.
2. Bob generates a secret random number v.
3. Alice sends X + R, and X - R, + 2R, - R, to Ursula.
4. Bobsends Y + R, and Y - R, — R, - Ry — v to Ursula.

5. Ursula computes u = (X+R,)-(Y+R,) —(X-Ry+2R,-R,) —(Y-R,—R,-R,—v),

and gets u = X - Y 4.
6. Ursula sends u to Alice.

3.2.2 Secure Two-Party Scalar Product Protocol 2

Consider the following naive solution: Alice sends p vectors to Bob, only one
of which is X (the others are arbitrary). Then Bob computes the scalar products
between Y and each of these p vectors. At the end Alice uses the 1-out-of-p oblivious
transfer protocol to get back from Bob the product of X and Y. Because of the way
oblivious transfer protocol works, Alice can decide which scalar product to get, but
Bob could not learn which one Alice has chosen. There are many drawbacks to this
approach: If the value of X has certain public-known properties, Bob might be able
to differentiate X from the other p — 1 vectors, but even if Bob is unable to recognize
X his chances of guessing it is an unacceptably low 1 out of p.

The above drawbacks can be fixed by dividing vector X into m random vectors

Vi, ...,V of which it is the sum, i.e., X =)", V;. Alice and Bob can use the above

25

Alice Bob

private vector: y

random number:v=rl+r2 +r3 +r4
| |

private vector: x

vi v2 v3 V4 hidingvivevava O O 1O 1@

among random vectors | a2, |

0:2'3‘4 g v Ol‘d"o‘o
X = v1+v2+v3+v. V1 ! :

¢ 000

vie y+rl, y2 e y+r2, O : O : .VS: O
o vird 1-out-of-n P

v3e y+r3, v4® ¥ Oblivious Transfer ~ © ! O O O

¢

Alicegets:’ Xey+v =(viey+rl)+ (v2e y+12) + (v3® y +r3) + (v y+r4)‘

Figure 3.1. Scalar Product Protocol 2

naive method to compute V; - Y + r;, where r; is a random number and 2?21 T, =
(see Figure 3.1). As a result of the protocol, Alice gets V; - Y +r; fori = 1,...,m.
Because of the randomness of V; and its position, Bob could not find out which one
is V;. Certainly, there is 1 out p possibility that Bob can guess the correct V;, but
because X is the sum of m such random vectors, the chance that Bob guesses the
correct X is 1 out p™, which could be very small if we chose p™ large enough.

After Alice gets V; - Y + r; for i = 1,...,n, she can compute > " (V; - Y + r;)

= X - Y + v. The detailed protocol is described in the following:

Protocol 3.2.2. (Secure Two-Party Scalar Product Protocol 2)
Inputs: Alice has a vector X = (z1,...,2,), and Bob has a vector Y = (y1,...,¥n)-

Outputs: Alice gets u, and Bob gets v, where u = X - Y + v.

1. Alice and Bob agree on two numbers p and m, such that p™ is so big that

conducting p™ additions is computationally infeasible.

26
2. Alice generates m random vectors Vi, ..., V,,, such that X = Z;"Zl V.

3. Bob generates m random numbers 74, ..., 7, and lets v = Z;nzl T

4. For each j =1,...,m, Alice and Bob conduct the following sub-steps:

(a) Alice generates a secret random number k, 1 < k < p.

(b) Alice sends (Hj,..., H,) to Bob, where H; =V}, and the rest of H;’s are
random vectors. Because k is a secret number known only to Alice, Bob

does not know the position of V.
(c) Bob computes Z;; = H;-Y +rjfori=1,...,p.

(d) Using the 1l-out-of-p Oblivious Transfer protocol, Alice gets Z;,= Z, ;=

V; - Y +r;, while Bob learns nothing about k.
5. Alice computes u =", 7Z; = X - YV +v.
How is privacy achieved:

e If Bob chooses to guess, his chance of guessing the correct X is 1 out of p™.

e The purpose of r; is to add randomness to V; - Y, and thus prevents Alice from

deriving information about Y.

3.2.3 Secure Two-Party Scalar Product Protocol 3

Our next solution does not rely on 1l-out-of-n Oblivious Transfer cryptography

primitive as the previous does, but is instead based on a homomorphic public key

27

system. In the following discussion, we define 7(X) as another vector whose elements

are random permutation of those of vector X.

We begin with two observations. First, a property of the scalar product X - Y is
that 7(X) - 7(Y) = X - Y, regardless of what 7 is. Secondly, if Bob sends a vector
7 (V) to Alice, where m and V' are known only to Bob, Alice’s chance of guessing the
position of any single element of the vector V' is 1 out of n (n is the size of the vector);
Alice’s chance of guessing the positions of all of the elements of the vector V is 1 out

of n!.

A naive solution would be to let Alice get both 7(X) and 7(Y) but not 7. Let us
ignore for the time being the drawback that Alice gets the items of Y in permuted
order, and let us worry about not revealing 7 to Alice: Letting Alice know 7(X)
allows her to easily figure out the permutation function 7 from knowing both X and
7(X). To avoid this problem, we want to let Alice know only 7(X + R}) instead of
7(X), where R, is a random vector known only to Bob. Because of the randomness
of X + R;, to guess the correct m, Alice’s chance is only 1 out of n!. Therefore to
get the final scalar product, Bob only needs to send 7(Y’) and the result of R, - Y to

Alice, who can compute the result of the scalar product by using

X Y=rn(X+R) 7(Y)=R,-Y.

Now we turn our attention to the drawback that giving Alice 7(Y') reveals too

much about Y (for example, if Alice is only interested in a single element of the vector

28

Y, her chance of guessing the right one is an unacceptably low 1 out of n). One way
to fix this is to divide Y to m random pieces, Vi,...,V,,, with Y = Vi +...4+V,,; then
Bob generates m random permutations 7, ..., 7, (one for each “piece” V; of V) and
lets Alice know 7;(V;) and m;(X + R,) for i = 1,...,m. To guess the correct value of
a single element of Y, Alice has to guess the correct position of V; in each one of the
m rounds; the possibility of successful guessing becomes 1 out of n™.

Let us consider the unanswered question: how could Alice get 7 (X + R}) without
learning m or R? This can be achieved using the Secure Two-Party Permutation

Protocol (Protocol 3.1.2), a protocol based on a homomorphic public key system.

Protocol 3.2.3. (Secure Two-Party Scalar Product Protocol 8)
Inputs: Alice has a secret vector X, Bob has a secret vector Y.

Outputs: Alice gets u, and Bob gets v, where u = X - Y + v.

1. Bob’s set up:

(a) Bob divides Y to m random pieces, s.t. Y = Vi + ...+ V.
(b) Bob generates m random vectors Ry, ..., Ry, let v=>"",V;-R;.

(c) Bob generates m random permutations 7y, ..., Ty.
2. For each i =1, ..., m, Alice and Bob do the following:

(a) Using Secure Two-Party Permutation Protocol (Protocol 3.1.2), Alice gets

(X + R;) without learning either m; or R;.

(b) Bob sends m;(V;) to Alice.

29
(c) Alice computes Z; = m;(V;) -mi(X + R;) =V;- X +V; - R;.
3. Alice computes u =y .- Z; => " Vi- X +> " Vi-Ri=X-Y +w.
How is privacy achieved:

e The purpose of R; is to prevent Alice from learning ;.

e The purpose of ; is to prevent Alice from learning V;. Although Alice learns a
random permutation of the V;, she does not learn more because of the random-

ness of V;.

e If Alice chooses to guess, to successfully guess all of the elements in Y, her

chance is (;)™.

e Alice’s chance of successfully guessing just one elements of Y is 1 out of n™. For
example, to guess the kth element of Y, Alice has to guess the corresponding
elements in 7;(V;) for all i = 1,..., m. Because for each single i, the possibility

is 1 out of n, the total possibility is 1 out of n™.

e A drawback of this protocol is that the information about >, y; is disclosed

because the random permutation does not help to hide this information.

3.2.4 Complexity Analysis

In the following discussion, we assume that d is the number of bits to represent
any number in the inputs.

The communication cost (in terms of number of bits sent over the network) of

Protocol 3.2.3 is 4m * n x d, where m is a security parameter (so that u' = n™ is large

30

enough). The communication cost of Protocol 3.2.2 is p x t x n * d, where p > 2 and
t are security parameters (so that y” = p' is large enough). Setting p' = p” = p for

the sake of comparison, the communication cost of Protocol 3.2.3 is 4log

1”d and
ogn

the communication cost of Protocol 3.2.2 is I%ggp“nd. When 7 is large, Protocol 3.2.3

is more efficient than Protocol 3.2.2.

The communication cost of Protocol 3.2.1 is 2n x d, which is much better than the
other two protocols. However, this efficiency is achieved by introducing an untrusted

and uncolluding third party.

The communication cost of the circuit evaluation protocol is ¢ * n * d2, where c is
the number of bits sent over the network in the 1-out-of-n Oblivious Transfer protocol.
Although the value of ¢ depends on the specific implementation of the protocol, it is
reasonable to assume ¢ = d; therefore the communication cost becomes n * d*, which

is significantly more expensive than our scalar product protocols.
3.2.5 Applications

The Secure Two-Party Scalar Product Protocol is an important building block. As
we will see later, it is used in several of our other protocols, such as secure two-party

protocols for computational geometry and statistical analysis.

The similar techniques used for building the Scalar Product Protocol could also
be used for building some other protocols, such as the protocol for computing the

convolution of two private vectors and so on.

31

3.3 Secure Two-Party Vector Dominance Protocol

About two decades ago, Yao introduced the “millionaire problem” [104]: Two
parties want to determine who is richer without disclosing anything else about their
wealth. Several solutions have been proposed in the past to solve this problem,
however, none of them are efficient, except the one proposed by Cachin, who has
given an elegant practical solution to this problem [21].

Yao’s millionaire problem deals with only one comparison, i.e. a comparison be-
tween two numbers. However, in many applications, one often encounters situations
where one wants to make multiple comparisons without disclosing the result of in-
dividual comparisons, or even the statistical information about them. Consider the
following situation: Alice has n private numbers (a4, ...,a,), and Bob has another
n private numbers (bq,...,b,); Alice and/or Bob want to know whether a; > b; is
true for all © = 1,...,n. However, except for what can be derived from the answer,
nobody is allowed to know the other person’s private numbers or the comparison
result between any a; and b;, including the statistical information such as how many
a;’s are bigger (or smaller) than their corresponding b;’s, etc.

We consider the above multiple comparison problem as an extension of Yao’s
Millionaire Problem (a one-dimensional problem) to a multi-dimensional problem.
If we consider A and B as vectors, the problem is to actually decide whether A
dominates B. Therefore, in this section, we call this problem the Secure Two-Party

Vector Dominance Problem, or Dominance Problem in short.

32

As we will show later, there are many applications to the dominance problem. For
example, in business-to-business bidding, a manufacturer may want to deal with a
single supplier that can simultaneously satisfy all of its n requirements (either because
there is some coordination required in the production of the n items types, or simply to
avoid the bureaucratic overhead of having to deal with multiple suppliers). However,
if the supplier cannot satisfy all of its requirements, the manufacturer does not want

the supplier to know any information, such as which requirements are satisfied.

Definition 3.3.1. (Vector Dominance) Let A = (ay,...,a,) and B = (by,...,b,); if
for all 7 = 1,...,n we have a; > b;, then we say that A dominates B and denote it

by A >~ B.

Definition 3.3.2. (Secure Two-Party Vector Dominance Problem) Alice has a vector
A = (ay,...,a,) and Bob has a vector B = (by,...,b,); Alice and Bob want to find
out whether A dominates B or B dominates A or no vector dominates the other. The

following privacy requirements should be satisfied:

Alice should not learn the value of any element of Bob’s vector B.

e Bob should not learn the value of any element of Alice’s vector A.

In case that no vector dominates the other, neither Alice nor Bob should learn

the relationship between any element of A with any element of B.

In case that no vector dominates the other, neither Alice nor Bob should learn

how many of A’s elements are bigger than the corresponding elements in B.

33

The requirement of not allowing each party to know any partial information about
the individual comparisons immediately rules out using the solution to Yao’s Million-
aire Problem n times, once for each dimension: That would inappropriately reveal

the relative ordering of individual a;, b; pairs in the case where the answer is “no”.

We have developed two protocols to solve the above private vector dominance
problem. Both solutions uses Cachin’s solution to Yao’s Millionaire Problem as a
subroutine, but it does so in a non-obvious way, and the overall structure of these

solutions are novel and different from Cachin'’s.

As Cachin [21] points out, the early cryptographic solutions such as Yao’s million-
aire problem [104] have communication complexity that is exponential in the number
of bits of the numbers involved, and the later solutions using general secure multi-
party computation techniques also have problems with achieving privacy efficiently.
Their advantage, of course, is that they do so without using an untrusted third party.
Cachin’s work [21], assumes an untrusted third party that can misbehave on its own
(for the purpose of illegally obtaining information about Alice’s or Bob’s private vec-
tors) but does not collude with Alice against Bob or vice-versa. Because we are using
Cachin’s scheme as a subroutine, we are also implicitly making use of the number-
theoretic assumptions made in Cachin’s paper [21] (such as the ®-hiding assumption

that was also used in the private information retrieval literature [22]).

The difference of our two protocols is whether an untrusted third party is used
in the part of the protocol apart from Cachin’s Yao’s Millionaire protocol subrou-

tine. The first protocol uses an untrusted third party to achieve privacy, while the

34

second solution protocol does not. Both of our solutions use Cachin’s Yao’s Million-
aire protocol-a protocol using an untrusted third party-as subroutine, thus making
them both as a third-party protocol. However, if a two-party Yao’s Millionaire pro-
tocol is ever invented, the first protocol will still be a third-party protocol, while the
second one will be a two-party protocol. Therefore, we name the first protocol three-
party private vector dominance protocol and the second one two-party private vector
dominance protocol.

3.3.1 Secure Two-Party Vector Dominance Protocol 1

Definition 3.3.3. (Secure Two-Party Vector Dominance Protocol (using a third party))
Secure Two-Party Vector Dominance Protocol (using a third party) is one in which
the two parties determine whether one party’s secret vector dominates another party’s
secret vector, with the help of an oblivious third party who, while it does not collude
with either one of the two parties against the other, could nevertheless try to illegally
acquire information about their secret data. We call this third party Ursula. At the

end of the protocol, the following properties must hold:

1. Alice and Bob have determined whether A = B, B > A, or neither A nor B

dominates the other. However, Ursula has not made such a determination.

2. No party (including the third party) has gained any knowledge about A and
B other than the one implied by the previous item. Note that this implies the

following:

35

(a) In the case where neither A > B nor B > A, neither Alice nor Bob knows
the relative ordering of any individual a;, b; pair (i.e., whether a; < b; or

not).

(b) Ursula knows nothing about A, B, or the relationships between any ele-

ments of A, B.

Overview of the Protocol

A short and oversimplified description of the vector dominance protocol is de-
scribed here. Let A = (ay,...,a,) and B = (by,...,b,) be Alice’s and Bob’s inputs,
respectively. Because having Alice and Bob compare their vectors directly would in-
appropriately disclose the ordering information between individual a;, b; pairs, instead
we ask the oblivious third party, Ursula, to compare numbers derived from Alice’s and
Bob’s numbers in such a way that the comparison reveals no information to Ursula
and yet Ursula can perform certain updates that indirectly encapsulate (for A and
B) the outcome of the vector-dominance comparison. The idea is not to let Ursula
know anything about A, B, or the outcome of the comparison between any a; and b;
with which it is helping. This implies that Ursula does not find out such statistical
aggregate results as how many of the a;’s are larger than the corresponding b;’s, etc.

This objective is achieved by sending Alice’s disguised data to Ursula, such that
Ursula does not know the actual value of any particular a;, nor does she know which
disguised entry corresponds to a;. As we know, using protocols for Yao’s Millionaire
Problem [104, 21| enables two parties to compare their private inputs without disclos-

ing the private inputs to the other party; therefore, after getting Alice’s input vector,

36

Ursula and Bob use Cachin’s protocol [21] to compare the disguised elements of Al-
ice’s and Bob’s input vectors one by one; we actually use a slightly modified version of
Cachin’s protocol, one where Ursula knows the comparison’s outcome while the other
party learns nothing. (Note: The protocol can easily be modified so it is symmetric
in the roles of Alice and Bob, as will be explained later — the symmetric version
of it is just as efficient but is notationally more cumbersome and so we postpone
discussing it for the sake of a simpler exposition.) Because Ursula does not know
which disguised entry corresponds to a particular a;, she knows nothing about the
relationship between a; and b;, nor does she know the dominance relationship between
A and B (whether the entries of one are all larger than the corresponding entries of
the other). Moreover, Alice’s inputs are disguised in such a way that, to Ursula, half
of Alice’s disguised inputs are bigger than Bob’s corresponding inputs, while another
half of Alice’s disguised inputs are less than Bob’s corresponding inputs, regardless
of what the actual relationship between Alice’s inputs and Bob’s inputs is. Therefore
Ursula gains no information about the statistical aggregate results as how many a;’s

are larger than the corresponding b;’s.

So Ursula will know the results of the comparisons between disguised items of
Alice’s and Bob’s, but she cannot give these results to Alice and Bob because they
can make sense of them to inappropriately glean information: Instead, she has to let
Alice and Bob know whether A dominates B, or B dominates A, or neither dominates
the other, without Ursula herself knowing anything about the dominance relationship

(or lack thereof). This is achieved by having Alice and Bob each generate a set of

37

pairs of nonces (= random numbers), after which Alice and Bob each share a different
set of their own secret nonces with Ursula. Ursula then converts the comparisons’
outcomes to a single number formed by the zor of a selected set of nonces from the
two sets of nonces. It is this number that is finally sent to Alice and Bob by Ursula.
The idea is to judiciously construct this number in such a way that Alice and Bob
can only verify the dominance relationship between A and B, and nothing else (while
Ursula learns nothing).

The above was necessarily an oversimplification of the main ideas of our protocol,

and only a look at the details will reveal the subtle intricacies involved.

The Protocol

To make it easier to understand the protocol, we will present a rough outline of

it first, omitting many crucial details which are presented following the outline.

Protocol 3.3.1. (Secure Two-Party Vector Dominance Protocol (using a third party)-
Outline)

The protocol consists of the following stages:

e Alice disguises her vector A and gets A’, sends A’ to Ursula. (Because of the
disguise, Ursula learns nothing about Alice’s secret A). Bob disguises B and
gets B’ but he does not send B’ to Ursula. A" and B’ each have a length m that
is larger than n.

Note: The protocol can easily be modified so it is symmetric in the roles of

Alice and Bob, as will be explained later. The reason we present the details of

38

this version (rather than the symmetric one) is that it results in a considerably

less cluttered exposition both conceptually and (especially) notationally.

e Ursula and Bob use a modified version of Cachin’s protocol to compare each
entry of Ursula’s A’ to the corresponding entry of Bob’s B’'; in this modified
version of Cachin’s protocol, only Ursula knows the outcome of a comparison
as opposed to both knowing it in the original version. Because of this proto-
col, Ursula learns nothing about B’, and Bob learns nothing about A’ or the

comparison results.

e Ursula sends to both Alice and Bob a number h that she computed based
on the A’-to-B’ comparison outcomes of the previous stage. That number h
encapsulates the dominance information between vectors A and B in such a

way that it makes no sense to Ursula and yet that can be extracted from it by

Alice and Bob.

e Alice and Bob extract the vector-dominance comparison outcome from the num-

ber h that they received from Ursula.

Step 1: Setup

Alice and Bob jointly generate 4n random numbers Ry, ..., R4,; they both know
all of these 4n random numbers.
Step 2: Inputs Disguise

In this step, Alice constructs A" = (2a; + Ry, ..., 20, + Ry, (201 + 1)+ Rpyq,- - -,

(2an+1)+R2na _2a1+R2n+17 RS _2an+R3n> _(2a1+1)+R3n+17 tee _(zan+1)+R4n)'

39

Bob constructs B’ = ((2b1 + 1) + Ry, ..., (2b, + 1) + Ry, 2by + Ryy1, - - -, 2b, + Roy,
—(2by + 1)+ Ropy1, - - -, —(2b, + 1) + Ran, —2b1 + Rani1, - - -, —2by + Ryy). Alice and
Bob then agree upon a random permutation 7 of {1,2,...,4n}, and they use 7 to
reorder the entries of A’, and the entries of B’. We will next explain the rationale for

constructing A" and B’ in this way.

Because a; > b; if and only if a; + R; > b; + R;, one might as well compare a; + R;
with b; + R; instead of comparing a; with b;. As Alice is going to send her disguised
inputs to Ursula, she has to encrypt or disguise her data; adding R; to a; effectively
hides it from Ursula. If that is the only form of disguise that was done, then Alice’s
A" would be (a; + Ry,...,a, + R,) and Bob’s B" would be (b; + Ry,...,b, + R,).
Although Alice and Bob could rearrange the order of the entries of such an A’ and
(respectively) B', Alice still cannot send this A’ to Ursula and ask Ursula to run a
protocol that compares its entries to those of Bob’s B’, because Ursula would then
know for how many indices ¢ the comparison a; > b; was true. This is not acceptable.
Furthermore, if the mean value of these random numbers is known to Ursula, Ursula
can gain statistical information about a;’s. The above drawbacks are addressed by
the inclusion in each of A" and B’ of the n entries of the form —a; + R,; and
(respectively) —b; + R, ;. Based on the fact that a; > b; and —a; > —b; cannot be
true or false at the same time (if a; # b;), the additional n entries (involving the —a;
or —b;) are meant to “blind” Ursula from learning how many times a; > b;, as well
as the statistical information about a;’s (the sum of a;’s and —a;’s for i = 1,...,n

is zero). Now, if that is the only form of disguise that was done, Alice’s A" would

40

be (a1 + Ry,-..,a, + Ry, —a1 + Ryy1, ..., —a, + Roy,), and Bob’s B’ would now be
(by + Ry, ..., by + Ry, —by + Rpy1,-- ., —by + Rayp). But Alice still cannot send such
an A’ for Ursula to use in a protocol comparing its entries to those of Bob’s B’, and
that is because of the equality case, i.e., for some 7 having a; = b; (and hence a = 0}).
For example, if a; = b; for all i = 1,...,n, then both o > b, and —a] > —b} are false;
therefore if Ursula got 2n false’s, she would know that Alice and Bob have the exact
same vector. Similarly, if a; # b; for all + = 1,...,n, Ursula gets n true values and
n false values; if a; = b; for only one 4, Ursula gets n — 1 true values and n + 1 false
values, and so on. The above shows how Ursula would derive the number of equality
cases, which is not acceptable.

Notice if a; # b; for 1 = 1,..., n, then the comparison results will always be n true
values and n false values. Therefore, if we can get rid of the equality case, Ursula will
always get n true values and n false values, which does not disclose any statistical
information about the equality cases.

To this end, the following transformation is conducted (for convenience, we assume
a; and b; for 2 = 1,... n are integers; however our scheme can be easily extended to
the non-integer case).

We transform a; to 2a; and 2a; + 1; correspondingly, we transform b; to 2b; + 1
and 2b;. The transformation has the following good properties: if a; = b;, then
2a; < 2b; + 1 and 2a; + 1 > 2b;; therefore, there is no equality case. However, this
transformation does not affect either “>” case or “<” case: for example, if a; > b;,

then both 2a; > 2b; + 1 and 2a; + 1 > 2b; still hold because a; and b; are integers.

41

Observation 3.3.1. The dominance relationship between A = (ay,...,a,) and B =
(b1, ...,by) is the same as the dominance relationship between A" = (2a4, .. ., 2ay, 2a:+

1,...,2a,+ 1) and B" = (2b; +1,...,2b, +1,2by,...,2b,,).

By combining the above transformation with the addition of random numbers,

Alice’s input and Bob’s input respectively become the following:

A" = (2a1+ Ry,...,2an + Ry, (201 + 1) + Ryy1, - - -, (26, + 1) + Rap,
—2a1+R2n+1,...,—2an+R3n,—(2a1—|—1)+R3n+1,...,—(2an+1)+R4n)
B = ((2by+1)+ Ry,...,(2b, + 1)+ Ry, 2b1 + Ryy1,y - - -, 2b, + Roy,

— (261 + 1) + Ropyr, - -, — (205 + 1) + Ry, —2b1 + Rany1, - ., —2by + Rup)

Theorem 3.3.1. The comparison of A" and B' always generates 2n true values and

2n false values.
Proof. Consider the possible cases:

1. If a; > bi, then 2a; + R; > (sz =+ 1) + R;, (2&2 + 1) + Rn—l—i > 2b; + Rn—l—i;
—2a; + R2n+i < —(sz + 1) + R2n—|—ia —(QCLZ' + 1) + R3n+i < —2b; + R3n+i; which

contributes to 2 true values and 2 false values.
2. Similarly, a; < b; also contributes to 2 true values and 2 false values.

3. Ifa; =b;, 20;,+ R; < (2bi+1)+Ri, (2ai+1)+Rn+Z~ > 2b;+ Ry, —2a; + Rop i >
—(2b; + 1) + Ronti, —(2a; + 1) + R3pyi < —2b; + R34y, which also contributes

to 2 true values and 2 false values.

42

Therefore, at the end of the comparison, regardless of what A and B are, there

will always be half (2n) true values and half false values in the results. O

The above theorem indicates that the protocol discloses no statistical information
about the relationship between a; and b;, including both inequality and equality
relationships.

After getting A" and B’, Alice and Bob reorder A" and B’ using the same random
permutation 7, thus getting a new A’ = (a;r(l), e a;r(m)) and (respectively) a new
B' = (b (1)) b (4n)). In what follows, to avoid unnecessarily cluttering the expo-
sition with the 7(-) notation, we assume that 7 is the identity permutation (so that
7(i) = 1); this is done purely for notational convenience and does not entail any loss

of generality.

Step 3: Nonce Pairs Preparation

Alice and Bob each prepares 4n pairs of nonces ((¢1,¢}), ---, (qn,q},)) and (re-
spectively) ((p1,p)), .-, (Pan,Py,)). They both keep these pairs secret from each
other.

The order of these nonce pairs should correspond to the order of the numbers in A’
and B',i.e., fori =1,...,n, (g, ¢q;) corresponds to 2a;+ R, (¢n+i, 954;) corresponds to
(2a; + 1) + Rni, (G2n+ti» Gonys) corresponds to —2a; + Ronti; (43045 ¢5,44) corresponds
to —(2a; + 1) + Rspis-

Alice computes oy = q1 @ -+ D gon DGy D Dy, and a_ = q1 D -+ D gy,

BQoni1 DD qu,. Alice then sends, as a commitment to oy and «_, a one-way hash

43

of each of them to Bob. Intuitively, a; represents the fact that A’ dominates B’, and
a_ represents the fact that B’ dominates A’.

Bob computes f = p1 @ - - @ Pon ® Poyy1 @ -+ B Py, and o =P & -+ B phy, B
Poni1 @D - -+ DB pap- Bob then sends Alice, as a commitment to 3, and [_, a one-way
hash of each of them to Alice. Intuitively, 3, represents the fact that B’ dominates

A’ and [_ represents the fact that A" dominates B'.
Step 4: Evaluation

First, Alice sends her A’ = (a!, ..., d},) and her nonce pairs ((g1,q}), - - -, (qan, ¢4,,))
to Ursula; Bob also sends his nonce pairs ((p1,0)), - -, (Pan,P},)) to Ursula, but he
keeps B' = (b}, ...,b},) to himself.

Next, after Ursula initializes h to 0, she and Bob use a modified version of Cachin’s
protocol for Yao’s Millionaire Problem [21] to compare @} and b}, for eachi = 1,.. ., 4n;
the modification to Cachin’s protocol that is used makes it such that only Ursula
knows the outcome of whether a, > b}, as opposed to both knowing the outcome (this
can be easily done by skipping the step of “sending hp to B” in the description of
Cachin’s protocol as given in [21]). Ursula updates h based on the outcome of this
comparison: If a} > b}, she does h = h @ ¢; ® p}, otherwise she does h = h @ ¢, ® p;.
(Note that if, in the above, we did not use a modified version of Cachin’s protocol,
then Bob would inappropriately know the outcome of a comparison between an a}
and a b}, i.e., between a; and b;.)

After the above is done for all 4n pairs af, b}, Ursula sends the final A to both

1) Vi

Alice and Bob.

44

Alice (A) Bob (B’)

(a2+1)+R4 | a4q4 i 202+R4 | pApa

2a2+R2 q2| 92’ (2b2+1)+R2 } p2p2’
-2al+R5 i g55’ ~@b1+1)+R5 | paPs
—(2a2+1)+R8 a8 g8’ —2b2+R4 pgps i
2al+R] | atjgl’ i (2b1+1)+R1 § pLPL |
~(a1+1)}+R7 | q7|a7 ~2b1+R7 p7p7 i
-2a2+R§ | 486’ —(2b2+1)+R6 pe p6’ §
(2al+1)+R3 | a3a3 i 2b1+R3[| p3p3’ |

Adominates B0 seerseeeeen : B dominates A

Figure 3.2. Example

Step 5: Result Extraction

Alice sends Bob her oy and a_, and Bob sends Alice his 4, and _, and they

each verify that what they received matches the commitments received in Step 3.

Alice and Bob then each computes an “A-dominates” number hy = o, @ _ and

a “B-dominates” number hy = a_ @ (..

Finally, each of Alice and Bob compares h with h; and with hy. If h = hy, then A
dominates B; if h = hy, then B dominates A; otherwise, neither one dominates the

other.
Figure 3.2 is an example with n = 2 and 7(1, 2,3,4,5,6,7,8) = (5,2,8,1,3,7,6,4).
The nonces marked by the solid lines are those that will be selected by Ursula if

A > B; hy is constructed by zor’ing all of these and only these solid-line nonces. The

nonces marked by the dotted lines are those that will be selected by Ursula if B > A;

45

hs is constructed by xor’ing all of these and only these dotted-line nonces. If neither
A dominates B nor B dominates A, then Ursula will end up choosing some of the
nonces marked by the solid lines and some of the nonces marked by the dotted lines,
which causes h # hy and h # hs.

In certain cases, we are only interested in whether A dominates B, and we do
not want either party know whether B dominates A; in some other cases, only Alice
(or Bob) is allowed to know the dominance result. The above protocol can be easily
modified to accommodate these requirements. For example, if we only allow both
parties to learn whether A dominates B, we can change the above protocol such that

hy is computable by both parties and hs is not.

Theorem 3.3.2. The above protocol correctly determines whether (and which) one

of A, B dominates the other.

Proof. 1t clearly suffices to prove the following three sub-claims.
Sub-claim 1: If there exists a; = b;, then with overwhelming probability h # o, & G,
and h # a_ & (..
Sub-claim 2: If for alli = 1,...,n we have a; # b; then with overwhelming probability
the case of A > B is detected by checking whether h = a & [_.
Sub-clatm 3: If for all 4 = 1,...,n we have a; # b; then with overwhelming probability
the case of B > A is detected by checking whether h = a_ & 3,.
Proof of Sub-claim 1:

If there exists a; = b;, we will have 2a; + R; < (2b;+1)+ R; and (2a;+ 1)+ R4 >

2b; + R,,+;. Therefore, corresponding to these two comparisons, Ursula will select ¢,

46

Di, Gn+i and pi_; to compute h. However, the corresponding selection by «,’s for
these two comparisons is ¢; and ¢,.;; the corresponding choice by (_’s for these two
comparisons is p; and p;, ;. Because with overwhelming probability ¢;®¢,+; D p; ®D}, ,;
¢ D qnti DP; D Pl,,;, we have h # o ® f_. Although it is theoretically possible for
equality to “coincidentally” occur as a chance occurrence of the xor’ing of the wrong
set of nonces; choosing each nonce to be large enough easily decreases the probability
of such an occurrence to almost zero.

Similarly, we can prove h # o @ (3,.
Proof of Sub-claim 2: First, we have o, = ¢1 ® -+ - ® qon DGy 1 D - D qy,, and f_ =
Py D Py, Bpont1 D - - D Pan- According to the protocol, if A > B, we have h =
G OP, D - Don DDy, Doyt D Pont1 @ -+ - @ ¢y, D Pan, therefore h = oy & [

Now let us consider the other direction. Suppose h = ay @ [_, therefore h =
GEPID - BGon ®Ph, Byt PDont1 D - - D¢y, P Pan. Because h is constructed from
Gy -y Qany Qls--yQiny Ply---,Pan, and pi, ..., py,, with overwhelming probability, h
must be constructed exactly by (gi,p1), --- (@2n:P5n)s (Goni1,Pont1)s -+ (G, Pan),
which means a; > b; and —a; < —b; for ¢+ = 1,...,n, indicating that A dominates
B. As in Sub-claim 1, here too it is theoretically possible to fail because of a chance
occurrence of the xor’ing of the wrong set of nonces: The next sub-section shows how
easily the probability of this can be brought to almost zero by using suitably long
nonces.

Proof of Sub-claim 3: Similar to the proof of Sub-claim 2. O

47

Making the Protocol Symmetric

The above protocol can easily be modified so it is symmetric in the roles of Alice
and Bob, in the following way. Instead of Alice sending to Ursula all of her A’ and
Bob sending Ursula none of his B’, Alice and Bob agree on a subset I of {1,...,4n}.
Then Alice sends Ursula I together with the entries of A’ whose indices are in I, i.e.,
{a; : i€ I}. What Bob sends Ursula are, of course, the entries of B’ whose indices
are not in I. It is important that Alice receives i with each a} or b} that she receives,
so she knows the position they occupied in A" or (respectively) B’. The rest of the
protocol is easily modified accordingly: Whereas the a values received by Ursula are
treated by the rest of the new protocol in the same way as in the original protocol

we described earlier, for the b} values received by Ursula the new protocol effectively

reverses the roles that Alice and Bob played in the original protocol.

Communication Complexity Analysis

According to [21], the communication complexity of Cachin’s protocol is O(¥),
where / is the number of bits of each input number. Therefore, if all input numbers

are in [0, 2¢], the communication cost for using Cachin’s protocol O(n) times is O(¢n).

Therefore, the total communication cost (including sending nonces, oy, o, (4,
B_, h, A’, and the O(n) round of using Cachin’s protocol) is O(¢n), i.e., it is linear

in the number of bits needed to represent Alice’s and Bob’s input vectors.

48

3.3.2 Secure Two-Party Vector Dominance Protocol 2

The Protocol
We first give an outline of the protocol, then discuss each step in details.

Protocol 3.3.2. (Secure Two-Party Vector Dominance Protocol)

Inputs: Alice has a vector A, Bob has a vector B.

1. Inputs Disguise: Using the same disguise technique as the one used in the three-
party protocol, Alice gets the disguised input A’ = (af,...,a},), and Bob gets
the disguised input B’ = (¥},...,b},). Let vs be a number corresponding to

* 9 Yan

the situation of A dominating B, where

2n 2n

va=(1,...10,...,0).

2. Private Permutation: Bob generates a random permutation 7 and a random
vector R, then computes B” = w(B' 4+ R), V4 = m(Va). Alice, using Secure

Two-Party Permutation Protocol (Protocol 3.1.2), gets A” = w(A" + R).

3. Yao’s Millionaire Comparison: Alice and Bob use Yao’s Millionaire protocol
as subroutine to compare A} with B, for i = 1,...,4n, where A/ (resp., B/)
is the ith element of vector A” (resp., B"). At the end, Alice gets the result

U={uy,...,Us}, where u; = 1 if A7 > B, otherwise u; = 0.

4. Dominance Testing:: Alice and Bob use a private comparison protocol to com-

pare U with Vj: If U = V}, then A dominates B; otherwise, A does not

49

dominate the B. (Note: this step is necessary for the point-inclusion protocol,

but must be skipped for the intersection protocol.)

Outputs: If the Dominance Testing step needs to be skipped, Alice outputs U and

Bob outputs V. Otherwise, Alice outputs the dominance testing result.

Step 1: Inputs Disguise
This step is fully discussed in Vector Dominance Protocol (with a third party). For
convenience, we assume a; and b; for 7 = 1, ..., n are integers; however our scheme can

be easily extended to the non-integer case. The disguised inputs are the followings:

A" = (2ay,...,2a,, (201 + 1),...,(2a, + 1),
—2ay,...,—2a,,—(2a1 + 1), ..., —(2a, + 1)) (3.1)
B = ((2bi+1),...,(2b, +1),2b1,...,2b,,

— (2by +1),...,—(2b, + 1), —2by, ..., —2b,) (3.2)

The purpose of the inputs disguise is to get the same number of a; > b. situations as
that of a; < b} situations; therefore, nobody knows how many a;’s are larger than b;’s
and vice versa. The disguise is based on the fact that if a; > b;, then 2a; > 2b; + 1,
(2a; + 1) > 2b;, —2a; < —(2b; + 1), and —(2a; + 1) < —2b;, which generates two >’s,
and two <’s.
Step 2: Private Permutation

This step is fully discussed in the Secure Two-Party Permutation Protocol (Pro-

tocol 3.1.2).

a0

Step 3: Yao’s Millionaire Comparison

Alice now has A" = n(A" + R) = (df,...,d},), Bob has B" = n(B' + R) =
(0}, ...,b],). They can use Yao’s Millionaire Protocol to compare each a with 0.
Actually it is a one-side (asymmetric) version of it because only Alice learns the result.
So at the end of this step, Alice gets U = (uy, ..., U4y,), where fori =1,... 4n, u; =1
if a} > b, otherwise u; = 0.
Step 4: Dominance Testing

Because V4 is exactly what U should be if vector A dominates B, we only need to
find out whether U = V. Alice cannot just send U to Bob because it will allow Bob
to find out the relationship between a; and b; for each i = 1,...,n. So we need a way
for Alice and Bob to determine whether Alice’s U equals Bob’s V4 without disclosing
each person’s private input to the other person.

This comparison problem is well studied, and was thoroughly discussed by Fagin,
Naor, and Winkler [43]. Several methods for it were discussed in [43, 82]. For example,

the following is part of the folklore:

Protocol 3.3.3. (Equality-Testing Protocol)
Inputs: Alice has U, Bob has Vj.

Outputs: U =V, iff Eg(Ea(U)) = Ea(EB(Va)).

1. Alice encrypts U with a commutative encryption scheme, and gets E4(U); Alice

sends F4(U) to Bob.

2. Bob encrypts E4(U), and gets Eg(E4(U)); Bob sends the result back to Alice.

51
3. Bob encrypts Vya, gets Eg(V4); Bob sends Eg(Vy) to Alice.
4. Alice encrypts Eg(Va), gets E4(E(Va)).

5. Alice compares Eg(E4(U)) with E4(Eg(Va)).

3.3.3 Complexity Analysis

According to [21], the communication complexity of Cachin’s protocol is O(¢),
where £ is the number of bits of each input number. Therefore, if all input numbers
are in [0, 2¢], the communication cost for using Cachin’s protocol O(n) times is O(¢n).

In Protocol 3.3.1, the total communication cost (including sending nonces, o, a_,
B+, B—, h, A", and the O(n) round of using Cachin’s protocol) is O(¢n); In Protocol
3.3.2, the total communication cost is also O(¢n); i.e., the communication cost of
both protocols is linear in the number of bits needed to represent Alice’s and Bob’s

input vectors.

3.3.4 Applications

In this section, we describe some specific applications of Secure Two-Party Vector

Dominance Protocol.

Multi-Commodity Private Bidding and Auction

Bidding often involves multiple items in an “all-or-nothing” fashion: You are not
interested in getting the rental car in isolation of the airline fare, cruise line, hotel
room, etc. In business-to-business bidding, a manufacturer may want to deal with a

single supplier that can simultaneously satisfy all of its n requirements (either because

52

there is some coordination required in the production of the n items types, or simply
to avoid the bureaucratic overhead of having to deal with multiple suppliers).

This problem can be described as the following: Alice wants to buy n items
(numbered 1 to n) from Bob but only if the cost of the ith item is less than a; for all
i € {1,...,n}, while Bob is willing to sell to A but only for more than (respectively)
bi,...,by,; that is, if for some item ¢ we do not have a; > b; then no other item j will
be bought even if it does satisfy a; > b;. The protocol should not reveal to Alice or
Bob anything other than whether they have a deal.

The problem is exactly a dominance problem: Alice and Bob each have a vector
of dimensionality n, and the goal of the protocol is for Alice and Bob to deter-
mine whether Alice’s vector dominates Bob’s vector, i.e., whether a; > b; for all
i € {1,...,n}. Therefore, the problem can be solved using Vector Dominance Proto-

col.

Privacy-Preserving Negotiation

Bob wants to buy a product P, and he has a few requirements on this product, but
because these requirements are usually business secrets, he does not want to disclose
these requirements. Alice, on the other hand, has a new product that she wants
to sell to Bob; however the parameters (or features) of this new product are also
business secrets, and if Bob does not buy the product, Alice will not disclose those
parameters to Bob. How could Alice and Bob decide whether they have a match

without disclosing their secrets to the other party?

93

We can represent Bob’s requirement using a range, say (z;, y;) for the ith feature
(1=1,...,n). We also represent the parameters of the Alice’s product as (p1, ..., pn)-
The task is to find if both p; > z; and p; < y; are true for all i = 1,...,n. If the

result is no, both parties learn nothing else except this answer itself.

The problem can be easily transformed to a dominance problem: to decide whether
(p1, —p1, ---s Pn, —Pn) dominates (1, —y1,...,Tn, —Yn). Our Vector Dominance

Protocol could be used to solve this problem.

Ancestor-Descendent Relationship in a Tree

Alice and Bob both know a tree, Alice knows a node A, and Bob knows a node
B. Alice and Bob want to know whether A and B have an ancestor-descendent
relationship. If they do not have a such relationship, nobody should learn the other
party’s node or the relative location of the other party’s node, such as A is at the left

side of B etc.

This problem can also be reduced to the dominance problem: Let us use (Zpre, Zpost)
to represent a node in the tree, where x,,. is the pre-order number of the node, and
Tpost 1S the post-order number of the node. Node A = (a1, as) is an ancestor of node
B = (by,by) if both a; < b; and ag > by are true. Therefore finding the ancestor-

descendent of node A and B is equivalent to finding whether (—aq,as) dominates

(—=b1, ba).

o4

3.4 Chapter Summary

In this chapter, we have described various protocols to solve two important prob-
lems: Secure Two-Party Scalar Product Problem and Secure Two-Party Vector Dom-
inance Problem. These protocols will be used as building blocks throughout this

dissertation.

95

4. SECURE TWO-PARTY SCIENTIFIC COMPUTATIONS

Linear systems of equations problems, linear least squares problems [74] or lin-
ear programming problems [90] are three scientific computation problems that have
proved valuable for modeling many and diverse types of problems in planning, routing,
scheduling, assignment, and design. Industries that make use of these problems and
their extensions include banking, transportation, energy, telecommunications, and
manufacturing of many kinds. Although these problems have been well studied in
the literature, their current solutions rarely extend to the situation in which multiple
parties want to jointly conduct the computations based on the private inputs.

For instance, Alice has k linear equations in n unknown variables x;; Bob has n—k
linear equations in the same n unknown z;. Alice and Bob want to find the solution
(x1,...,2,) that satisfies the combined n linear equations. This problem can be easily
solved if Alice can give her equations to Bob or vice versa, but, if the equations owned
by each party are valuable proprietary data that neither party is willing to disclose to
the other the problem can no longer be solved using the traditional methods, such as
Gaussian elimination and LU factorization, because these methods assume that one
who conducts the computation knows all the inputs, an assumption that is not true
any more in the secure two-party computation situation. We need to find solutions
that allow Alice and Bob to jointly solve their combined n linear equations while not

disclosing each person’s private equations to the other.

o6

M1 bl
X=b X =---
M M2 b2
(a) Normal Linear Equations (b) Homogeneous Cooperation
(without cooperation)
MLiM2 | X =b M1+M2 X = bl+b

(c) Heterogeneous Cooperation (d) Hybrid Cooperation

Legend: M1: Alice’s private matrix, M2: Bob’s private matrix
b1l: Alice’s private vector, b2: Bob's private vector

Figure 4.1. Various Ways of Cooperation

In this chapter, we introduce a new problem, the Secure Two-Party Scientific
Computations (STPSC) problem. The general definition of the STPSC problem is
that two or more parties want to conduct a scientific computation based on their
private inputs, but neither party is willing to disclose its own input to anybody else.
We have further defined several specific STPSC problems, including the Secure Two-
Party Linear System of Equations (STP-LSE) problem, the Secure Two-Party Linear
Least-Square (STP-LLS) problem, and the Secure Two-Party Linear Programming

(STP-LP) problem, all of which involve a matrix.

There are several ways to share a matrix. Depending on how such a matrix is
shared by Alice and Bob, the problems could appear in a variety of forms. Figure 4.1

describes three different types of cooperation.

o7

Figure 4.1(b) depicts homogeneous cooperation, in which each party provides
its own equations; Figure 4.1(c) depicts heterogeneous cooperation, in which the
two parties have to jointly specify each single equation; Figure 4.1(d) depicts hybrid
cooperation, in which the two parties cooperate in an arbitrary way. (b) and (c) are
more meaningful cooperations than (d) in real life, and they are two special cases of
problem (d). We have developed a protocol to solve problem (d): (M;+Ms)x = by+bo,
where matrix M; and vector b; belong to one party, matrix M, and vector by belong
to the other party. At the end of the protocol, both parties know the solution x while
nobody knows the other party’s private inputs. Based on this protocol and similar
techniques, we have solved STP-LSE problems, STP-LLS problems, and STP-LP

problems.

4.1 Secure Two-Party Linear System of Equations Problem

Problem 4.1.1. (STP-LSE) Alice has a matrix M; and a vector b;; Bob has a matrix
M5 and a vector by; M, and My are n X n matrices, and b; and by are n-dimensional
vectors. Without disclosing their private inputs to the other party, Alice and Bob

want to solve the linear equation

(M1 + MQ).T = bl + bg.

The Protocol Without concerning privacy, a straightforward solution would be to
ask one party (say Bob) to send his M, and b, to the other party, Alice. This however

does not work if Bob is concerned about the privacy of his data. Bob cannot simply

o8

send M; and b; to Alice; he has to disguise the data in a way such that Alice cannot

derive the original data from the disguised data.

Our solution is based on the fact that the solution to the linear equations (M; +
My)x = by+b, is equivalent to the solution to the linear equations P(M;+M)QQ 'z =
P(by + by), if P and @ are invertible. If Alice knows M' = P(M; + M,)Q and
b' = P(by + by), she can solve the linear equation problem: M’z = ¥, and thus gets
the final solution z = Q. But how can Alice know M’ and &' without knowing the
value of My and by? To solve this problem, Bob generates two invertible random
n x n matrices P and @; then Alice and Bob use secure protocols (will describe them
later) to get Alice (and only Alice) to learn the value of P(M;+ M>)Q and P(b; + bs).
However, Alice will not learn the value of PM;Q, PM>(Q), Pb;, Pby, much less P, @),

MQ, or bQ.

After Alice gets M' = P(M; + M,)@ and &' = P(b; + by), she can solve the linear
equations M'% = V' by herself, and then send the solution Z to Bob, who can compute
the final solution z = (Qz. Finally Bob sends the solution to Alice. Although we do
not prevent disruption of the entire computation if Alice or Bob misbehaves, we do
allow Alice to detect the case where Bob learns the correct answer but does not allow
Alice to learn the correct answer. For example, after getting the actual solution, with
an evil mind, Bob may decide not to tell Alice the actual solution . He can do this
without being caught because he can send an arbitrary vector to Alice, who has no
way to verify whether the received vector is the actual solution or not. This is not

fair to Alice. To achieve the fairness, Alice should request Bob to send back a vector

99

v = Msx — by along with the solution x. This vector does not give Alice any more
power to derive Bob’s data because if Bob is honest, Alice will know the value of
Myz — by anyway because of (M; + My)z = by + by. But if Bob still wants to cheat,
he has to find two vectors =’ and v’, such that Mz’ — b; = v'. Without knowing M,

and by, Bob cannot find these two vectors. The protocol is described in the following:

Protocol 4.1.1. (STP-LSE)
Inputs: Alice has a matrix M; and a vector b;; Bob has a matrix M, and a vector
by. My and M, are n X n matrices; b; and b, are n-dimensional vector.

Outputs: Alice and Bob both get the solution z.

1. Bob generates two invertible random n x n matrices P and Q.

2. Alice and Bob use a secure protocol (described later) to evaluate M’ = P(M; +

M>)@. Only Alice knows the result M.

3. Alice and Bob use a secure protocol (described later) to evaluate b’ = P (b +by).

Only Alice knows the result .

4. Alice solves the linear equations M’z = b'. If the solution does not exist, Alice
tells Bob, then terminates the protocol. If the solution exists, Alice sends the

solution Z to Bob.

5. Bob computes x = QQz and v = Msx — by, then sends both vectors z and v to

Alice.

60

6. Alice checks whether z is the actual solution by verifying whether ||(Miz —
b1) +v|| equals zero (or close to zero within the acceptable range if computation

errors are inevitable).

Private Evaluation of M' = P(M; + M,)Q

To privately evaluate M', Alice could send p matrices to Bob, with one of the
matrices being M; and the rest of the matrices being random; however, Bob does not
know which one is M;. Then Bob computes the P(H; + M5)Q for each matrix H; he
receives. At the end Alice uses the 1-out-of-/V oblivious transfer protocol to get back
from Bob one and only one of the results, the result of M’ = P(M; + M;)Q. Because
of the way the 1-out-of-/V oblivious transfer protocol works, Alice can decide which
result to get, but Bob cannot learn which one Alice has chosen. However there is one
drawback in this approach: if the value of M; has certain publicly-known properties,
Bob might be able to differentiate M; from the other random vectors. More seriously,
after Bob finally gets the solution z, it only takes him p? tries to find both M; and
by .

The above drawback can be fixed by dividing the matrix M; into m random
matrices X1,..., Xy, with M; = >~ X;. Alice and Bob can use the same method
as the one described above to compute P(X; + Ms)Q. As a result of the protocol,
Alice gets P(X; + M;)Q and Bob only knows one of the p vectors is X;, but because
of the randomness of X;, Bob cannot find out which one is X;. Certainly, there is an

1 out of p possibility that Bob could find the correct X; by guessing, but since M; is

61

Alice Bob
private input: M1 private input M2=Y1+...+Y4
4
X1 X2 X3 X4 hiding X1,...,X4 O O 0 .X
among random matrices O :
M1=X1+X2+X3+X4 x1 S
@ O O ;o
o X3
P(X1+Y1)Q+R1, ..., Con o O 0 e O
—-out-of- 3 ;
P(X4+Y4)Q+R4 Oblivious Transfer O O }O %O

¢

Alice gets: | P(M1+M2)Q =P(X1+Y1)Q+RL1 + .. +P(X4+Y4)Q+R4— (R1+..+RH)

Figure 4.2. Private Evaluation of P(M; + M)Q

the sum of m such random matrices, the chance that Bob guesses the correct M; is
1 out of p™, which could be very small if we chose p™ large enough.

However, knowing the values of P(X; + My)@ for i = 1,..., m might make it
easier for Alice to figure out the value of M, therefore, Bob also needs to disguise
the results of P(X; + Ms)Q@. One way to do this is to divide M, to m random
matrices (Y7,...,Y,,) as well, each time Bob returns the values of P(X; +Y;)Q + R;
fori=1,...,m, where R;’s are also random matrices.

After Alice gets P(X; +Y;)Q + R; for i =1,...,m, she can sum them up and get
P(M; + M5)Q+>"" | R;. Bob can send the result of Y ", R; to Alice who can then
get P(M; + M,)Q. Figure 4.2 explains how the protocol works. The detail of the

protocol is described in the following:

62

Protocol 4.1.2. (Private Evaluation of P(M; + M>)Q)
Inputs: Alice has a Matrix M;; Bob has a Matrix M, and two random invertible
matrices P and Q.

Outputs: Alice gets M' = P(M; + M>)Q.

1. Alice and Bob agree on two numbers p and m, such that p™ is so big that

conducting p™ additions is computationally infeasible.
2. Alice generates m random matrices X, ..., X,,, such that M; = X;+...+ X,,.
3. Bob generates m random matrices Y3, ...,Y,,, such that My =Y, + ...+ Y,,.
4. For each j =1,...,m, Alice and Bob conduct the following sub-steps:

(a) Alice generates a secret random number &, 1 < k < p.

(b) Alice sends the following sequence to Bob:

(Hi,..., H,)

where Hy, = X;, and the rest of the sequence are random matrices. Because

of the secrecy of k, Bob cannot know the position of X;.

(c) Bob computes P(H;+Y;)Q+R; foreachi =1,...,p, where R; is a random

matrix.

(d) Using 1-out-of-p Oblivious Transfer Protocol, Alice gets back the result of

P(H,+Y;)Q+ R; = P(X; +Y;)Q + R;.

63
5. Bob sends 7" | R; to Alice.

6. Alice computes M’ = 377" (P(X; +Y;)Q + R;) — >_7", Rj = P(My + M>)Q.

Jj=1

Intuitively, Alice preserves her privacy by both dividing her matrix M; to p random
matrices that are further hidden among many other random matrices, and by getting
the results back using the 1-out-of-IV oblivious transfer protocol. Bob’s privacy is
preserved by the 1-out-of-N oblivious transfer protocol, random matrices Y;’s and
R;’s.

Private Evaluation of V' = P(b; + bs)
This protocol is similar to the protocol of evaluating M’ and the security property

can be proved similarly.

Protocol 4.1.3. (Private Evaluation of P(by + bs))
Inputs: Alice has a vector b;; Bob has a vector by and a random invertible matrix

P

Outputs: Alice gets b' = P(b; + by).

1. Alice and Bob agree on two numbers p and m, such that p™ is so big that

conducting p™ additions is computationally infeasible.
2. Alice generates m random vectors xi, ..., Ty, such that by = x1 + ... + T,

3. Bob generates m random vectors yi, ..., Ym, such that bo =y + ... + Ym.

64

4. For each j =1,...,m, Alice and Bob conduct the following sub-steps:

(a) Alice generates a secret random number k, 1 < k < p.

(b) Alice sends the following sequence to Bob:

(hi,...,hy)

where h; = z;, and the rest of the sequence are random vectors. Because

of the secrecy of k, Bob cannot know the position of z;.

(c) Bob computes P(h; + y;) + r; for each ¢ = 1,...,p, where r; is a random

vector.
(d) Using the 1-out-of-p Oblivious Transfer protocol, Alice gets back the result
of

P(hi +y;) + 1 = Pz +y;) + 7
5. Bob sends } * | r; to Alice.
6. Alice computes b’ = 37" (P(x; +y;) +15) — 2250, 15 = P(by + b).

4.2 Secure Two-Party Linear Least-Squares Problem

The linear system of equations problem consists of n equations of n unknown
variables. There are situations where we have more equations to satisfy than the
number of unknown variables. Most often, we cannot satisfy all of these equations,

but we may find a solution that can satisfy them as best as we can. This problem

65

is called the linear least-squares problem. We solve the Secure Two-Party Linear

Least-Squares problem (STP-LLS) in this section.

Problem 4.2.1. (STP-LLS) Alice has a matrix M; and a vector b;, and Bob has
a matrix M, and a vector by, where M; and M, are m X n matrices (m > n), and
b, and by are m-dimensional vectors. Without disclosing their private inputs to the

other party, Alice and Bob want to solve the linear equations
(M1 + Mg)x = by + bs.

As there are more conditions (equations) to be satisfied than degrees of freedom
(variables), it is unlikely that they can all be satisfied. Therefore, they want to
attempt to satisfy the equations as best as they can—that is, make the size of the

residual vector r as small as possible. The component of r is defined in the following:

n
Tj = Cj — E ajixi
=1

where a;; are the entries in the new matrix M = M; + M, c¢; are the entries in the
new vector b = b; + by. The least-squares criterion is the use of the Euclidean (or

least-squares) norm for the size of r; that is, minimize

[I7ll2-

66

Solution: The linear least squares problem Mx = b can be expressed in a linear
system:

MTMx = M"b

that contains n linear equations in the n unknowns z;, hence can be solved using the
usual methods for the linear equations problem, such as the the Gaussian elimina-
tion method and the Cholesky method. Such an approach to solve the least-squares
problem is called the normal equations approach because MT Mz = M7Tb are normal
equations.

In the Secure Two-Party Linear Least-Squares problem, M = M;+ My, b = b +b,,
so we have MT M = MI M, + MT M, + ME M, + MI M, and MTh = MTb, + MIby +
MTby + MIb,.

Therefore, the linear equations M7 Mz = MTb becomes the following:

(ME M, + M My + M M, + MJ M)

= (MTby + MIby + MIb, + MIby).

Using the Matrix-Vector Product protocol and the Matrix Product protocol (both

protocols will be described next), Alice and Bob can get the following:

Vi+ Vo= MM,

W1+W2:M§M1

67

’U1+’02:Mirbl

’(U1+’lU2:M2Tb2

where matrices Vi, W1, vectors v; and w; are known only to Alice; matrices V5, W,
vectors vo and w, are known only to Bob. Let M| = MI M, + Vi + Wy, M} =

MQTMQ—FV;—FWQ, b’lZMlTbl—f—Ul—f‘wl,bIQZMQTbQ—i"UQ—f—’U)Q, we have

(M{ + M)z = b} + b,

where M/ and M), are n X n matrices, and b} and b/, are vectors of length n; M| and b}
are known only to Alice, and M, and b/, are known only to Bob. This is a STP-LSE

problem. It can be solved using the STP-LSE protocol described in 4.1.

Protocol 4.2.1. Matriz Product Protocol Alice has a private matrix A, Bob has a
private matrix B. At the end of the protocol, Alice gets R,, and Bob gets R;, where
R, + Ry, = AB, R, and R, are random matrices.

Inputs: Alice has a private matrix A, Bob has a private matrix B.

Outputs: Alice gets R,, and Bob gets Ry, such that R, + R, = AB.

1. Alice and Bob agree on two numbers p and m, such that p™ is so big that

conducting p™ additions is computationally infeasible.

2. Alice generates m random matrices X, ..., X,,, such that M; = X;+...+ X,,.

68
3. For each j =1,...,m, Alice and Bob conduct the following sub-steps:

(a) Alice generates a secret random number k, 1 < k < p.

(b) Alice sends the following sequence to Bob:

(Hy, ..., Hp)

where Hy, = X, and the rest of the sequence are random matrices. Because

of the secrecy of k, Bob cannot know the position of Xj;.

(c) Bob computes H;B—Rj foreach ¢ =1,...,p, where R; is a random matrix,

and each element of the matrix H;B — R; is within field F.

(d) Using the 1-out-of-N Oblivious Transfer protocol, Alice gets back

4. Alicegets R, = Y_7"(X;B—R;) = AB—Y"T"| R;, and Bob gets Ry = 7" | R;.

Protocol 4.2.2. Matriz-Vector Product Protocol Alice has a private matrix A, Bob
has a private vector b. At the end of the protocol, Alice gets r,, and Bob gets 1y,
where r, + 1, = Ab, R, and R, are random vectors.

The protocol is similar to the Matrix Product protocol. Replace each occurrence
of matrix B in the Matrix Product protocol with the vector b; replace the random
matrix ?; with the random vector r; for j = 1,...,m; also replace the matrix R,

with the vector r,, and R, with r,.

69

Based on the Matrix Product Protocol and the Matrix-Vector Product Protocol,

we have the following Secure Two-Party Linear Least-Square Protocol:

Protocol 4.2.3. (STP-LLS)
Inputs: Alice has a private matrix M; and a private vector b;; Bob has a private
matrix M, and a private vector b,.

Outputs: Alice and Bob both get the solution z.

1. Using the Matrix-Vector product protocol and the Matrix product protocol,
Alice gets Vi, Wi, vy, and wy; Bob gets Va, Ws, vy, and ws; where, U; and W;
are matrices, v; and w; are vectors, and V; + V, = MlTMg, Wi+ W, = MQTMl,

v1+v2:M1Tb1,w1+w2:M2Tb2.

2. Alice computes M| = MM, +V; + Wy and ¥, = M by + vy + wy.

3. Bob computes M} = MJ My + Vi + Wy and by, = MJ by + vo + wy.

4. Alice and Bob use the STP-LSE protocol to solve (M] + Mj)x = b} + b,.

The linear least-squares problem is normally used in regression and mathemat-
ical modeling. Consider building an investment model for a financial organization.
One example is to model customers’ investment as a function of age. In such a case
the bank knows or believes there are n different factors—all related to the age-that
influence the customers’ decision on investment, and the bank wants to build a math-

ematical model according to these n factors. Formally speaking, the bank wants to

70

find out the function b(t) = Y"1 | z;fi(t), where ¢ is the variable representing the age,

and f;(t) express the different age factors.

Suppose now that the bank takes a large number of observation from the data it
collected, and obtains values b; for ¢ values t;, j = 1,...,m, and m > n. The problem
of building such a mathematical model is to solve the following linear least-square

system:

n
d; =Y filt)zi,j=1,...,m.
i=1
There are times when one financial organization does not have sufficient data
to build such a mathematical model. It thereby needs to cooperate with another
financial organization, that also wants to benefit from such cooperation. So both
financial organizations would contribute their own data toward building such a model.
Because this type of data usually consists of proprietary information that none of
the financial organizations are willing to disclose to the others, these two financial

organizations need to find a way to build the mathematical model without violating

their privacy constraints. They can use the STP-LLS protocol.

4.3 Secure Two-Party Linear Programming Problem

The STP-LSE and STP-LLS problems are problems involving equations, which
usually represent a set of constraints. But equations are not the only forms of con-
straints. Most often we will see another type of constraints, the inequalities, which
exist in many linear programming problems [78]. In this section, we solve the secure

two-party cooperative linear programming problem (STP-LP).

71

Problem 4.3.1. (Secure Two-Party Linear Programming Problem) Alice has a ma-
trix M; and a vector by, and Bob has a matrix M, and a vector by, where M; and
M, are m X n matrices, and b; and b, are m-dimensional vectors. Alice and Bob also
know a vector ¢! of size n. Alice and Bob want to optimize (minimize or maximize)
the value of ¢! - x, without disclosing their private inputs to the other party. The

solution = (z1,...,x,) should satisfy the following linear constraints:

(M1 + MQ)ZE S bl + bQ,LE Z 0.

Solution: Without the privacy concerns, the above problem is a linear programming
problem, a problem of finding the optimum (maximum or minimum) value of a linear
function subject to a number of linear constraints on the variables. The problem
has many applications in real life, especially in solving optimization problems. As
usual, the existing solutions—such as the simplex method—always assume the one who
conducts the operation knows all the inputs, an assumption that does not hold in the
secure two-party computation situation. Therefore, current solutions to the linear

programming problem cannot be used directly to solve the STP-LP problem.

Similar to the solution to the STP-LSE problem, our solution is based on the fact
that P(M; + Ms)Q Q 'z < P(by + by), and Q 'z > 0 if (M; + My)x < by + by and
z > 0 (the elements of P and @ ! should all be positive). Let M’ = P(M; + M>)Q,
V = P(by + by), 2 = Q 'z, and ¢ = cT'(Q, we then have a new linear programming

problem: optimize ¢7'%, where £ is subject to M'Z < V', & > 0. We will prove later

72

that if Z is the solution to this problem, x = QQZ must be the solution to the original

problem that optimizes ¢! x.

Protocol 4.3.1. (STP-LP)

Inputs: Alice has a matrix M; and a vector b;; Bob has a matrix M, and a vector
by. Alice and Bob both know a vector ¢. M; and M, are m X n matrices; by and by
are m-dimensional vectors; c is n-dimensional vectors.

Outputs: Alice and Bob both get the solution z.

1. Bob generates a random m X m matrix P and an invertible random n X n
matrix @, such that all of the elements in P and Q! are positive (actually,

Bob generates Q™! first, then gets Q).

2. Alice and Bob use Protocol 4.1.2 to compute M' = P(M; + M5)Q, such that

only Alice learns M'.

3. Similarly, Alice and Bob use Protocol 4.1.3 to compute & = P(b; + by), such

that only Alice learns b'.
4. Bob computes ¢7' = ¢I'Q, then sends ¢7 to Alice.

5. Alice solves the the following linear programming problem: optimize ¢'?' 2, where

Z is subject to M'z < b, & > 0. Alice then sends the solution Z to Bob.
6. Bob computes z = QZ, then sends x to Alice.

Theorem 4.3.1. Let M', My, Ms, P, Q, V', by, bs, ¢, and ¢’ be the matrices or vectors

defined in the STP-LP protocol; let LP; and LP;, be defined as the followings:

73

e LP;: minimize ¢%, where % is subject to M’z <V, & > 0.

e LP: minimize Tz, where z is subject to (M; + My)z < by + by, z > 0.

Suppose 7 is the solution to the linear programming problem LP;, then x = Q% must

be the solution to the linear program problem LP:

Proof. (By contradiction): Assume x = Q% is not the optimized solution for LP;,
then there is a vector y, such that ¢’y < cT'z, where (M; + M)y < by + by, and y > 0.
Let 7 = Q7 'y. Because ¢7 = c/'QQ~ 'y = 'y < ¢!z and 'z = 7% imply 1§
< T2, (M} + M)y < by + by implies P(M; + My)Q7y < P(by +by), and y > 0 implies
9 > 0 (remember P and Q™ '’s elements are all positive), we have M’y < V', § > 0,
and Ty < ¢T#. Therefore, 9 is a better solution to the LP; problem than Z. This is

contradicted to the fact that z is the optimized solution to the LP; problem. O

A drawback of the above STP-LP protocol is its unfairness. In the last step of
the protocol, Bob could decide not to send the actual solution z to Alice. Although
we do not prevent disruption of the entire computation if Alice or Bob misbehaves,
we do want to allow Alice to detect the case where Bob learns the correct answer but
does not allow Alice to learn the correct answer. One way to solve this problem is to
conduct the protocol for a second time, with Alice and Bob switching the roles; any
mismatch between the two solutions could indicate the presence of dishonesty.

In some situation, the vector ¢’

could also be shared between Alice and Bob,
which is to say, ¢I' = ¢I' + ¢k, where ¢!’ belongs to Alice, and ¢ to Bob. The STP-LP

protocol could be easily extended to handle this situation: instead of learning ¢!'Q in

74

step 4, Alice learns (¢! + ¢1)@ by conducting with Bob the Matrix-Vector Product
protocol whose privacy property prevents Alice from learning anything about either
el or Q.

4.4 Protocol Efficiency

A Comparison to Generic Solutions

In this section, we will compare the communication cost of our approach with that
of the general solution (the circuit evaluation approach).

For the STP-LSE problem (and also for the STP-LLS problem because it can
be reduced to the STP-LSE problem), assume the size of the matrix M is n X n,
d is the maximum length to represent a number in the input domain, and c is the
communication cost of the 1-out-of-n Oblivious Transfer protocol used in the circuit
evaluation protocol. Assume that the Gaussian elimination method is used in both
the STP-LSE protocol and the general solution.

We know that the cost of Gaussian elimination takes O(n*) multiplication opera-
tions. And as a rough estimate, the size of a secure circuit for a single multiplication
is about O(d?). Therefore, the total size of the circuit to conduct the Gaussian elim-
ination is O(c * n® x d?).

In the STP-LSE protocol, the cost of communication is O(u * n?), where p is the
security parameter. As the difficulty to compromise security is O(2* x n? x d) (n? is
introduced by the multiplication of a matrix and a vector, and 2* is introduced by
the oblivious transfer), setting p = 256 is reasonably secure. Therefore the cost of

communication O(p * n? * d) is better than O(c * n® * d*) when n and d are large.

75

To compare the STP-LP protocol with the general solution, we assume that the
size of the matrix M is m X n, where m is the number of inequalities, and n is the
number of variables. We also assume that the Simplex method is used in solving
the Linear Programming problem. It is well known that the Simplex algorithm is
not a polynomial time algorithm. There are examples by Klee-Minty [69] of Simplex
problems that are exponential time, though for all practical purposes, problems in

the real world are usually low-degree polynomial time.

As our STP-LP protocol does not emulate such a circuit, the cost of communica-
tion, has nothing to do with the Simplex algorithm. The cost of the STP-LP protocol
is O(p*n*mx*d), which is much better than the general solution, whose communica-
tion cost is exponential to the number of inequalities. Although there are some other
ways to solve the linear programming problem, such as the Karmarkar’s algorithm

[65], the communication cost of them is still significantly worse than O(uxn*m x d).

4.5 Applications

The Linear systems of equations problem, the linear least-square problem and the
linear programming problem are three important scientific computation problems,
which are widely used in many areas such as banking, manufacturing, and telecom-
munications. The following are two examples of situations where our protocols are

needed.

e Two financial organizations plan to cooperatively work on a project for mu-

tual benefit. Each of the organizations would like its own requirements being

76

satisfied (usually, these requirements are modeled as linear equations or linear
inequalities). However, the requirements reflect the organizations’ financial sit-
uations, economic statistics, strategic plans, customer’s portfolio holdings, and
their projections (of interest and inflation rates, and of the future evolution of
certain commodity prices). These are valuable proprietary data that nobody
is willing to disclose to other parties, or even to a “trusted” third party. How

could these two financial organizations cooperate on this project?

Two companies A and B are investigating an opportunity for a partnership.
Company A’s goal is to optimize the cost of a manufacturing process. As part
of the partnership, company B will conduct part of the process. Because of this,
A does not know B’s constraints on that part of the process, unless B tells A,
nor does B know A’s constraints. Usually, the constraints reflect information
about the company’s resource, strategic plans, cost information, and business
decisions. They are so critical that both companies try every measure to protect
them. Considering that the partnership is not formed yet, B is afraid that, if
the partnership eventually falls through, the information it provides to A might
be used by A for B’s disadvantage. With such a concern, B really does not feel
comfortable to give its information to any other company, and neither does A.
How could these two companies find out the benefit of a potential partnership

without risking their private information?

7

4.6 Chapter Summary and Future Work

In this chapter, we have defined a set of secure two-party scientific computation
problems: a secure two-party linear system of equations problem, a secure two-party
linear least-square problem, and a secure two-party linear programming problem. We
have developed protocols to solve these problems.

Rice points out that using M7 Mz = M7b to solve the linear least-square problem
is not always the best approach, because it introduces the ill-conditioned matrix
MT M-the condition number of MT M is the condition number of M squared [90].
In the case where the condition number of MT M is too bad, the solution might be
random numbers unrelated to the original problem. In those cases, other approaches—
such as the Gram-Schmidt Orthogonalization approach and the Orthogonal Matrix
Factorization approach— are better than the normal equations approach. Developing
protocols to solve the least-square problem using these approaches is an avenue we
could pursue in future work.

There are some other interesting scientific computation problems that need to be
studied in future work, such as how to compute eigenvalues, eigenvectors, determi-
nants, conditions, and factorization of a matrix in the secure two-party computation

situation.

78

5. SECURE TWO-PARTY COMPUTATIONAL

GEOMETRY PROBLEMS

In this chapter we investigate how various computational geometry problems could
be solved in a cooperative environment, where two parties need to solve a geometric
problem based on their joint data, but neither wants to disclose its private data to
the other party. Some of the problems we solve in this framework are:

Problem 5.0.1. (Point-Inclusion) Alice has a point 2z, and Bob has a polygon P.
They want to determine whether z is inside P, without revealing to each other any
more than what can be inferred from that answer. In particular, neither of them is
allowed to learn information about the relative position of z and P such as whether

z is at the northwest side of P, or whether z is close to one of the borders of P, etc.

Problem 5.0.2. (Intersection) Alice has a polygon A, and Bob has a polygon B;
they both want to determine whether A and B intersect (not where the intersection

occurs).

Problem 5.0.3. (Closest Pair) Alice has M points in the plane, Bob has N points
in the plane. Alice and Bob want to jointly find two points among these M + N

points, such that their mutual distance is smallest.

Problem 5.0.4. (Convezr Hulls) Alice has M points in the plane, Bob has N points

in the plane. Alice and Bob want to jointly find the convex hulls for these M + N

79

points; however, neither Alice nor Bob wants to disclose any more information to the

other party than what could be derived from the result.

All of the above problems, as well as other computational geometry problems, are
special cases of the general Secure Multi-party Computation problem [105, 57, 55].
In this chapter, we investigate how these specific SMC problems could be solved in a
way more efficient than the circuit evaluation technique. Our study is a first step in

this direction for the area of computational geometry.

5.1 Secure Two-Party Point-Inclusion Problem

We will look at how the point-location problem is solved in a straightforward
way without worrying about the privacy concern. The computation cost of this
straightforward solution is O(n). Although we know the computation cost of the
best algorithm for the point-location problem is only O(logn), we are concerned that
the “binary search” nature of that solution might lead to the disclosure of partial
information. Therefore, for a preliminary result, we focus on the O(n) solution. The

algorithm works as follows:

1. Find the leftmost vertex [and the rightmost vertex r of the polygon.

2. Decide whether the point p = («, () is above all the edges on the lower boundary

of the polygon between [and r.

3. Decide whether the point p is below all the edges on the upper boundary of the

polygon between [and 7.

80

4. If the above two tests are both true, then the point is inside the polygon,

otherwise it is outside (or on the edge) of the polygon.

If we use f;(x,y) = 0 for the equation of the line boundary of the polygon, where
fi(z,y) = 0 for i = 1,...,m represent the edges on the lower part of the boundary
and f;(z,y) = 0 for i = m + 1,...,n represent the edges on the upper part of the
boundary, then our goal is to decide whether f;(c, 3) > 0 for all : = 1,...,m and

fila,) <O foralli=m+1,...,n.

The Protocol

First, we need to find a way to compute f;(«, §) without disclosing Alice’s p : (v, 3)
to Bob or Bob’s f; to Alice. Moreover, no party should learn the result of f;(«a, 3)
for any i because that could disclose the relationship between the location and the
edge. As f;(a, 3) is a special case of scalar product, we can use the Secure Two-Party
Scalar Product Protocol to solve this problem. In this protocol, we will let both
parties share the result of f;(«,), namely, one party will have u;, the other party
will have v;, and u; = f;(«, 8) + v;; therefore nobody learns the value of f;(«a, 3), but
they can find out whether f;(c, 3) > 0 by comparing whether u; > v;, which could
be done using Yao’s Millionaire Protocol [104, 21].

However, we cannot use Yao’s Millionaire Protocol for each (u;,v;) pair individu-
ally because that would disclose the relationship between u; and wv;, thus reveal too

much information. In fact, all we want to know is whether (uq,...,u,) dominates

81

(v1,--.,v,). This problem can be solved using the Vector Dominance Protocol (Pro-
tocol 3.3.2).
Based on the Scalar Product Protocol and Vector Dominance Protocol, we have

the following Secure Two-Party Point-Inclusion Protocol:
1. Bob generates n random numbers vy, ..., vy.

2. Alice and Bob use the Scalar Product Protocol to compute u; = f;(«, 8) +v;, for
i=1,...,m and compute u; = —f;(e,) + v; for i = m +1,...,n. According
to the scalar product protocol, Alice will get (uq,...,u,) and Bob will get
(v1,...,v,). Bob will learn nothing about u; and («a, 3); Alice will learn nothing

about v; and the function f;(z,v).

3. Alice and Bob use the Vector Dominance Protocol to find out whether vector
A = (u1,...,u,) dominates B = (vy,...,v,). According to the Vector Domi-

nance Protocol, if A does not dominate B, no other information is disclosed.

Claim 1. If A = (u4,...,u,) dominates B = (vq,...,v,), then the point p = (a,)

is inside the polygon; otherwise, the point is outside (or on the edge) of the polygon.

5.2 Secure Two-Party Intersection Problem

Two polygons intersect if (1) one polygon is inside another, or (2) at least one
edge of a polygon intersects with one edge of another polygon. As (1) can be decided
using the Point-Inclusion Protocol, we only focus on (2).

We will first look at how the intersection problem could be solved in a straightfor-

ward way (O(n?)) without worrying about the privacy concern. For the same reason

82

we decide not to use the more efficient O(n) algorithm because of concern about

partial information disclosure. The algorithm works as follows:

!

1. For each pair (e;, ej), decide whether e; intersects with e;, where e; is an edge

of polygon A and ej is an edge of polygon B.

2. If there exists an edge e; € A and an edge €; € B, such that e; intersects with

e, then A and B intersect.

We use fi(z,y), (zi,v:), (2},), for i = 1,...,n,, to represent each edge of the
polygon A, where f;(z,y) is the equation of the line containing that edge, (x;,y;) and
(x;, y;) represents the two endpoints of the edge. We use g;(z,y), for i =1,...,n, to

represent each edge of the polygon B.
The Protocol

During the testing of whether two edges intersect with each other, obviously,
nobody should learn the result of each individual test; otherwise, he knows which of
his edges intersects with the other party’s polygon. In our scheme, Alice and Bob
conduct these n? tests, but nobody knows the result of each individual test. Instead,
they share the results of each test, namely each of them gets a seemingly-random
piece of the result. One has to obtain both pieces to know the result of each test. At
the end, all these shared pieces are put together in a way that only a single result is
generated, to show only whether the two polygon boundaries intersect or not.

First, let us see how to conduct such a secure two-party test of the intersection.

Assume Alice has a edge fi(z,y) = 0, where fi(z,y) = a1z + bjy + ¢1, and a3 > 0;

83

the two endpoints of the edge are (z1,y:) and (z},y}). Bob has a line fy(x,y) = 0,
where fo(z,y) = asx + by + o, as > 0; the two endpoints of the edge are (xo,ys)
and (75, y5). According to the geometries, f; and f, intersect if and only if fi’s two
endpoints (x1,¥1), (z},y;) are on the different sides of f5, and f5’s two endpoints
(x9,y2) and (z4,y5) are on the different sides of fi. In another words, f; and fo

intersect if and only if one of the following expressions is true:

o fi(wa,y2) > OA fi(zh,y5) <OA fa(zr,y1) > 0A foah,y1) <O

o fi(wa,y2) > OA fi(zh,y5) <OA fa(zr,y1) <OA foah,y1) >0

o fi(wa,y2) <OA fi(zh,ys) > 0N fa(xr,y1) > 0A foah,y1) <O

o fi(m2,12) <OA fi(zh,y5) > 0N fa(xr, 1) <OA foah,y1) >0

We cannot let either party know the results of fi(z2,v2), fi(xh,v5), fo(z1,y1), or
fa(2, ;) (in the following discussion, we will use f(z,y) to represent any of these
expressions). According to the Scalar Product Protocol, we can let Alice know the
result of f(z,y) + r, and let Bob know 7, where 7 is a random number generated by
Bob. Therefore, nobody knows the actual value of f(z,y), but Alice and Bob can
still figure out whether f(z,y) > 0 by comparing f(z,y) + r with r.

Let u; = fi(zo,y2) + 71, v} = fi(zh,vh) + r}, us = fo(x1,y1) + re, and uf) =
fa(z,y1) + rh. Alice has (uq, ul, ug,u)) and Bob has (rq,7],72,75). Then f; and fo

intersect if and only if one of the following expressions is true:

o up >T AU <TIAug > 1o Aub <1

84

o up >T AU < T Aug < ro Aub > T

o up <1y AUy > T ANug > Auhy <1

o up < Ty AUL > T AU <rg Aub > T

Our next step is to compute each of the above expressions. As before, nobody
should learn the individual comparison results, only the aggregate. Let us use E to
denote any one of the above expressions. Using the Vector Dominance Protocol, we
can get Alice to know a random piece ¢, and Bob to know another random piece s,
such that F' is true if and only if ¢t = s.

Now Alice has 4 * n? numbers ({1, ...,%4,2), Bob has (si,..., s4;,2). We want to
know whether there exists an i = 1,...,4n?, such that ¢; = s;. Although there are
some other approaches to achieve this, we believe using the circuit evaluation protocol
is efficient in this case, because the size of the circuit is small (linear in the number of
the items). The security of the circuit evaluation protocol guarantees that only the
final results—yes or no—will be disclosed; nobody learns any other information, such
as how many t;’s equal to s;’s, and which ¢; = s;.

The following is the outline of the protocol:

1. Let m = ng * n.

2. For each pair of edges, perform the following sub-protocol. Suppose the index
of this edge pair is 4, for 4 = 1,...,m; suppose (f, (z1,v1), (z},y})) € A and

(9, (22, 2), (25, 5)) € B are two edges.

85

(a) Using the scalar product protocol, Alice gets U = (uy, u, us, uy), and Bob
gets R = (ri,71,72,75), where uy = f(wo,y2) + 71, v = f(ah,95) + 1},

Uz = g(ml,yl) + ra, and U’I2 = g(mll’yi) + Té'

(b) Using the Vector Dominance Protocol, Alice gets t; 1, 2,ti 3, ti4, and Bob

gets S;1, 5i.2, Si,3, Sia-

3. Alice has (t1,1,t12,t1,3, 145 - - -, tm,1, tm2, tm,3, tm,a), and Bob has (s1,1, 81,2, 51,3,
S145 -+ Smy1s Sm,2: Sm,3, Sm,). Alice and Bob uses circuit evaluation method to

find out whether there exists i € {1,...,m}, j € {1,...,4}, such that ; ; = s, ;.

5.3 Secure Two-Party Closest Pair Problem

Suppose Alice has m red points a4, ..., a,,, and Bob has n blue points b, ..., b,.
To find the closest red-blue pair, Alice and Bob compute the distance between all of
the m * n red-blue pairs. We now show how they compute the distance s;; between
a; = (T4, Ya) and b; = (x4, y») Without compromising privacy.

To preserve privacy, neither Alice nor Bob should learn the actual distance s; j,
but they can “share” s;;, namely Alice knows u;; and Bob knows v; ;, such that
uij = s;; + vi;. This can be achieved using the Scalar Product Protocol because of

the following:

s = (@a—20)° + W — 1) = (@) +42) — (22 + 2yays) + (25 + v3)

= (xg + yga _256(1: _ana 1)) (17 Ty, Yv, .T% + yl?)

86

Therefore, after using the Scalar Product Protocol for mn times, Alice gets U =
{wi; i =1,...,m, j = 1,...,n}, while Bob gets V = {v;; |i = 1,...,m, j =
1,...,n}; the next step is to find the minimum distance, namely Alice and Bob need

to find «, 3, such that

Uq,3 + Vo, = min{ui,j + Vij Ui € U, Vij € V}

This can be achieved using FindMin Protocol, which will be described later.

Protocol 5.3.1. (Secure Two-Party Closest Pair Protocol)

Inputs: Alice has m red points (ay, ..., a,); Bob has n blue points (b1, ..., b,).

Outputs: Alice gets a,, and Bob gets bg, such that the distance between a, and bg

is the smallest among all red point and blue point pairs.

1. Bob generates m * n random numbers V ={v;; i =1,...,m, j=1,...,n}.

2. For each red point and blue pair (a;, b;), Alice and Bob use the Scalar Product
Protocol to compute u; ; = s?,j + 4, wherei=1,...,m, j=1,...,n, and s;;

is the distance between a; and b;.
3. Alice and Bob conduct FindMin Protocol on inputs (U, V) to find «, 3, such
that Ug,g T Vapg = min{ui,j + v; 5 ‘Ui,j e U, Vi € 1% }

5.3.1 Find Minimum Protocol (FindMin)

The goal is for Alice (but not Bob) to find the minimum element of vector S =

(s1,---,8n) where S = U — V, Alice has U = (uy,...,uy), and Bob has V =

87

(vi,...,vx). Neither Alice nor Bob should learn order information about the s;’s
(e.g., the s;’s sorted order, or even that sg < s3). The following protocol is bad
in that it reveals such order information between the s;’s to both Alice and Bob,
but otherwise it does succeed in letting Alice know the minimum element value s,

without revealing that s, to Bob (although Bob does find out k).

Preliminary (bad) Protocol for Finding the Minimum

1. Alice mimics the standard minimum algorithm and, whenever that algorithm
requires that s; be compared to s;, Alice gives Bob the ordered pair 7,5 and

they do the following:

(a) Alice computes u = u; —u; = s;—;+v;—v;, and Bob computes v = b; —b;.

(Note that s; > s; iff u < v.)

(b) They compare their respective values v and v using Yao’s millionaire pro-
tocol [104].
Note. This can be made an asymmetric version of Yao’s millionaire prob-
lem, in which Alice but not Bob knows the outcome of the comparison,
but Bob nevertheless finds out the outcome based on his observation of
future pairs of indices that Alice will send him (if s; < s; then index 7 will

reappear but not index j).

2. Let k be the index of the minimum. Alice obtains the desired s; by getting vy

from Bob, e.g. through 1-out-of-N oblivious transfer [82].

38

Note. We will explain below how we can prevent Bob from learning £ through
his observations of the pairs 7, j that Alice sends him. Furthermore, oblivious

transfer will then no longer be needed to hide £ from Bob.

As noted earlier, the above protocol is bad because it reveals too much information
during the computation of the minimum. Before running the above protocol Alice
and Bob, using a random permutation 7 that is unknown to both Alice and Bob,
could permute the entries of A, and in the same way permute the entries of B (in
effect implicitly permuting the entries of S). But that would not be enough; either
one of them could find the secret permutation by comparing the elements of their
permuted vector to those of their original vector. To prevent this, they have to
be also “blinded” by adding a random numbers r; to each element and u; and v;,
where 7; is also unknown to both Alice and Bob. The way we achieve the random
permutation effect is by using a permutation 7 that is the composition of two random
permutations 74 and mg, where the former is known to Alice (but not Bob), and
the latter is known to Bob (but not Alice). The “additive blinding” of u; and v;
is by using an r; = ri + r where 7} is known to Alice (but not Bob), and r is
known to Bob (but not Alice). The permutation and blinding are done first by
Alice, then again by Bob. To perform additive blinding, we need a special public
key cryptosystem that has the following property: Ey(z) - Ex(y) = Ex(z + y). Such
systems are called homomorphic cryptosystems and examples include the systems by

Benaloh [15], Naccache and Stern [80], Okamoto and Uchiyama [84], and Paillier [85].

89

Protocol for Permuting and Additive Blinding

Inputs: Alice has U, Bob has V', Alice has a random permutation 74 and a random
vector R’ known to her but not to Bob.

Output: Bob obtains the set of N values of the form v; + 7} in a permuted order
according to w4 (which he does not know). (Note that Alice trivially has the set of
N values of the form U; 47} in a permuted order according to 74, because she knows

w4 and R'.)

1. Alice and Bob each generate a key pair for a homomorphic public key system
and exchange their public keys. In what follows E4(-) denotes encryption with
Alice’s public key, and D4(-) decryption with Alice’s private key (similarly for

EB() and DB())

2. Bob encrypts each entry (vq,...,vy) using his public key and sends V' =

(Eg(v1),--.,Eg(vy)) to Alice.

3. Alice does the following:

— ! 1y ! .
i = v Ep(r;) = i +77)s =1,...,N.
(a) She computes 6; = v} - Eg(r}) = Eg(v; +1}), fori =1 N

(b) She permutes, according to w4, the order of the 6;’s: Let V" denote the

vector of permuted 6;’s.

(c) Alice sends V" to Bob.

4. Bob decrypts the entries of V", obtaining the set of NV values of the form v; +r;

in a permuted order according to 74 (which he does not know). Note that Alice

90

trivially has the set of N values of the form u;+r] in a permuted order according

to ma (which she does know).

Suppose Alice and Bob run the above “permute and blind” protocol once, and
then follow it with the earlier-given preliminary (“bad”) “find minimum” protocol in
which the permuted-and-blinded data is used instead of the original vectors U and
V. Unlike before, Bob now learns nothing of the relative orderings of the s;’s, and
does not learn the index & for which s; is minimum. But Alice still learns too much
(because she knows both 74 and R'). This is easily fixed: After running the above
“permute and blind” protocol, we run it again, on the already permuted-and-blinded
data, but with roles of Alice and Bob interchanged. As a result, Alice and Bob end up
with doubly-permuted and doubly-blinded data: Permuted according to 74 followed
by mg, the composition of which is unknown to both of them (because Alice knows
only 74 and Bob knows only 7g), and additively blinded according to a random
vector that is unknown to both of them because it is the sum of two random vectors
the first of which is known only to Alice and the second only to Bob. In other words,
Bob now has a random permutation 7 of the set of N values v; +7;, and Alice has the
same permutation 7 of the set of N values u; + 7;, and neither Alice nor Bob know
7 or 7;. It is finally safe to use the earlier-given (and no longer bad!) preliminary

protocol.

91

5.4 Protocol Efficiency
A Comparison to Generic Solutions.

The motivation of this research, i.e. designing specific solutions for each specific
problems, is to reduce the communication cost. Therefore, in this section, we will
compare the communication cost of our approach with that of the general solutions
(the circuit evaluation approach). In what follows, d is the number of bits of any
number in the inputs, ¢ is the communication cost of 1-out-of-n Oblivious Transfer
Protocol used in the circuit evaluation protocol.

For the Point-Inclusion problem, our protocol has communication complexity of
O(nd), which is independent of the size of the circuit. The communication complexity
of the general solution is linear to the size of the circuit. Because such a circuit
includes 2n multiplication, the size of circuit is at least O(cnd?) (circuit multiplication
is quadratic in the length of the inputs).

For the Intersection problem, our protocol has communication complexity of
O(n?d) while the general solution has O(cn?d®) communication complexity.

For the Closest Pair problem, our protocol has communication complexity of

O(mnd), whereas the general solution has O(cmnd?) communication complexity.

5.5 Applications

The following two scenarios describe some potential applications of the problems

we have discussed in this chapter.

92

1. Company A decided that expanding its market share in some region will be ben-
eficial after costly market research; therefore A is planning to do this. However
A is aware of that another competing company B is also planning to expand
its market share in some region. Strategically, A and B do not want to com-
pete against each other in the same region, so they want to know whether they
have a region of overlap? Of course, they do not want to give away location
information because not only does this information cost both companies a lot
of money, but it can also cause significant damage to the company if it were
disclosed to other parties. For example, a larger competitor can immediately
occupy the market there before A or B even starts; or some real estate com-
pany can actually raise its price during the negotiation if they know A or B is
interested in that location. Therefore, they need a way to solve the problem

while maintaining the privacy of their locations.

2. A country decides to bomb a location x in some other country; however, A does
not want to hurt its relationship with its friends, who might have some areas of
interests in the bombing region: for example, those countries might have secret
businesses, secret military bases, or secret agencies in that area. Obviously, A
does not want to disclose the exact location of z to all of its friends, except the
one who will definitely be hurt by this bombing; on the other hand, its friends do
not want to disclose their secret areas to A either, unless they are in the target
area. How could they solve this dilemma? If each secret area is represented by

a secret polygon, the problem becomes how to decide whether A’s secret point

93

is within B’s polygon, where B represents one of the friend countries. If the
point is not within the polygon, no information should be disclosed, including
the information such as whether the location is at the west of the polygon, or
within certain longitude or latitude. Basically it is “all-or-nothing”: if one will

be bombed, it knows all; otherwise it knows nothing.

5.6 Chapter Summary and Future Work

In this chapter, we have considered several secure two-party computational geom-
etry problems and presented some preliminary work for solving such problems.

In the protocols for the geometry problems discussed in this chapter, we do not
use the most efficient algorithms for them because of the concern about information
disclosure. In our future work, we will study how to take advantage of those efficient

solutions without degrading privacy.

94

6. SECURE TWO-PARTY STATISTICAL ANALYSIS AND

PRIVACY-PRESERVING SURVEY PROBLEMS

In this chapter we investigate how various statistical analysis problems could be
solved in a cooperative environment, where two parties need to conduct statistical
analysis on the joint data set. We call the new problems secure two-party statistical
analysis problems.

Basic statistic analysis operations consist of computing the mean value of a data
set, the standard deviation, the correlation coefficient between two different features,
the regression line and so on. If one knows the full data set, one can use the standard
equations described in most of the fundamental statistics books to conduct the anal-
ysis. However, in a cooperative environment, one might need to conduct statistical
analysis without being able to know the full data set because of privacy constraints.
The following examples illustrate this kind of situation:

e A school wants to investigate the relationship between people’s intelligence quo-
tient (IQ) scores and their annual salaries. The school has its students’ 1Q
scores, but does not have students’ salary information; therefore the school
needs to cooperate with companies that hire the students, but those companies
are not willing to disclose the salary information. On the other hand, the school

cannot give students’ 1Q scores to their employers either.

95

e Two retail companies A and B each have a data set about their own customers’
buying behaviors. Both companies want to conduct statistical analysis on their
joint data set for mutual benefit. As these two companies are competitors in
the market, they do not want to disclose the detailed customers’ information
to the other company, but they feel comfortable disclosing only the aggregate

information.

The standard statistical analysis methods cannot easily extend to solve the above
problems; we need methods that support statistical analysis in a privacy-preserving
manner. The goal of this chapter is to develop protocols for this type of cooperative
statistical analysis.

There are two common ways of cooperation in practice. For example, suppose X
and Y are two different features of a sample, and they are both used for a statistical
analysis. In a cooperative environment, sometimes both cooperating parties can
observe both X and Y features of the sample, while at some other time, one party
can only observe X feature of the sample, and the other party can only observe Y
feature of the same sample. The difficulties of cooperation in these situations are
different. Therefore, based on whether the two cooperating parties could observe the
same features of a sample or not, we formalized two different models for the secure
two-party statistical analysis: the heterogeneous model and the homogeneous model.
As we will show later, the solutions to these two different models are different.

An interesting and more general case of the homogeneous secure two-party sta-

tistical analysis is the privacy-preserving survey problem: To conduct a survey, an

96

interviewer sends out questions to many interviewees; each interviewee is supposed
to send answers back to the interviewer, who then conducts certain statistical anal-
ysis on the samples collected. However, the interviewees do not want to disclose the
answers to the interviewer or other interviewees because the answers contain private

information. In this chapter, we present a solution to this problem.

6.1 Secure Two-Party Statistical Analysis Problem
6.1.1 Statistical Analysis Background

Without loss of generality, throughout this chapter, we will use a data set D of size
n that only consists of two different features z and y, where D = {(z1, 1), -- -, (Zn, Yn) }-

As a preliminary study on the topic of secure two-party statistical analysis, we

only focus on several basic statistical analysis, which are reviewed in the the following:

R
e Mean Value: T = -> " ;.

e Correlation Coefficient between z and y: Correlation coefficient measures the
strength of a linear relationship between x and y, namely the degree to which
larger x values go with larger y values and smaller = values go with smaller y

values. Correlation coefficient r is computed using the following equation:

Yo (@i =) (Y —9)
\/Z?:l (zi — 2)? Z?:l (yi — 7)?
Yo Ty — nTy

\/(Z?:l x7 —nz?) (Y0, yi — ny?)

97

Bob Alice Bob
x_1 y 1 x_1 y_1 x_1 y_1 X_{k+1}|y_{k+1}
x_2 y_2 X_2 y_2 X_2 y_2 X_{k+2}| y_{k+2}

x_n y_n

xn| yn yn
|
(a) No Cooperation Situation (b) Heterogeneous Cooperation Model (c) Homogeneous Cooperation Model

Figure 6.1. Two Models of Cooperation

e Linear Regression Line: The purpose of linear regression is to find the line that
comes closest to your data. More precisely, the linear regression program finds
values for the slope and intercept that define the line that minimizes the sum
of the squares of the vertical distances between the points and the line. The
linear regression line is represented by the following equation: y = bz + (§ — bZ),

where

n —
[Zizl T;Y; — nxy
n 2 =2 °

D iy T — T

6.1.2 Two Models of Cooperation

There are many ways two parties could cooperate in performing statistical anal-
ysis; Figure 6.1 describes two ways of cooperation that are common in practice. The
first one is the heterogeneous cooperation model (Figure 6.1.b). In this model, each

party holds different features of a data set. For example, if the whole data set consists

98

of employees’ salaries and ages, in a heterogeneous model, Alice could hold the salary
information while Bob holds the age information.

The second form of cooperation is the homogeneous cooperation model (Fig-
ure 6.1.c). In this model, both party hold the same features, but each party holds a
different subset of the data set. For instance, in a homogeneous model, Alice could
hold department A’s employee information while Bob holds department B’s employee
information.

Both of the above cooperation models are quite common in practice. In this
chapter, we have formally defined secure two-party statistical analysis problems cor-
responding to these cooperation models, and have developed protocols for those prob-

lems.
6.1.3 Heterogeneous Model

Problem 6.1.1. (Secure Two-Party Statistical Analysis Problem in Heterogeneous
Model) Alice has a data set Dy = (z1,...,%,), and Bob has another data set D, =
(Y1, ---,Yn), Where x; is the value of variable z, and y; is the corresponding value of

variable y. Alice and Bob want to find out the following:

1. correlation coefficient r between z and y.

2. regression line y = bx + (g — bT).

Correlation Coefficient Let u = /> . (z; — Z)?, and v = />, (y; — §)*. To

compute the correlation coefficient r, we have the following equations:

99

dia (@i —2)(yi — 9)
\/Zin:1(xi —)2 Z?:l(yi —)2

_ Z(xi—f)(yz’—ﬂ)

u v

=1
2% T % y1—§ Yo
= R LY

This indicates that the task of computing the correlation coefficient is reduced
to a secure two-party scalar product problem. It can be computed using the Scalar

Product Protocol (Protocol 3.2.2 or 3.2.3).

2

Linear Regression Line Let w =) | #?—nZ?. Because computing w only requires

the value of variable z, it can be calculated by Alice alone. Therefore, we can use the

following equations to compute the slope of the linear regression line:

D) ()

> i T — na?
1 — T Tnp — X _ _
= (lw PR ”w)(yl_yaayn_y)

This indicates that the task of computing b is also reduced to a secure two-party
scalar product problem, and thus can be solved using the Scalar Product Protocol

(Protocol 3.2.2 or 3.2.3). The details of the protocol are described in the following:

100

Protocol 6.1.1. (Secure Two-Party Statistical Analysis Protocol in Heterogeneous
Model)

Inputs: Alice has a data set D; = (x1,...,2,), and Bob has another data set
Dy = (Y1,---,Yn)-

Outputs: Alice and Bob get r and b.

1. Alice computes T, u = /> ., (z; — Z)%, and w = Y 1 | 27 — nz°.

2. Bob computes § and v = /> ¢, (y; — §)*

3. Alice and Bob use the Scalar Product Protocol (Protocol 3.2.2 or 3.2.3) to

compute

6.1.4 Homogeneous Model

Problem 6.1.2. (Secure Two-Party Statistical Analysis Problem in Homogeneous
Model) Alice has a data set D1 = ((1,91),---,(Zk, Yx)), and Bob has another data
set Dy = ((Tk+1,Yk+1)s - - -5 (T, Yn)), Where z; is the value of variable z, and y; is the

corresponding value of variable y. Alice and Bob want to find out the following:

1. mean value T (resp., 7).

2. correlation coefficient r between z and y.

101

3. regression line y = bx + (y — bx).
Let us first consider the above problem under the following privacy constraint:

Privacy Constraint A: Alice does not want to disclose the informa-
tion about D; other than the aggregate information including Zle Zi,
S a2 30w, S8 92 and o8 2,y Accordingly, Bob does not want

77

to disclose the information about Dy other than the aggregate information
including Z?:k+1 Li, Z?:k+1 3, ?:k:—l—l Yi, Z?:kﬂ y7, and Z?:k—f—l ZiYs-

Under Privacy Constraint A, computing mean value is trivial because both par-
ties know Y - x; and Y . y;. After getting T and §, computing the correlation

coefficient and the linear regression line is straightforward according to the following

equations:
, (Zf:l Ti Vit D g1 Ti " Yi) —n*TY
k n _ k n _
\/(Zz':1 7 + D ikt T3) — ni? \/(Zi:l Y7 + D ikt y7) — ny?
y o~ Zmop+ v g) —nx 3

ko 2 n 2)
(i1 @] + Xy %) —
Now let us consider the same problem under a more strict privacy constraint:

Privacy Constraint B: Alice and Bob do not want to disclose too much
information about their data; more specifically, they do not want to dis-
close any more information than what can be derived from Z, , » and

b. This implies that Alice can disclose S | z; and 3.F y; to Bob, and

102

Bob can disclose Y 7" , ., z; and > , ;5 to Alice because those can be

derived from z and .

Under this privacy constraint, computing the mean value is still trivial, but com-
puting the correlation coefficient r and the linear regression line is not. In what
follows, we demonstrate how to compute r (the linear regression line can be com-
puted similarly).

Let ay = Y% @ -y — kZg, by = Yopi1 Loy — (n— k)T, ay = S a? — k7
by = Z?:lﬁ-l $z2 —(n— k)an as = Zf:1 yi2 — ky?, and by = Z?:k—l—l yz2 —(n— k)gQ-

Note that a; is only known to Alice, and b; is only known to Bob. We have

2 (a1 + b1)2
~ (ag + by)(as + bs)
(a2 + 2a,b, + b?)
(a2a3 =+ b2a3 + a2b3 + bgbg).

By using the Scalar Product Protocol, we can let Alice learn u; and us, and let Bob
learn v; and vy, where u; +v; = a2 +2a1b; +b? and uy + vo = aga3 + byaz + asbs + bobs.

Now the question becomes how to compute %

Problem 6.1.3. (Division Problem) Alice has u; and uy; Bob has v; and vy. Alice
and Bob want to compute z = “+% Aljce should not learn v; or ve; Bob should not

u2+v2

learn uq or us.

In the following protocol, we first let Bob generate two random numbers r; and

ro; then we let Alice (only Alice) get the result of z; = ri(us + v1), 22 = r2(us + v2),

103

and r = 2. Therefore, Alice can compute z = L = Wt Tf p and ry are both real
1 ’ 22 u2+v2

numbers, Alice could not learn v; (resp., vy) from z; (resp., 23).

Protocol 6.1.2. (Division Protocol)
Input: Alice has u; and us; Bob has vy and v,.

Output: Alice and Bob both get the result of z = “1t%

u2+v2

1. Bob generates two non-zero random numbers r; and 7, and sends r = :—f to

Alice.

2. Alice and Bob use the Scalar Product Protocol on (u,1) and (ry,7v1) to get

21 = 7’1(11:1 + ’Ul).

3. Alice and Bob use the Scalar Product Protocol on (ug, 1) and (re, mvs) to get

o = TQ(UQ + ’Ug).

4. Alice computes z = rZ = “4% and sends it to Bob.
22 u2+v2

Protocol 6.1.3. (Secure Two-Party Statistical Analysis Protocol in Homogeneous
Model)

Inputs: Alice has a data set D; = ((z1,¥1),-- -, (Z&, yx)), Bob has another data set

D2 = ((xk—I-l’ yk—l-l)a ey (xnayn))

Outputs: Alice and Bob both get Z, y, » and b.

1. Alice sends Y% | z; and Y2, y; to Bob.

2. Bobsends > 7 ., x; and D 7, y; to Alice.

104

3. Alice and Bob both compute z and .

4. Alice computes a; = Y% | @;-y; —kTy, ag = Y. 22 — k3% and ag = Y&, y? —

kij?.

5. Bob computes by = Y7, @i -y — (n—k)Ty, bo =7 . @7 — (n—k)z?, and

bs =1 o ¥i — (n— k)7

6. Using the Scalar Product Protocol, Alice gets u; and us, while Bob gets v; and

vo, where uy + vy = a? + 2a1b; + b? and uy + vo = asasz + byaz + agbs + bobs.

7. Using Division Protocol, Alice and Bob get r* = %44 and p = &t

6.2 Privacy-Preserving Survey Problem

Survey is an important technique to collect information for analysis purposes.
Sometimes, the survey contains sensitive questions, such as “how many security break-
in’s did your company have in the last month,” “please choose from the following the

”

most common successful attacks your company is subject to, ...” and “please tell us
the numbers of machines in your company that are running Windows NT, Linux, and
Solaris, respectively.” Interviewees who want to participate in the survey also want
to keep the answer to these questions confidential.

Currently, in these survey situations, two common strategies are adopted: The
first approach is to assume the trustworthiness of the interviewer, or to assume the

existence of a trusted third party. The second commonly used approach is to use an

anonymous technique: each interviewee sends back his answers anonymously to the

105

N ‘G .
s
p— interviewer
]

Figure 6.2. Survey Models

interviewer using a hard copy or using any of the anonymous communication protocol
proposed in the literature [101, 89]. However, this straightforward use of anonymous
reply does not guarantee that the results come from the intended interviewees; anyone
else who knows the ongoing survey can make arbitrary answers and anonymously send
it back to the interviewer. This renders the results more or less untrusted. Of course,
more sophisticated approaches could be used to solve the above drawback, but we
suspect that it might require communications among the interviewees—an undesirable
requirement in the real life.

In this dissertation, we have developed a method (the data perturbation tech-
nique) that can support such a type of privacy-preserving survey. Although a similar
technique has been proposed in the statistical community [102, 103, 59, 86] before,
the primary efforts are focusing on computing the mean of a data set. Our method
extend the technique to support various other standard statistical analysis operations,
such as computing standard deviation, correlation coefficient, and linear regression

line.

106

Problem 6.2.1. (Privacy-Preserving Survey Problem) To conduct a survey, an in-
terviewer sends out questions to many interviewees; each interviewee is supposed to
send answers back to the interviewer (assume the answers are quantitative answers).
The interviewer, after collecting all the answers, wants to conduct certain statistical
analysis, such as calculating the sum, mean, standard derivation, correlation and re-
gression. Throughout the whole survey process, the following constraints should be

satisfied:

1. The interviewer should not learn the exact answers of each interviewee.

2. No interviewee should learn the exact answers of other interviewees.

3. Interviewees are not supposed to communicate with each other.

The first two constraints guarantee the privacy of each interviewee’s answer. The
last constraint is necessary in the real world because it is undesirable to have the
participants communicate with each other during a survey because of the scalability
problem and the anonymity issue: in the anonymous survey situation, the partici-
pants’ identities are not supposed to be revealed. Figure 6.2 describes such a survey

process.

The Protocol
Observation 6.2.1. If every interviewee generates a random number according to
certain pre-agreed random number generation parameters, the mean of these random

numbers tends to be a pre-determined number (the expected value) if the number of

107

interviewees is large enough. For example, if random numbers are generated uniformly

n [—m, m|, the mean of these random numbers will be 0.

Based on this observation, each interviewee could add a random number to its
actual answer, thus preventing the interviewer from knowing the actual answer; how-
ever, this does not prevent the interviewer from estimating the mean value of the
answers from all interviewees.

For example, let z; be the actual answer from the ith interviewee, fori =1,...,n,
and r; be the random number generated by the interviewee; let Z be the mean value
of z;’s and E be the expected value of r;’s. After the data collection, the interviewer

will get:

n
—sz—l—n sz ana’:—i—E.
e

To compute the standard deviation in addition to the mean value of z;’s, the
interviewer also needs to get the value of Y » x?. Using the same data perturba-
tion technique, each interviewee can make it possible for the interviewer to compute
> a7 by sending back its 27 disguised by a random number.

Similar ways could be used to compute the correlation coefficient and linear re-
gression line if the answer consist of two numbers. For example, let (z;,y;) be the
actual answer for the ith interviewee, according to the equation for computing the
correlation coefficient, the interviewer can compute r if it knows Y z2, Y°" y2,

> ;- Yi, T and g, all of which can be obtained using the data perturbation tech-

108

nique without disclosing the actual values of z; and y;. Moreover, knowing these
numbers also allows the interviewer to compute the linear regression line.

In what follows, we assume there are two questions asked by the interviewer, and
each interviewee sends back a tuple (z,y) to the interviewer, where x and y are two
numbers. The protocol works for a one-question situation by ignoring y; it can be

straightforwardly extended to an n-question scenario as well.

Protocol 6.2.1. (Privacy-Preserving Survey Protocol)

1. The interviewer sends the questions and parameters for the random number gen-
eration to the interviewees (suppose the expected value of the random number

is E).

2. For the interviewee i, if the exact answers to the questions is (z;, y;), it generates
five random numbers r; 1, 7; 2, 7; 3, 754 and 7; 5 according to the parameters from
the interviewer; then the interviewee sends z; + 7.1, 2 4+ 7; - Tis, Y2 4T

VIEWET; % 4,1y g 25 Yi i3y Y; 1,4y

and z; - y; + r; 5 to the interviewer.
3. The interviewer can conduct the following statistical analysis:
(a) sum of z: s, = > o @y & Y. (z; +1i1) —nkE.
(b) sumof y: sy =Y 0 yi &> (yi+1i3) —nE.
(c) mean: Z ~ %2 and y~ 2.
(d) sum of 2% spe => 7 a2 &Y ¢ (32 +710) — nE.

(e) sum of y*: Sy2 = Z?Zl y? R Z?:l(yf +7i4) —nkE.

109

n

(f) sum of xy: s,y =D 0 @i~y & > (i yi +7155) — nE.

(g) standard deviation: o = \/W .

Spy —N*TY

VG @),)

(h) correlation coefficient: r =~

Sz Sy

(i) regression line: y = bz + (y — bz), where b~ “—5—.
.27

6.3 Chapter Summary and Future Work

In this chapter, we have studied the problem of how to conduct the statistical
analysis in a cooperative environment where none of the cooperating parties wants
to disclose its private data to the other party. Our preliminary work has shown that
these problems, the secure two-party statistical analysis problem and the privacy-
preserving survey problem could be solved in a way more efficient than the general
circuit evaluation approach.

Apart from those basic statistical analysis computations studied in this chapter,
many other types of statistical analysis are also used in practice. A future direc-
tion would be to study more complicated statistical analysis computations, such as
nonlinear regression, variance analysis and so on. Furthermore, we could also study,
under the same secure two-party context, various data analysis computations other
than the statistical analysis. Data mining is an interesting and more complicated

data analysis computation that is worth of study.

110

7. SECURE REMOTE DATABASE QUERY WITH

APPROXIMATE MATCHING

In this chapter, we study the following problem:
Secure Database Query (SDQ) Problem: Alice has a string q, and Bob
has a database of strings T = {t1,...,tn}; Alice wants to know whether
there exists a string t; in Bob’s database that “matches” q. The “match”
could be an exact match or an approximate (closest) match. The problem
s how to design a protocol that accomplishes this task without revealing to

Bob Alice’s secret query q or the response to that query.

Because of the practical importance and the lack of studies on approximate pat-
tern matching problems under the SDQ context, our work particularly focuses on
approximate pattern matching.

Unlike exact pattern matching that produces “yes” and “no” answers, approxi-
mate pattern matching measures the difference between the two targets, and produces
a score to indicate how different the two targets are. The metrics used to measure
the difference usually are heuristic and are application-dependent. For example, in
image template matching [58, 64], >""_ (a; — b;)* and >, |a; — b;| are often used to
measure the difference between two sequences a and b. In DNA sequence matching

[60], edit distance [6, 34] makes more sense than the above measurements; edit dis-

111

tance measures the cost of transforming one given sequence to another given sequence,
and its special case, longest common subsequence is used to measure how similar two

sequences are.

Solving approximate pattern matching problems within the SDQ framework is
quite a nontrivial task. Consider the Y"1 | |a; — b;| metric as an example. The known
PIR (Private Information Retrieval) techniques [26, 24, 62, 37, 73, 22, 52, 51| can
be used by Alice to efficiently access each individual b; without revealing to Bob
anything about which b; Alice accessed, but doing this for each individual b; and
then calculating >, |a; — b;| violates the requirement that Alice should know the
total score Y., |a; — b;| without knowing anything other than that score, i.e., without
learning anything about the individual b; values. Using a general secure multi-party
computation protocol typically does not lead to an efficient solution. The goals of
our research, and the results presented in this chapter, are finding efficient ways to

do such approximate pattern matchings without disclosing private information.

The practical motivations of remote database access do not all point to the model
we described in the above SDQ formulation. For example, in some situations, Bob’s
database contains his own private data; but in some other situations, Bob’s database
contains Alice’s suitably disguised private data. Based on these variants of the prob-
lems, we have investigated three SD(Q models, and defined a class of SD(Q problems
for each model according to the metrics we use for approximate pattern matching.
Of course the difficulties of the problems are not the same for the different metrics,

and in this dissertation we have solved a subset of those problems. A summary of our

112

results is listed below (the results are stated more precisely in Section 7.2, and the
models are defined in Section 7.1 —in the meantime see Figure 7.1 in that section for

a summary of each model).

e For the Private Information Matching Model, we have a solution to approximate
pattern matching based on the > (a; — b;)* metric with O(n * N) communi-
cation cost, where n is the length of each string and N is the number of strings

in the database.

e For the Private Information Matching Model, we also have a solution to the
approximate pattern matching based on the >, |a; — b;| metric using a Monte
Carlo technique; the solution gives an estimated result, and it has O(nx W * N)
communication cost, where W is a parameter that affects the accuracy of the

estimate.

e For the Private Information Matching Model, if we assume that the alphabet
is known to the involved parties and its size is finite, we have a solution to ap-
proximate pattern matching based on general Y . | f(a;, b;) metrics, hence the
solutions for the special cases of "1, |a; —b;|, Yy (a; —b;)?, and Y7 §(ai, b;)
(where §(z,y) is 1 if z = y and 0 otherwise). These solutions have O(m *n* N)
communication cost, where m is the number of the symbols in the alphabet. In

many cases, m is small. For instance, m is four in DNA databases.

113

e For the Secure Storage Outsourcing Model, we have a practical solution to
n

approximate pattern matching based on the > (a; —b;)*® metric. The solution

is practical because its O(n) communication cost does not depend on N.

e For the Secure Storage Outsourcing and Computation Model, we also have a
practical solution to approximate pattern matching based on the > . (a; — b;)?

=1

metric. This solution is practical because of its communication cost is O(n?).

Motivation

Why do we care about the privacy of a database query? In the example used earlier
in this section, if a match is found in the database, Bob immediately knows that Alice
has such a disease; even worse, after receiving Alice’s DNA sequence, Bob can derive
additional information about Alice, such as other health problems that Alice might
have. If Bob is not trustworthy, Bob could disclose the information about Alice to
other parties, and Alice might have difficulty getting employment, insurance, credit,
etc. But even if Alice trusts Bob, and Bob has no intention of disclosing Alice’s
private information, Bob himself might prefer that Alice’s query be kept private, out
of liability concerns: If Bob knows Alice’s DNA information, and that information is
accidentally disclosed (perhaps by a disgruntled employee of Bob’s, or after a system
break-in), Bob might face an expensive lawsuit from Alice. From this perspective, a
trusted Bob will actually prefer not to know either Alice’s query or its response.

With the growth of the Internet, more and more e-commerce transactions like the

above will take place. There are already DNA pattern databases, diseases databases,

114

patent databases, and in the future we may see many more commercial databases
and the related database access services, such as fingerprint databases, signature
databases, medical record databases, and many more. Privacy will be a major issue,
and assuming the trustworthiness of the service providers, as is done today, is risky;
therefore protocols that can support remote access operations while protecting the

client’s privacy are of growing importance.

One of the fundamental operations behind the queries described in the examples
above is pattern matching. Therefore, the basic problem that we face is how to con-
duct pattern matching operations at the server side while the server has no knowledge
of the client’s actual query (or the response to it). In some database access situations,
exact pattern matching is used, such as query by name, query by social security num-
ber, etc. However, in many other situations, exact pattern matching is unrealistic.
For instance, in fingerprint matching, even if two fingerprints come from the same
finger, they are unlikely to be exactly the same because there is some information
loss in the process of deriving an electronic form (usually a complex data structure of
features) from a raw fingerprint image. Similarly in voice, face, and DNA matching;
in these and many other situations, exact matching is not expected and some form

of approximate pattern matching is more useful.
Why Not Use An Anonymous Communication Protocol

Anonymous communication protocols [89, 101] were designed to achieve somewhat
related goals, so why not use them? Anonymity techniques help to hide the identity

of the information sender, rather than the information being sent. For example, when

115

people browse the web, they can use anonymous communication techniques to keep
their identities secret, but the web query usually is not secret because the web server
has to know the query to send a reply back. In situations where the identity of the
information sender needs to be protected, anonymous communication protocols are
appropriate. However, there are situations where anonymous communication proto-
cols cannot replace secure multi-party computation protocols. First, certain types
of information intrinsically reveal the identity of someone related to the information
(e.g., social security number). Second in some situations, it is the information itself
that needs to be protected, not the identity of the information sender. For instance,
if Alice has an invention, she has to search if such an invention is new before she
files for a patent. When conducting the query, Alice may want to keep the query
private (perhaps to avoid part of her idea being stolen by people who have access
to her query); she does not care whether her identity is revealed. Third in certain
situations, one has to be a registered member to use the database access service; this
makes hiding a user’s identity difficult because the user has to register and login first,

which might already disclose her identity.

Furthermore, most of the known practical anonymous protocols, such as Crowds
[89], Onion routing [101] and anonymizer . com, use one or several trusted third parties.
In our secure multi-party computation protocols, we do not use a trusted third party;
when a third party is used, we generally assume that the third party is not trusted,
and should learn nothing about either Alice’s query, or Bob’s data, or the response

to the query.

116

Therefore anonymity does not totally solve our problems, and cannot replace
secure multi-party computation. Rather, by combining anonymity techniques with
secure multi-party computation techniques, one can achieve better overall privacy

more efficiently.

Private Information Retrieval

Among various multi-party computation problems, the Private Information Re-
trieval (PIR) problem has been widely studied; it is also the problem most related
to what we present in this chapter (although here we use none of the elegant tech-
niques for PIR that are found in the literature, for reasons we explained earlier in
this chapter). The PIR problem consists of devising a protocol involving a user and
a database server, each having a secret input. The database’s secret input is called
the data string, an n-bit string B = b1bs ... b,. The user’s secret input is an integer 7
between 1 and n. The protocol should enable the user to learn b; in a communication-
efficient way and at the same time hide 7 from the database. The trivial solution has
an O(n) communication complexity. Much work has been done for reducing this

communication complexity [26, 24, 62, 37, 73, 22, 52, 51].

Chor, Gilboa and Naor point out that a major drawback of all known PIR schemes
is the assumption that the user knows the physical address of the sought item [25],
whereas in the current database query scenario the user typically holds a keyword
and the database internally converts this keyword into a physical address. To solve

this problem, they propose a scheme to privately access data by keywords [25]. The

117

difference between the problem studied in their paper and the problems in this chapter
is that we extend the problem to cover approximate pattern matching.

Song, Wagner and Perrig propose a scheme to conduct searches on encrypted data
[100]. In that framework, Alice has a database, and she has to store the database
in a server controlled by Bob; how could Alice query her database without letting
Bob know the contents of the database or the query? Here we primarily focus on

extending the problem to also cover approximate pattern matching.
7.1 Framework

7.1.1 Models

Remote database access has many variants. In some e-commerce models, Bob
hosts his own private database; but in some other models, Bob hosts Alice’s (en-
crypted /disguised) database while supporting queries from Alice and other customers,

in which case Bob should know neither the database nor the queries.

~ Bob’s Alice’s
Private Database Private Database
—Qquey _ query
- | Bob -~ | Bob
reply reply
(a) PIR Model (b) SSO Model
Alice’s

Private Database

__outsourcing

o%f f%
6‘ 0» 0

(c) SSCO Model

Bob

Figure 7.1. Secure Remote Database Query Models

118

From the various ways that remote database access is conducted, we distinguish

three different e-commerce models, all of which require customers’ privacy:

e PIM: Private Information Matching Model (Figure 7.1.a)

e SSO: Secure Storage Outsourcing Model (Figure 7.1.b).

e SSCO: Secure Storage and Computing Outsourcing Model (Figure 7.1.c).

For the sake of convenience, we will use Match() to represent the pattern match-
ing function, which includes both exact pattern matching and approximate pattern

matching.

Problem 7.1.1. (Private Information Matching Problem (PIM))

Alice has a string z, and Bob has a database of strings T" = {t1,...,ty}; Alice
wants to know the result of Match(z,T). Because of the privacy concern, Alice
does not want Bob to know the query x or the response to the query; Bob does not
want Alice to know any string in the database except for what can be derived from
the reply. Furthermore, Bob wants to make money from providing such a service,
therefore Alice should not be able to conduct the querying by herself; in other words,
every time Alice wants to perform such a query, she has to contact Bob, otherwise

she cannot get the correct answer.

Problem 7.1.2. (Secure Storage Outsourcing Problem (S50))
Alice has a database of strings T = {t1,...,ty}, but she does not have enough
storage for the large database, so she outsources her database (suitably disguised—

more on this later) to Bob, who provides enough storage for Alice. Furthermore, from

119

time to time, Alice needs to query her database and retrieves the information that
matches her query, i.e., Alice wants to know Match(z,T) for her query z. As usual,

Alice wants to keep the contents of both the database and the query secret from Bob.

Problem 7.1.3. (Secure Storage and Computing Outsourcing Problem (S5CO))

The SSCO problem is an extension of the SSO problem. Whereas only Alice
queries her database in the SSO problem, in the SSCO model the database will
also be queried by other clients of Alice. More specifically, in the SSCO model, Alice
outsources her database to Bob, and she wants the database to be available to anyone
who is willing to pay her for the database access service. When a client accesses the
database, neither Alice nor Bob should know the contents of the query. Moreover,
Alice wants to charge the clients for each query they have submitted, so the client
should not be able to get the correct query result if Alice is not aware of the query’s
existence.

As Bob can pretend to be a client, the solutions of the SSCO problem should
be secure even if Bob can collude against Alice with any client. However, the SSO

problem does not have such a concern because the only client is Alice herself.

7.1.2 Notation
For each model, there is a family of problems. We will use the following notations

to represents each specific problem:

e M /Exact: Exact Pattern Matching problem in model M.

e M /Approx: Approximate Pattern Matching problem in model M.

120

— M /Approx/f: use Y ,_, f(ax,by) metric to measure the distance between

two strings, where f is a general function.

— M /Approx/o: use Y ,_, 0(a, bx) metric to measure the distance between
two strings, where 0 is the Kronecker symbol: §(z,y) = 0 if and only if

r =y and 1 otherwise.

— M /Approx/Abs: use >, _, |ar—by| metric to measure the distance between
two strings.
— M /Approx/Squ: use Y_,_, (ar — bg)? metric to measure the distance be-
tween two strings.
— M /Approx/Edit:
x M /Approx/Edit/String: use the string editing criterion [34] to mea-
sure the distance between two strings.

« M /Approx/Edit/Tree: use the tree editing criterion to measure the

distance between two trees.

The M /Exact problem has been studied extensively in certain models, such as
PIM and SSO, but the M /Approx problem has not. Our results deal mostly with the

M /Approx problem.
7.2 Protocols

7.2.1 PIM/Approx

Except for the research on the general secure multi-party computation problem,

this specific problem has not been studied in the literature. Unless otherwise specified,

121

we assume the alphabet used in the following solution to be predefined and its size to
be finite. This assumption is quite reasonable in many situations; for instance, DNA
sequences use a fixed alphabet of four symbols. Under this assumption, we can solve
the PIM/Approx/f problem. However, because the way to calculate edit distance
cannot be represented in the form Y ,_, f(ax, bg), the PIM/Approx/Edit problem is
not a special case of the PIM/Approx/f problem.

In some other situations, the above finite alphabet assumption does not apply. For
instance, fingerprint, image and voice patterns use real numbers instead of characters
from a known finite alphabet. The above-mentioned solution for the PIM /Approx/ f
problem cannot be used anymore, however by exploiting the mathematical property
of " | (a; — b;)?, we have come up with a solution for the PIM/Approx/Squ problem
for infinite alphabet after introducing an untrusted third party who does not know
the inputs from either of the two parties and learns nothing about them (or about
the query, or the answer to it). We also have a solution to the PIM/Approx/Abs

problem using a Monte Carlo technique. All of these are given below.

PIM/Approx/Squ Protocol

Suppose that Bob has a database T' = {ti,...,ty}, and assume the length of
each string ¢; is n; Alice wants to know the ¢; € T that most closely matches a
query £ = ...z, based on the PIM/Approx/Squ metric. The requirement is that
Bob should not know z or the result, and Alice should not be able to learn more

information than the reply from Bob.

122

We propose a protocol to compute the matching score using an untrusted third
party, Ursula. Our assumption here is that Ursula will not conspire with either Alice
or Bob. However, the third party is not fully trusted: Ursula should not be able to
deduce either x or 7', or the final matching score s. This protocol works for both
finite and infinite alphabet.

Let & = (=21, ..., —2x,, 1); for each t; = y; 1.--Yin, 16t 2 = (Yits s Yims D gy yzk),

Observe that:

n n

Z(Jﬁk - yi,k)2

k=1

I
8
Y
|
ol
I
L
8
N

Since Y _y_, 7 is a constant, we can use - Z; instead of Y ;_ (xx — yix)? to find
the closest match. After we get the closest match, Alice can calculate the actual score

by adding >, _, z3.

Protocol

1. Alice and Bob jointly generate two random numbers r and 7.

2. For each t; € T, repeat the next five sub-steps, in which t; = y;1..yin, T =

(=221, ..., =224, 1).

(a) Bob constructs Z; = (Yi,1, -, Yim» gt Yik)-
(b) Alice and Bob jointly generate two random vectors B, B’ (of size n + 1).

(c) Alice sends W =7 + R and s; = #- R' + r to Ursula.

123

(d) Bob sends Wy = Z; + R and s, = R - (Z; + R") + 7' to Ursula.

e) Ursula computes v; = w; - Wy — s; — S and gets the resulting v; = ¥ - Z; —
g g

(r+1r").

3. Ursula computes score’ = minl, v;, and sends the resulting score’ to Alice.

4. Alice computes score = score’ +Y p_, x7 + (r + '), which is the closest match

between x and any t; € T.

The random vectors E and R’ are used to disguise Alice’s and Bob’s data; the
random numbers r and r’ are used to disguise the query results and the intermediate

results. The communication cost is O(n * N).

PIM/Approx/Abs Protocol

First, we will present a Monte Carlo technique for Alice and Bob to calculate
|z, — Yk | (z is Alice’s secret input and ¥y, is Bob’s), and then use it as a building block
to compute Y, [xx — yx|. The protocol involves an untrusted third party, Ursula,
who learns nothing. The protocol works for both finite and infinite alphabets. Assume
that 0 < zx < U and 0 < y; < U for some number U. The protocol for |z — x|
is as follows (where W is a parameter that affects the accuracy of the estimate, and

counter = 0 initially):

1. Alice generates a random number Ry, and then generates a sequence of W — Ry,

random numbers, each uniformly over (0..U].

124

2. Alice randomly replaces half of these W — Ry, numbers with their negative values.

3. Alice “splices” Ry, zeroes into random positions of the above sequence of W — R,

numbers, resulting in a new sequence S of W numbers.

4. Alice then sends S to Bob.

5. For each number s from S, if s = 0, Alice sends 1 to Ursula; if s > 0 then Alice
sends 1 to Ursula if |s| > x4, and sends 0 otherwise; if s < 0 then Alice sends 0

to Ursula if |s| > x; and sends 1 otherwise.

6. For each number s from S, if s = 0, Bob sends 0 to Ursula; if s > 0 then Bob
sends 1 to Ursula if |s| > y, and sends 0 otherwise; if s < 0 then Bob sends 0

to Ursula if |s| > y, and sends 1 otherwise.

7. Ursula increases counter by 1 if the values she receives from Alice and Bob are

different.
8. Ursula computes score = counter * %, which is an unbiased estimate of |z) —
U
Yi|+ Ry * W

Because of Ry, Ursula does not know the actual distance between x; and y;, and
because of the negative numbers among those W random numbers, Ursula cannot
figure out whether x > yi or zx < Y.

Now, let us see how to use the above protocol to compute Y ,_, |z — y; x|, where

T =2T1...Tp and t; = Yi1---Yin:

1. Alice generates a random number R.

125
2. For each t; € T, suppose t; = ¥y 1...Yi» and repeat the next three sub-steps:

(a) counter = 0.

(b) For each & = 1,...,n, Alice, Bob and Ursula use the above protocol to
compute |zy — ;|- The random numbers R; 1, ..., R;, used in the above
protocol are generated by Alice, such that >} | R;x = R.

(c) Ursula computes score; = counter %, which is an unbiased estimate of

Dbt 1Tk = Yikl + Dohy Rik x5 = Yopy Tk — Yikl +R* {5

. Ursu mpu score’ = min;' , score;, an nds score ice.
3. Ursula computes ! N, i, and sends "to Alice

U

- and gets the closest match between z

4. Alice computes score = score’ — R *

and any t; € T.

The communication complexity is O(n x W x N).

PIM/Approx/f protocol

If the alphabet is predefined and its size is finite, we can solve a general problem—
computing f(xy,yx). However, we cannot directly use this protocol n times to com-
pute > o, f(zk, yx) because that would reveal each individual f(z,yx) result. We
will present the protocol for computing f(xg, yx) here, and then in the following sub-
section, we will discuss how to use it as a building block to compute >, f(zk, Yx)
without revealing any individual f(zy, yx).

Suppose Alice has an input x;; Bob has an input y;; Alice wants to know the

result of f(x,yx) without revealing x; and the result to Bob, and Bob does not want

126

to reveal his y; to Alice. After presenting a solution to this problem, we later use it

as a building block to construct solutions to other problems.

f-function Protocol

1. Bob computes f(«y, yx) for each o; € X, where X is the finite (known) alphabet.

Let m be the size of X.

2. Alice uses the 1-out-of-m Oblivious Transfer Protocol to get f(X, yx)-

PIM/Approx/f Protocol

Now, let us see how to securely compute min,* ; (> "4_, f(zk, Yix)). As we discussed
above, we cannot run the above f-function protocol n times to get Y ,_, f(@k, Yix)-
In the following protocol, we will use a disguise technique to hide each individual
result of f(xk, yi)-

For each t; = vi1...¥in, and for each k = 1, ..., n, let fip(xk, vix) = f(Tk, Yik) + Rik,
where R;), is a random number, the following protocol shows how A and B calculate

mini]il Zzzl f(xk, yi,k)'

1. Bob generates a random number R then sends R to Alice.

2. For each t; = ¥, 1, ..., Yin, repeat the next five sub-steps:

(a) Bob constructs f; (@, Yix) = f(Tk,Yik) + Rix for £ = 1,...,n, where

Ri:, ..., R;p are n random numbers.

127

(b) Alice and Bob use the f-function protocol to compute f;x(zx, yix), for

each k =1,...,n.
(c) Alice sends Y ,_, fix(Zk, Yix) to Ursula.
(d) Bob sends Y p_, Rix — R to Ursula.

(e) Ursula computes score; =Y ,_, fix(@r, Yig)— O pey Rig—R) =D i (T, i)+

R.

3. Ursula computes score’ = min]_, score;, and sends score’ to Alice.

4. Alice compute score = score’ — R, thus getting the actual distance between x

and the closest ¢; in the database T

Although Alice knows each individual f; x(zk, i k), she does not know the actual
value of f(zy,yir) because of R; ;. Similarly, because of R, Ursula does not know
the actual score of the closest match. The communication cost of the protocol is
O(m *n * N), where m is the size of the alphabet, n is the length of each pattern,
and N is the size of the database. In many cases, m is quite small. For instance, m
is four in DNA databases.

Because |zx — yx|, (x — yx)? and 6(zg, yx) functions are special cases of f(zx, yx),

PIM/Approx/(Abs, Squ, ¢) problems can all be solved using the above protocol.
7.2.2 SSO/Approx

In this model, Bob is a service provider who provides storage and database query

services to Alice. According to Alice’s privacy requirement, Bob should know nothing

128

about the database that he stores for Alice, nor should he know the query. So Bob
has to conduct a disguised database query based on the encrypted or disguised data

of Alice.

The requirement that Bob should not know the query result, as in the PIM prob-
lem, is no longer needed in the SSO problem. The reason is that Bob does not know
the contents of the database, he does not even know what the database is for, so
that knowing whether Alice’s query is in the database does not disclose any secret

information to Bob.

Intuitively, it can look like that the SSO/Approx problem might be more difficult
than the PIM/Approx problem because in the latter Bob at least knows the contents
of the database whereas in the former he knows nothing about the database. But
knowing the contents of the database has a disadvantage, in that Bob cannot know an
intermediate result because he knows one of the inputs (the database); if he also knew
an intermediate result, he might be able to figure out the other input (the query) of
the computation. However, in the SSO/Approx problem, Bob knows nothing about
the database, so it is safe for him to know intermediate results without exposing the

secret query.

Whether Bob can know intermediate results is a critical issue for reducing the
communication complexity. If he knew intermediate results to some extent, he could
conduct the comparison operation to find the minimal or maximal score; otherwise,
he has to turn to Alice to find the minimal or maximal score, which results in high

communication cost in the PIM problem.

129

The SSO/Approx problem is similar to the secure outsourcing of scientific com-
putations problems studied by Atallah and Rice [11]. The difference is that in secure
outsourcing problems, the inputs are provided by Alice every time a computation is
conducted at Bob’s side; therefore, Alice can encrypt/disguise the inputs differently
in different rounds of the computation. However, in the SSO problem, one of the
inputs (the database) is encrypted/disguised only once, and this same input is used
in all rounds of computations; this makes the problem more difficult.

So far, we have a solution only for SSO/Approx/Squ problem. The solution works

for both infinite and finite alphabets.

SSO/Approx/Squ Protocol

Suppose that Alice wants to outsource her database T = {t,...,tx} to Bob, and
wants to know if query string x = x;...z, matches any pattern ¢; in the database T'.

The straightforward solution would be to let Bob send the whole database back
to Alice, and let Alice conduct the query by herself. Although this solution satisfies
the privacy requirement, much better communication complexity can be achieved.
Another intuitive question would be whether Bob can conduct the matching inde-
pendently after Alice sends him the relevant information about the query. If the
answer is true, Bob should be able to find the item ¢; that has the closest match to
the query z. In another words, if ; = y;...y,, and score; = Y _, (z — yx)?, then Bob
should be able to find the minimum value of score;. However, because of the privacy

requirement, Bob is not allowed to know the actual query z, nor is he allowed to know

130

the content of the database, so how does he compute the distance score; between z
and each of the element ¢; in the database?

The idea behind our solution is based on the fact that 7 - 27 = (ZQ~') - (QZ7),
where (Q is an invertible matrix. Alice can store QZT instead of ZT at Bob’s site, and
keeps Q secret from Bob. She will send ZQ~! to Bob each time she wants to send
a query x; therefore Bob can compute 7 - 27 without even knowing # and Z. If we
can use 7 - Z7 to represent the Y _ (zx — yx)?, we can make it possible for Bob to
conduct the approximate pattern matching.

Foreach t; = y; 1...yin in the database T, let t; = Oy yik—i-R—Ri, Yity oo Yims 1, Ri),
and let ¥ = (1, —2x1,..., —2xy,, R4, 1), where R, R4 and R; are random numbers.
We will have Z - £ = 30 42, =230 ayix +R + Ra, and therefore score; =
Sihoi(@k —yig)? = &7 +(5_ 27 — R— Ra). Since (3.p_, 2} — R— Rya) is a
constant, it does not affect the final result if we only want to find the ¢; that produces
the minimum score;. Therefore, Bob can use ¥ - t:T to compute the closest match.

Before outsourcing the database to Bob, Alice randomly chooses a secret (n+3) x
(n + 3) invertible matrix @, and computes Z; = Qf7, then sends 7" = {Z, ..., Zx} to

Bob.

Protocol

1. For any query string r = x;...x,, Alice generates a random number R4, and

constructs a vector = (1, =2z, ..., —2x,, R4, 1), then sends ZQ~' to Bob.

2. Bob computes score;, = -zl fori=1,...,N.

131

3. Bob computes min’Y, score!, and gets the corresponding i.

4. Bob returns Z; to Alice.

5. Alice computes Q~'Z; and gets ¢;, which is the closest match of her query.

Because Alice and Bob are involved in only one round of communication, the

communication cost is O(n).

Notice that we have introduced random numbers R, R4, R; for i = 1,...,N. The
purpose of R is to prevent Bob from knowing the actual distance between z and
the items in the database; the purpose of R4 is to prevent Bob from knowing the
relationship between two different queries; the purpose of R; is to prevent Bob from
knowing the relationship among items in the database. Without R;, two similar items
in the database T would still be similar to each other in the disguised database T”;
adding a different random number to each different item will make this similarity

disappear.
7.2.3 SSCO/Approx

This model poses more challenges than the SSO model because Bob could now
collude against Alice with a client, or he can even become a client. Therefore, one of
the threats would be for Bob to compromise the privacy of the database by conducting
a number of queries and deriving the way the database is encrypted or disguised. A
secure protocol should resist this type of active attack. We have a solution for the

SSCO/Approx/Squ problem that works for both infinite and finite alphabets.

132

SSCO/Approx/Squ Protocol

One of the differences between the SSCO/Approx problem and the SSO/Approx
problem is who sends the query. In the SSO/Approx/Squ protocol, Alice transforms
the query x to a vector ZQ ', and sends the vector to Bob; in the SSCO/Approx/Squ
protocol, the client Carl will send the query. Because Carl does not know @, he
cannot construct Q! by himself. If Carl could get the result of ZQ~! securely,
namely without disclosing ¥ to Alice and without knowing () of course, we would
have a solution. Because Q' = (¢, ..., ¢%), computing ZQ ™' securely is basically a

task of computing #-g; for k = 1...m, which can be solved using the same technique

as that used in solving PIM/Approx/Squ problem.

Therefore, by modifying step 2 of the SSO/Approx/Squ protocol slightly, and also

9y

by using a form of “R, * (score + R4)”, instead of the form of “score + R,” as is
used in SSO/Approx/Squ protocol, we obtain a SSCO/Approx/Squ protocol as the

following:

Let T = {t1,...,tx} be the database Alice wants to outsource to Bob, and assume
the length of each string ¢; is n. Alice generates N random numbers R, ..., Ry. For
each ti = Y15 -3 Yin, let t_; = (2221 yiQ,k + R — Ri, Yi1y -3 Yin, 1, 1, RZ), let Z_; = QT;?,

where () is a randomly generated (n + 4) x (n + 4) matrix.

In what follows, we assume that Alice outsourced the database T = {Zz1, ..., Zx }

to Bob.

133

Protocol

1. Whenever a client Carl wants to conduct a search on query z = z;...x,, he

generates a random number R¢.
2. Alice generates random numbers R4 and R,.

3. Carl and Alice jointly compute § = R,ZQ ™!, where ¥ = (1, -2z, ..., —2x,, Rc, Ra, 1).
The computation does not reveal Alice’s secret (), R4 or R, to Carl, nor does

it reveal Carl’s private query z or R¢c to Alice.
4. Carl then sends the vector ¢’ to Bob.

5. Bob computes score; = §- 2z = Ra(Y p_y Yix — 2D pey Tr¥ik + Ro + Ra).

6. Bob returns to Alice score’ = minl) ;| score;.

. !
7. Alice computes score” = G — Ry =Y ¢ Yik — 2D pe1 TkYik + Re and sends

it to Carl.

8. Carl computes score = score” + Y ;_, x2 — R, which is the answer he seeks.

Because of R¢, Alice cannot figure out the actual score for this query, and because
of R4 and R,, Carl cannot figure out the actual score between his query and other
items in the database (except for the matched one), even if Carl could collude with
Bob. The communication cost of the protocol is O(n?), most of which is contributed

by the computation of R,ZQ~! in step 3.

134

7.3 Chapter Summary and Future Work

We have developed three models for secure remote database access, and pre-
sented a class of problems and solutions for these models. For some problems,
such as SSO/Approx/Squ and SSCO/Approx/Squ problems, our solutions are prac-
tical, and they only need O(n) and O(n?) communication cost, respectively; while
for PIM/Approx problems, our results are still at the theoretical stage because of
their high communication cost. Improving the communication cost for those solu-
tions is one avenue for future work: We suspect that, whenever there is a dependence
on N, that dependence could be made sub-linear (perhaps logarithmic) by combin-
ing our methods with the known powerful higher dimensional indexing techniques
(92, 4, 8, 68, 71, 61, 18]. However, combining those schemes with our protocols will
not be a trivial task, and the increase in the constant factors hiding behind the “big-
oh” notation may well negate the benefits of the asymptotic sub-linearity in N; for
example, in a tree search for processing the query, Bob has to be prevented from
knowing what nodes of his tree are visited when processing the query (otherwise he
gets information about the query), which requires using a PIR-like protocol at each
node down the tree. But even that is not enough: Alice herself must be prevented
from learning anything about Bob’s data other than the answer to her query, but
in most of the tree-based schemes in the literature the comparison at a node of the
search tree gives information about the data that is associated with that node (these
schemes were designed for an environment where the searcher is the owner, and may

require substantial modification before they are used in our context).

135

Another avenue for future work is the pattern matching of branching structures:
the pattern matching problems that we have discussed only involve patterns of simple
linear structure; in many applications, patterns have a branching structure, such as
a tree or a DAG. The M /Approx/Edit/Tree problem in our model is one of the
examples. Developing a secure protocol to deal with this type of query is a challenging
problem.

Finally, avoiding the use of a third party in the protocols that use such an Ursula

is an interesting problem.

136

8. OTHER SECURE TWO-PARTY COMPUTATION

PROBLEMS

Apart from problems discussed in the previous chapters, secure multi-party com-
putation problems exist in many other computation domains as well. Many of the
problems are yet to be identified. For this purpose we propose a general framework,
which facilitates the uncovering of new specific secure multi-party computation prob-

lems in a variety of computation domains.

8.1 Framework

This framework enables us to systematically transform a normal computation
problem to a secure multi-party computation problem. We start by describing two dif-
ferent models of computation (without the privacy requirements), and then show how
to transform them to the models enhanced with privacy requirements. The privacy-
enhanced model will be referred as the Secure Multi-party Computation (SMC) model.

According to the number of distinguished inputs, we classify computations into
two different models: the multi-input computation model and the single-input com-
putation model. The multi-input computation model usually has two distinguishable
inputs. For instance, client/server computation is a multi-input computation model.

The single-input computation model usually has one input or one set of inputs. For

Computation

Input 2

[

Multi-Input Computation Mode

—= Resulf

N

Secure Multiparty Computation Mode

(A) Transformation of a Multi-Input Computation Model
to a Secure Multiparty Computation Model

Input Computation

D %Q% Result

Single-Input Computation Mod

Computation

Result

‘ D2 ! .
ng// D = union(D1, D2)

Secure Multiparty Computation Mod

(B) Transformation of a Single-Input Computation Mo
to a Secure Multiparty Computation Model

Legend:

{ ___.) Privacy Requirements

O Conputation

Figure 8.1. Models

137

example, in data mining [23] and statistical analysis, all the inputs usually come from

one data set although the inputs consist of multiple data items.

Next we want to transform both models to the Secure Multi-party Computation

model, in which the input from each participating party is considered as private. In

certain specific cases, the computation results could also be private.

For the multi-input computation model, its transformation to the corresponding

SMC model is straightforward because the model naturally has at least two inputs.

Therefore, if we treat each input as coming from a different party, the new problem

138

now becomes “how to conduct the same computation while maintaining the privacy

of each party’s input.” Figure 8.1(a) demonstrates such a transformation.

For the single-input computation model, because it only has one input, we cannot
use the same transformation as we used for the multi-input computation model; we
have to somehow transform the model to a multi-input computation model. Let
us call this computation C, and assume the single input is a set D of data items.
If we can divide D into two disjoint data set D; and Dy, we will have a multiple-
input computation model. There are many ways to divide D into two data sets, and
each way could lead to a different SMC problem. We are focusing on two types of

transformations: homogeneous transformation and heterogeneous transformation.

In the homogeneous transformation, D’s data items are divided into two sets, but
each single data item maintains its all features. For example, if D is a database of
student records, the homogeneous transformation will put a subset of the records
into one data set, and the rest of the the records into another data set; however, each
student’s record is not cut into two parts: the two generated data sets maintain the

same set of features. Figure 8.1(b) demonstrates such a transformation.

In the heterogeneous transformation, each single data item is cut into two parts,
with each part going to a separate data set. Taking the same example used above, if
each student record contains a student’s academic record and medical record, the het-
erogeneous transformation could put all students’ academic records into one data set,
and all students’ medical records into another data set. Figure 8.1(c) demonstrates

such a transformation.

139

After the above transformation, the new problem now becomes “how to conduct
the computation C' on the union of D and D,, where D; belongs to one party and
D, belongs to another party, and neither of these two parties wants to disclose his or

her private data set to other.”

8.2 Other Secure Two-Party Computation Problems

Using this framework, we have uncovered many interesting secure multi-party
computation problems, in addition to those problems solved in this dissertation. A

few examples of the problems are described in the following.

1. Selection problem (select median, select the kth smallest element): Alice has a
private data set d;, and Bob has a private data set do; they want to find the

median (or the kth smallest element) among the data in d; U d.

2. Sorting problem: Alice has a private data set d;, and Bob has a private data
set dsy; they want to sort the elements in the union of these two data sets, such
that each element in these two data sets is marked by a number representing

the order of this element.

3. Shortest path problem: Alice and Bob each has a private graph represented by g1
and g2, respectively, and the links between these two graphs are known to both
of them. Given any two points (they could be in a same graph, or in different
graphs), how could Alice and Bob jointly compute the shortest distance (or

path) between these two points. One of the applications of this problem is

140

network traffic routing between two private network service providers if they do

not want to disclose too much information about their own private network.

. Polynomial Interpolation: Alice has n; private pairs (z;,¥;), for i = 0,...,ny,
Bob has ny private pairs (z;,y;), for j =n; +1,...,n. Suppose 2y, ...,z, are
distinct data points. How can Alice and Bob jointly find the polynomial p(z) of
degree n that interpolates the data set {(xo,%0),---, (Tn,¥n)}, i-6. p(Tk) = Yk

forall k =0,...,n?

. Data Mining: Alice has a private structured database D;, and Bob has an-
other private structured database Dy; How could Alice and Bob conduct any of
the following data mining operations based on D; U Dy without disclosing the

content of one party’s database to the other party?

Data Classification

Data Clustering

Mining Association Rules

Data Generalization, Summarization and Characterization

Some of the above problems have already been under studied [66, 75, 5].

. Machine Learning: Alice has a private data set D;, and Bob has another private
data set Dy. How could both parties jointly conduct machine learning without

disclosing private data to the other party?

141

9. CONCLUSIONS AND FUTURE WORK

In this dissertation, we have developed solutions to a variety of secure two-party
computation problems. We summarize what we have learned about secure two-party
computation and give some thoughts on extensions to this research.

9.1 Summary of Main Results
e Data Perturbation: We have demonstrated how to use the data perturbation
technique (namely hiding z by adding a random number to x) and various other
techniques such as oblivious transfer, homomorphic encryption, to solve specific

secure two-party computation problems.

e Scalar Product: We have developed three protocols to conduct secure two-
party scalar product computation, a useful building block for solving many

other secure two-party computation problems.

e Scientific Computation: We have developed protocols to solve three secure two-
party scientific computation problems, including the secure two-party linear
system of equations problem, the secure two-party least square problem, and

the secure two-party linear programming problem.

e Geometric Computation: We have developed protocols to solve three secure two-

party computational geometry problems, including the secure two-party point

142

location problem, the secure two-party intersection problem, and the secure

two-party closest pair problem.

e Statistical Analysis: We have developed protocols to solve basic secure two-
party statistical analysis problems, including computing mean value, standard

deviation, correlation coefficient, and linear regression.

e Database Query: We have studied the problem of conducting database query
(based on approximate matching) without disclosing private information. The
problem is studied under three different models, for each of which we have

developed protocols for the corresponding private database query problems.

9.2 Summary of Findings, Experience, and Challenges
9.2.1 Findings and Experience

In our studies, we have investigated various ways to reduce communication com-

plexity over the general solutions; we summarize our findings and experience here:

Data Perturbation Technique

The data perturbation technique is an effective way of hiding data. Although
this technique is not as secure as a good encryption scheme, it has the advantage of
supporting various computations, such as addition, multiplication and comparison.
Most encryption schemes, on the other hand, are good at hiding the data, but once the
data is encrypted, conducting computations becomes impossible (with the exception

of a homomorphic encryption cryptosystem).

143

Domain Specific Knowledge

Unlike the general solution, our protocols exploit domain specific knowledge to
solve specific secure two-party computation problems. For instance, to compute a
scalar product f(z,y), we effectively used the fact of f(z,y) = f(7(x),7(y)), which
obviously does not hold for an arbitrary function; to solve the secure two-party linear
system of equations problem (M;+ M)z = by + by, we take advantage of the fact that
the solution to the new linear system of equations problem P(M; + M)QQ 'z =
P(by + bs) is equivalent to the original problem. Such domain specific knowledge

allows us to disguise the inputs effectively.

Emulation of the Computation

The circuit evaluation approach uses a circuit to emulate the computation; there-
fore the size of the circuit as well as the communication complexity depend on the
complexity of the computation. Some of our solutions take the similar approach—
emulation—but at a level higher than the gate level, thus gaining performance im-
provement. However, we observed that if we can avoid emulation at all, we might
be able to gain even more performance improvement. Our solutions to the scien-
tific computation problems demonstrate this approach, which is generalized in the

following:

Assume we want to compute f(z,y) (party A has z and party B has y). Our

approach transforms this problem to a problem of computing f'(z',y’) such that (1)

144

one party (e.g. party B) learns f', 2, 3/, thus can compute f'(z, ') without involving

too much communication. (2) f(x,y) could be derived from f'(z',y").

To achieve such a transformation, it is desirable to find a function f’ and two
“special” functions g; and go, such that f(x,y) = f'(¢91(x), g2(y)). The special func-
tions g; and g9 are generated by party A and known only to A. Both functions must
satisfy the following requirements: (1) knowing the result of g;(a) without knowing
gi, one should not be able to find the value of a; (2) knowing both « and the result
of g;(«), one should not be able to find the function of g;. Therefore, B’s knowing
the results of g;(z) and g2(y) does not give him the advantage of finding g;, g» and

the value of z.

After knowing f' and the results of g;(z) and g5(y), B can conduct the computation

of f'(g1(z), g2(y)) without intensively interacting with A.

This approach looks appealing because usually the actual computation of g;(z),
92(y), and f'(g1(z), g2(y)) involves much less interaction between A and B than the
circuit evaluation approach. In contrast to the circuit evaluation approach, whose
communication cost depends on the complexity of expressing f as a circuit, this
approach achieves a significant improvement to the communication complexity for
some computations. For example, for the widely used solution—Simplex Method—to
the secure two-party linear programming problem, the computation complexity of
f(z,y) is not polynomial at all, which implies that the communication cost of the

circuit evaluation protocol will not be polynomial. However in our solutions, because

145

we do not emulate the Simplex Method between two parties, the communication cost
of our solutions is only linear in the size of the input.

Although it is easy to find functions g;, g2 and f’ for some computation problems,
such as the scientific computation problems and the scalar product problem, it is
not always easy to find functions for an arbitrary computation, such as the secure
two-party geometric computation problems. Therefore, we only consider the above

approach as a heuristic.

Useful Building Blocks

Learning from our experience throughout this research, we have found that the
following techniques and building blocks are particularly useful for solving specific

secure two-party computation problems:

e l-out-of-n Oblivious Transfer protocol: Oblivious Transfer is one of the most
basic possible primitives that can break the “knowledge symmetry” between
two parties. In most of our protocols, to hide the input of party A, A sends
redundant data to the other party B along with the real data hidden among
them, and gets the actual result back using the 1-out-of-n Oblivious Transfer
protocol. B’s chance of guessing the correct input is %, and can be reduced to

n~™ by parallel m-wise execution of the protocol.

e Private Permutation: When a computation involves a set of data z,...,z,,
and the order of z; does not affect the result of the computation, it is helpful

to use a permutation technique to preserve the privacy of the data.

146

e Private Comparison: Comparison is necessary in many computations. Knowing
how to compare two secret numbers is necessary in solving the secure two-party

computation problem.

e Hiding the intermediate results using data perturbation: In many cases, the
solutions involve a series of steps, and the intermediate results need to be gen-
erated between two consecutive steps. If the intermediate results are not dis-
guised appropriately, private information might be disclosed. We use the data
perturbation technique to disguise the intermediate results in many of our so-
lutions. For example, if the result of f;(z,y) is only an intermediate result, we
cannot let one party to learn the result of it; otherwise we will unnecessarily dis-
close information of one party’s input to the other party. Our protocols choose
to perturb the intermediate result, namely instead of computing f;(z,y), we

compute f;(z,y) + R;, where R; is a random number.

e (ircuit evaluation for simple circuit: As we mentioned, general solutions are not
practical because they use the circuit evaluation protocol, whose communication
cost depends on the complexity of expressing the functionality as a circuit. This
assertion, however, does not exclude the use of the circuit evaluation protocol
when the circuit is simple and small. In fact, we use the circuit evaluation

protocol as a primitive in some of our solutions.

147

9.2.2 Challenges

During the course of this study, we encountered the following challenge a number

of times. The challenge is about the conflict of privacy and efficiency.

For many problems, such as the point-inclusion problem (without the privacy
concerns), we know there exist more efficient algorithms (than what we used in our
protocol) using the divide-and-conquer technique; however we found it difficult to
use those efficient algorithms because the divide-and-conquer technique leads to the

disclosure of information about the inputs.

Let us use the point-inclusion problem to illustrate this challenge. An efficient
solution to the point-inclusion problem works as follows: (1) draw a line between
two vertices of the convex polygon to cut the polygon into two smaller polygons; (2)
decide which side the point is on, and throw away the part of the polygon on the
other side of the line; (3) recursively decide whether the point is inside the part of
the polygon that is on the same side of the line. This algorithm has the complexity
of O(logn).

If we directly emulate this efficient algorithm under the secure two-party frame-
work to achieve sub-linear complexity, both parties need to know which side the point
is on after they split the polygon. This gives them information to derive the loca-
tion of the other party’s point or polygon. We have thought of using the Oblivious

Transfer technique to get around this, but the solutions are far from satisfactory.

The same problem exists for the database query problem, which, in reality, uses

various kinds of index schemes to improve the efficiency of the query. Usually these

148

index schemes use certain kinds of data structures similar to a binary tree data
structure, and the algorithms involve “walking” along the index structures. In our
protocols, to emulate the “walk” along this kind of data structure, both parties need
to know which branch to “walk,” and thus gain extra information about the other

party’s input.
9.2.3 Trading Privacy for Efficiency

In the studies of secure multi-party computation problems, a common goal is
to prevent any party from knowing anything about the the other parties’ private
inputs. This is an ideal situation, but the high cost of the solutions makes them
difficult to be deployed in practice. Throughout this study, we found out that if the
parties allow the disclosure of some partial information about their private inputs,
the solutions might become much more efficient. For example, in the solutions to
the survey problem 6.2.1, we did not use the expensive 1-out-of-n Oblivious Transfer
protocol and some other expensive cryptography primitives. Our solution is very
efficient and practical compared to the other protocols that depend on expensive
cryptography primitives, although it does give the interviewer chances to figure out
the range of some replies, especially those replies that contain much larger numbers

than the other replies.

In practice, in certain situations, people are not so worried about disclosing certain
information. For example, if the private information is a fingerprint (represented
by a vector of numbers), it does not hurt privacy too much if the range of each

number is disclosed, or if the sum of the numbers is disclosed, or even one of the

149

numbers is disclosed. This motivates us to look for solutions that reasonably leak
some information about the inputs for better performance. We believe this direction

is a more viable approach to the secure multi-party computation problems.

9.3 Future Work

Apart from future work described for each specific secure two-party computation

problem, we consider the following promising areas for future research:

e A formal definition of privacy: The definition of privacy used in this disserta-
tion is weaker than the formal definition in [55]; we need to provide a formal

definition of privacy and a way to formally prove the security of our protocol.

e A search for different levels of security definition: For many practical situations,
the level of security achieved in the secure two-party computation might be
too high because it strictly requires that nothing about private information is
disclosed. Although this notion of security is desirable, the cost of achieving
it might be too expensive to be practical. Therefore, for practical purposes,
it is useful to formally define different levels of security, and solve those secure
two-party computation problems under these new notions of security. Our work
is one step towards this goal. We believe for many practical situations, it could

be acceptable to sacrifice certain degrees of privacy in exchange for efficiency.

e Extension to the secure multi-party computation problem: Extending our secure
two-party computation protocols to secure multi-party protocols is not trivial

because, in secure multi-party computations, we need to consider the gain of

150

a coalition (rather than of a single party) from participating in the protocol.
For example, in secure multi-party computation, we have to make sure that the
privacy of the inputs are not compromised if a set (or coalition) of parties can

combine their knowledge.

Investigation of how to take advantage of “good” data structures: As we men-
tioned before, using a “good” data structure could improve the performance of
an algorithm in the normal case, but under the secure multi-party computation
context using data structures such as a binary tree could lead to the disclosure
of private information. That is why most of our protocols do not use those
“good” data structures. If we can find ways to use them without degrading the
level of privacy, we will be able to improve the performance of our solutions

significantly.

Investigation of how to extend our work from the semi-honest model to the
malicious model. All of our protocols assume each participating party is honest
and always follows the protocol. According to [55], any party protocol that is
secure in the semi-honest model can be transformed into one that is secure in
the malicious model. We will investigate whether we can find a more efficient

way to perform such a transformation.

LIST OF REFERENCES

151

LIST OF REFERENCES

[1] M. Abadi, J. Feigenbaum and J. Kilian. On hiding information from an oracle.
Journal of Computer and System Sciences, 39:21-50, 1989.

[2] M. Abadi and J. Feigenbaum. Secure circuit evaluation: a protocol based on
hiding information from an oracle. Journal of Cryptology, 2:1-12, 1990.

[3] N.R. Adam and J.C. Wortman. Security-control methods for statistical
databases. ACM Computing Surveys, 21(4):515-556, December, 1989.

[4] R. Agrawal, C. Faloutsos and A. Swami. Efficient similarity search in sequence
databases. In Proceeding of the Fourth International Conference on Foundations
of Data Organization and Algorithms, October, 1993. Also in Lecture Notes in
Computer Science 730, Springer Verlag, 1993, pages 69-84.

[6] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining.
In Proceedings of the 2000 ACM SIGMOD on Management of Data, pages 439—
450, Dallas, Texas, USA, May 15 - 18, 2000.

[6] A. Apostolico and Z. Galil, editors. Pattern Matching Algorithms. Oxford
University Press, 1997.

[7] A. Arona, D. Bruschi and E. Rosti. Adding availability to log services of un-
trusted machines. In Proceedings of the Fifteenth Annual Computer Security
Applications Conference, pages 199-206, Phoenix, Arizona, USA, December
6-10, 1999.

[8] S. Arya. Ph.D thesis: Nearest neighbor searching and applications. Technical
Report CS-TR-3490, University of Maryland at College Park, June, 1995.

[9] S. Arya, D. Mount, N. Netanyahu, R. Silverman and A. Wu. An optimal algo-
rithm for approximate nearest neighbor searching in fixed dimensions. Journal
of the ACM, 45(6):891-923, November, 1998.

[10] Mikhail J. Atallah and Wenliang Du. Secure multi-party computational geom-
etry. In WADS2001: Seventh International Workshop on Algorithms and Data
Structures, Providence, Rhode Island, USA, August 8-10, 2001.

[11] M. Atallah and J. Rice. Secure outsourcing of scientific computations. Technical
Report COAST TR 98-15, Department of Computer Science, Purdue Univer-
sity, 1998.

[12] D. Beaver. Commodity-based cryptography (extended abstract). In Proceedings
of the Twenty-ninth Annual ACM Symposium on Theory of Computing, El
Paso, Texas, USA, May 4-6, 1997.

[13] D. Beaver. Server-assisted cryptography. In Proceedings of the 1998 Workshop
on New Security Paradigms, Charlottesville, Virginia, USA, September 22-26,
1998.

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

152

A. Beimel, Y. Ishai, E. Kushilevitz and T. Malki. One-way functions are essen-
tial for single-server private information retrieval. In Proceedings of the Tharty-
first Annual ACM Symposium on Theory of Computing, Atlanta, Georgia, USA,
May 1-4, 1999.

J. Benaloh. Dense probabilistic encryption. In Proceedings of the Workshop
on Selected Areas of Cryptography, pages 120-128, Kingston, Ontario, Canada,
May, 1994.

Benny Chor, Mihaly Geréb-Graus, and Eyal Kushilevitz. Private computations
over the integers. STAM Journal on Computing, 24(2):376-386, 1995.

J. Benaloh and M. Yung. Distributing the power of a government to enhance
the privacy of voters. In Proceedings of the Fifth Annual ACM Symposium on
Principles of Distributed Computing, pages 52—62, Calgary, Alberta, Canada,
August 11 - 13, 1986.

S. Berchtold, D. A. Keim and H-P. Kriegel. The x-tree: An index structure for
high-dimensional data. In Proceedings of the Twenty-second VLDB Conference,
Mumbai (Bombay), India, 1996.

M. Blum. Coin flipping by telephone: a protocol for solving impossible prob-
lems. In IEEE Computer Conference, pages 133-137, 1982.

G. Brassard, C. Crépeau and J. Robert. All-or-nothing disclosure of secrets. In
Advances in Cryptology - Crypto86, Lecture Notes in Computer Science, volume
234-238, 1987.

C. Cachin. Efficient private bidding and auction with an oblivious third party.
In Proceedings of the Sixth ACM Conference on Computer and Communications
Security, pages 120-127, Singapore, November 1-4, 1999.

C. Cachin, S. Micali and M. Stadler. Computationally private information
retrieval with polylogarithmic communication. Advances in Cryptology: EU-
ROCRYPT 1999, Lecture Notes in Computer Science, 1592:402—-414, 1999.

Ming-Syan Chen, Jiawei Han and Philip S. Yu. Data mining: an overview from a
database perspective. IEEE Transactions On Knowledge and Data Engineering,
8:866-883, 1996.

B. Chor and N. Gilboa. Computationally private information retrieval (ex-
tended abstract). In Proceedings of the Twenty-ninth Annual ACM Symposium
on Theory of Computing, El Paso, Texas, USA, May 4-6, 1997.

B. Chor, N. Gilboa and M. Naor. Private information retrieval by keywords.
Technical Report TR CS0917, Department of Computer Science, Technion,
1997.

B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan. Private information
retrieval. In Proceedings of IEEE Symposium on Foundations of Computer
Science, Milwaukee, Wisconsin, USA, October 23-25, 1995.

Christopher W. Clifton and Don Marks. Security and privacy implications of
data mining. In ACM SIGMOD Workshop on Data Mining and Knowledge
Discovery, Montreal, Canada, June 2, 1996.

28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

153

J. (Benaloh) Cohen and M. Fisher. A robust and verifiable cryptographically
secure election scheme. In Proceedings of IEEE Symposium on Foundations of
Computer Science, pages 372-382, 1985.

D. Coppersmith. Cheating at mental poker. In CRYPTO 1985, pages 104-107,
1985.

A. Corral, Y. Manolopoulos, Y. Theodoridis, M. Vassilakopoulos. Closest pair
queries in spatial databases. In Proceedings of the 2000 ACM SIGMOD on
Management of Data, Dallas, Texas, USA, May 15 - 18, 2000.

C. Crépeau. A secure poker protocol that minimizes the effect of player coali-
tions. In CRYPTO 1985, pages 73-86, 1985.

C. Crépeau. A zero-knowledge poker protocol that achieves confidentiality of
the players’ strategy, or how to achieve an electronic poker face. In CRYPTO
1986, pages 239247, 1986.

C. Crépeau. Equivalence between two flavors of oblivious transfers. In Advances
i Cryptology — CRYPTO 1987, Lecture Notes in Computer Science, volume
293, pages 350-354. Springer-Verlag, 1988.

M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press,
1994.

D. Denning. Cryptography and Data Security, pages 157-159. Addison-Wesley
publishing company, 1983.

Y. Desmedt. Some recent research aspects of threshold cryptography. In Lecture
Notes in Computer Science 1396, pages 158-173. Springer-Verlag, 1997.

G. Di-Crescenzo, Y. Ishai and R. Ostrovsky. Universal service-providers for
database private information retrieval. In Proceedings of the Seventeenth Annual
ACM Symposium on Principles of Distributed Computing, September 21, 1998.

Wenliang Du, Mikhail J. Atallah and Florian Kerschbaum. Protocols for secure
remote database access with approximate matching. Technical Report CERIAS
TR 2001-15, Purdue University, 2001.

Wenliang Du and Mikhail J. Atallah. Protocols for secure remote database ac-
cess with approximate matching. In Seventh ACM Conference on Computer and
Communications Security (ACMCCS 2000), The First Workshop on Security
and Privacy in E-Commerce, Athens, Greece, November, 2000.

Wenliang Du and Mikhail J. Atallah. Privacy-preserving cooperative scientific
computations. In Fourteenth IEEE Computer Security Foundations Workshop,
Nova Scotia, Canada, June 11-13, 2001.

Wenliang Du and Mikhail J. Atallah. Secure multi-party computation problems
and their applications: A review and open problems. In New Security Paradigms
Workshop, Cloudcroft, New Mexico, USA, September 11-13, 2001.

S. Even, O. Goldreich and A. Lempel. A randomized protocol for signing con-
tracts. Communications of the ACM, 28:637-647, 1985.

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

154

R. Fagin, M. Naor and P. Winkler. Comparing information without leaking it.
Communication of the ACM, 39:77-85, 1996.

J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss and R. Wright. Se-
cure multiparty computation of approximations. In Twenty-eighth International
Collogquium on Automata, Language and Programming, 2001.

S. Fortune and M. Merritt. Poker protocols. In CRYPTO 198/, pages 454-464,
1984.

M. Franklin, Z. Galil and M. Yung. An overview of secure distributed com-
puting. Technical Report TR CUCS-00892, Department of Computer Science,
Columbia University, 1992.

Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust efficient distributed
RSA-key generation. In Symposium on Principles of Distributed Computing,
page 320, 1998.

M. Franklin and M. Yung. Varieties of secure distributed computing. In Pro-
ceeding of Sequences II, Methods in Communications, Security and Computer
Science, Positano, Italy, pages 392-417, June, 1991.

V. Gaede and O. Gunther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170-231, June, 1998.

P. Gemmell. An introduction to threshold cryptography. In CryptoBytes, vol-
ume 2. RSA Laboratories, 1997.

Y. Gertner, S. Goldwasser and T. Malkin. A random server model for private
information retrieval. In Second International Workshop on Randomization and
Approzimation Techniques in Computer Science (RANDOM ’98), 1998.

Y. Gertner, Y. Ishai, E. Kushilevitz and T. Malkin. Protecting data privacy in
private information retrieval schemes. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, Dallas, Texas, USA, May 24-26,
1998.

A. Gionis, P. Indyk and R. Motwani. Similarity search in high dimensions via
hashing. In The VLDB Journal, pages 518-529, 1999.

S. Goldwasser. Multi-party computations: Past and present. In Proceedings of
the Sixteenth Annual ACM Symposium on Principles of Distributed Computing,
Santa Barbara, California, USA, August 21-24, 1997.

O. Goldreich. Secure multi-party computation (working draft). Available from
http://www.wisdom.weizmann.ac.il/home/oded /public_html foc. html, 1998.

S. Goldwasser and S. Micali. Probabilistic encryption. 28:270-299, 1984.

O. Goldreich, S. Micali and A. Wigderson. How to play any mental game. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Comput-
ing, pages 218229, 1987.

R. Gonzalezi and R. Woods. Digital Image Processing. Addison-Wesley, Read-
ing, Massachusetts, USA, 1992.

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

155

M. S. Goodstadt and V.Gruson. The randomized response technique: A test
on drug use. Journal of the American Statistical Association, 70(352):814-818,
December, 1975.

D. Gustfield. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press, 1997.

A. Guttman. R-trees: a dynamic index structure for spatial searching. In ACM
SIGMOD Workshop on Data Mining and Knowledge Discovery, pages 163174,
Boston, Massachusetts, USA, 1984.

Y. Ishai and E. Kushilevitz. Improved upper bounds on information-theoretic
private information retrieval (extended abstract). In Proceedings of the Thirty-
first Annual ACM Symposium on Theory of Computing, Atlanta, Georgia, USA,
May 1-4, 1999.

N. Koudas H. V. Jagadish and D. Srivastava. On effective multi-dimensional
indexing for strings. In Proceedings of the 2000 ACM SIGMOD on Management
of Data, Dallas, Texas, USA, May 15 - 18, 2000.

A. Jain. Fundamentals of Digital Image Processing. Prentice Hall, Englewood
Cliffs, New Jersey, USA, 1989.

N. Karmarkar. New polynomial-time algorithm for linear programming. Com-
binatorica, 4(336):373-395, 1984.

H. Kargupta, B. Park, D. Hershberger and E. Johnson. Collective data mining:
A new perspective toward distributed data mining. Advances in Distributed
and Parallel Knowledge Discovery, 1999.

J. Kilian. Founding cryptography on oblivious transfer. In Proceedings of Twen-
tieth ACM Symposium on Theory of Computing, pages 20-31, 1988.

J. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions.
In Proceedings of the Twenty-ninth ACM Symposium on Theory of Computing,
1997.

V. Klee and G. Minty. How good is the simplex algorithm. In Shisha, editor,
Inequalities, 111, pages 159-175. Academic Press, New York, New York, USA,
1972.

P. Indyk, R. Motwani, P. Raghavan and S. Vempala. Locality-preserving hash-
ing in multidimensional spaces. In Proceedings of the Twenty-ninth ACM Sym-
posium on Theory of Computing, pages 618-625, 1997.

N. Beckmann, H-P. Kriegel, R. Schneider, B. Seeger. The r*-tree: An efficient
and robust access method for points and rectangles. In ACM SIGMOD Work-

shop on Data Mining and Knowledge Discovery, pages 322-331, Atlantic City,
New Jersey, USA, 1990.

E. Kushilevitz, R. Ostrovsky and Y. Rabani. Efficient search for approximate
nearest neighbor in high dimensional spaces. SIAM Journal on Computing,
30(2):457-474, 2000.

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]
[85]

[86]

[87]

88

156

E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In Proceedings of the Thairty-
eighth Annual IEEE Computer Society Conference on Foundation of Computer
Science, Miami Beach, Florida, USA, October 20-22, 1997.

C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice-Hall,
Englewood Cliffs, 1974.

Y. Lindel and B. Pinkas. Privacy preserving data mining. In Advances in
Cryptology - CRYPTO 2000, Lecture Notes in Computer Science, volume 1880,
2000.

R. Lipton. How to cheat at mental poker. In Proceedings of AMS Short Course
on Cryptography, 1981.

U. Manber. A text compression scheme that allows fast searching directly in
the compressed file. ACM Transactions on Information Systems, 15(2):124-136,
April, 1997.

W. McLewin. Linear Programming and Applications: A Course Text. Input-
Output Publishing Company, 1981.

R. Muth and U. Manber. Approximate multiple string search. In Proceedings of
the Seventh Annual Combinatorial Pattern Matching Symposium, pages 75—86,
Laguna Beach, California, USA, June, 1996.

D. Naccache and J. Stern. A new cryptosystem based on higher residues. In
Proceedings of the Fifth ACM Conference on Computer and Communications
Security, pages 59-66, 1998.

M. Naor. Bit commitment using pseudo-randomness. In CRYPTO 1989, pages
128-136, 1989.

M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation (extended
abstract). In Proceedings of the Thirty-first ACM Symposium on Theory of
Computing, pages 245254, Atlanta, Georgia, USA, May 1-4, 1999.

S. Nene and S. Nayar. A simple algorithm for nearest neighbor search in high
dimensions. IEFEE Transactions Pattern Analysis and Machine Intelligence,
pages 989-1003, 1997.

T. Okamoto and S. Uchiyama. An efficient public-key cryptosystem. In Ad-
vances in Cryptology - EUROCRYPT 1998, pages 308-318, 1998.

P. Paillier. Public-key cryptosystems based on composite degree residue classes.
In Advances in Cryptology — EUROCRYPT 1999, pages 223-238, 1999.

K. H. Pollock and Y. Bek. A comparison of three randomized response mod-
els for quantitative data. Journal of the American Statistical Association,
71(356):994-886, December, 1976.

F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985.

M. Rabin. How to exchange secrets by oblivious transfer. Technical Report
Technical Memo TR-81, Aiken Computation Laboratory, 1981.

[89]
[90]

[91]

[92]

(93]

[94]
[95]
[96]
[97]
(98]

[99]

[100]

[101]

[102]

[103]

[104]

157

M. K. Reiter and A. D. Rubin. Crowds: anonymity for web transaction. ACM
Transactions on Information and System Security, 1(1):Pages 66-92, 1998.

J. R. Rice. Matriz Computations and Mathematical Software. McGraw-Hill
Book Company, 1981.

N. Roussopoulos, S. Kelley, F. Vincent. Nearest neighbor queries. In Proceedings
of the 1995 ACM SIGMOD on Management of Data, San Jose, California, USA,
1995.

Hanan Samet. Multidimensional data structures. In Mikhail J. Atallah, editor,
Algorithms and Theory of Computation Handbook, chapter 18. CRC Press, 1999.

T. Sander and C. Tschudin. Towards mobile cryptography. In Proceedings of
the 1998 IEEE Symposium on Security and Privacy, Oakland, California, USA,
May, 1998.

B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in
C. John Wiley & Sons, Inc., 1996.

A. Shamir. How to share a secret. Communication of the ACM, 22(11):612-613,
1979.

A. Shamir, R. Rivest and L. Adleman. Mental poker. Technical Report
MIT/LCS/TR~125, M.I.T, 1979.

Dennis Shasha and Tsong-Li Wang. New techniques for best-match retrieval.
ACM Transactions on Information Systems, 8(2):140-158, 1990.

G. Simmons. Geometric shared secret and/or shared control schemes. In
CRYPTO 1990, pages 216-241, 1990.

G. Simmons. An introduction to shared secret and/or shared control schemes
and their application. In Contemporary Cryptology, The Science of Information
Integrity, pages 441-497. IEEE Press, 1992.

D. Song, D. Wagner and A. Perrig. Practical techniques for searches on en-
crypted data. In Proceedings of 2000 IEEE Symposium on Security and Privacy,
Oakland, California, USA, May 14-17, 2000.

P. F. Syverson, D. M. Goldschlag and M. G. Reed. Anonymous connections
and onion routing. In Proceedings of 1997 IEEE Symposium on Security and
Privacy, Oakland, California, USA, May 5-7, 1997.

S. L. Warner. Randomized response: A survey technique for eliminating evasive
answer bias. Journal of the American Statistical Association, 60(309):63-69,
March, 1965.

S. L. Warner. Randomized response: A survey technique for eliminating evasive
answer bias. Journal of the American Statistical Association, 66(336):884-888,
December, 1971.

A.C. Yao. Protocols for secure computations. In Proceedings of the Twenty-third
Annual IEEE Symposium on Foundations of Computer Science, 1982.

158

[105] A.C. Yao. How to generate and exchange secrets. In Proceedings of Twenty-
Seventh IEEE Symposium on Foundations of Computer Science, pages 162-167,
1986.

[106] M. Yung. Cryptoprotocols: subscription to a public key, the secret blocking
and the multi-player mental poker game. In CRYPTO 1984, pages 439-453,
1984.

VITA

159

VITA

Wenliang Du was born in Nanchang, China. He received his Bachelor’s Degree
in Computer Science in July 1993 from the University of Science and Technology of
China (USTC). He performed his undergraduate thesis research in the Institute of
Software at the Chinese Academy of Sciences. He went to Florida International Uni-
versity on a Presidential Fellowship in 1994, and got his Master’s Degree in Computer
Science in 1996.

In August 1996, he enrolled in the Department of Computer Sciences at Purdue
University, where he joined the Computer Operations, Audit and Security Technology
(COAST) laboratory, which later became the Center for Education and Research in
Information Assurance and Security (CERIAS). In 1998, he performed six months
of his Ph.D. research at Microsoft Cooperation. He received the degree of Doctor of
Philosophy in August 2001 under the direction of Professor Mikhail J. Atallah and
Professor Eugene H. Spafford.

His research interests are in computer and information security, network security,

e-commerce security and applied cryptography.

