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ABSTRACT

Broadcast authentication is an important application in sensor net-
works. Public Key Cryptography (PKC) is desirable for this ap-
plication, but due to the resource constraints on sensor nodes, these
operations are expensive, which means sensor networks using PKC
are susceptible to Denial of Service (DoS) attacks: attackers keep
broadcasting bogus messages, which will incur extra costs, thus
exhaust the energy of the honest nodes. In addition, the long time
to verify each message using PKC increases the response time of
the nodes; it is impractical for the nodes to validate each incoming
message before forwarding it.

In this paper we discuss this type of DoS attacks, in which the
goal of the adversary is to exhaust the energy of the sensor nodes
and to increase their response time to broadcast messages. We then
present a dynamic window scheme, where sensor nodes determine
whether first to verify a message or first to forward the message
by themselves. This is made possible with the information such as
how far this node is away from the malicious attacker, and how
many hops the incoming message has passed. We compare the
performance of the proposed scheme with other schemes, and show
that it can contain the damage of DoS attacks to only a small portion
of the sensor nodes.

1. INTRODUCTION
Sensor networks are being deployed for a wide variety of ap-

plications, such as military sensing and tracking, etc. A typical
sensor network usually has one or more base stations that serve
as the commanders and data sinks. They broadcast commands to
sensors, which act upon those commands. Due to the large geo-
graphical dimensions that sensor networks are deployed, broadcast
is often achieved in the relay fashion: intermediate nodes forward
messages to nodes that cannot hear the base stations directly.

Adversaries may impersonate base stations if the authenticity of
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the broadcast messages are not guaranteed. Broadcast authentica-
tion can be used to ensure the authenticity, and several broadcast
authentication schemes in sensor networks have been proposed.
For example, µTesla [9] is an efficient broadcast authentication
scheme based on one-way hash chain. However, it can only achieve
a delayed authentication, which is undesirable for time-sensitive
broadcast messages. In contrast, public-key-based signature schemes
can achieve real-time broadcast authentication, but their operations
are expensive in terms of energy consumption and running time.
This makes the public-key-based broadcast authentication schemes
in sensor networks susceptible to Denial of Service (DoS) attacks.
To launch DoS attacks, malicious nodes can keep broadcasting mean-
ingless messages; upon receiving these faked messages, if sensor
nodes forward them to their neighbors before they authenticate the
messages (we call it the forwarding-first method), the faked mes-
sages will be spread across the entire sensor networks, consuming
sensors’ energy. Although sensors will eventually drop the faked
messages after the verification fails, the damage has already been
made.

A straightforward way to deal with this type of attacks is to ver-
ify each message before forwarding it (we call it the authentication-

first method). The faked messages will be dropped at the first-hop
neighbors of the malicious nodes, so nodes beyond them will not be
affected. Although this is preferable when dealing with faked mes-
sages, it has significant penalty on legitimate broadcast messages,
because it takes time for sensor nodes to conduct message authen-
tication. For example, signature verification using 160-bit elliptic
curve keys on ATmega128, a processor used in Mica motes, may
take as much as 1.6 seconds [5]. If every node verifies the incom-
ing packets before forwarding them, there will be a long delay for
remote nodes to obtain an authentic message. For time-sensitive
broadcast messages, this is not affordable.

A desirable property of conducting authentication before for-
warding is, no faked broadcast messages will be propagated, which
is desirable for tolerating DoS attacks. An ideal solution is to con-
duct authentication-first for faked messages, and forwarding-first
for authentic ones. However, this is hard to achieve, because sen-
sor nodes have no idea on whether they are first hop victims of
the attackers or not. In this paper, we propose a dynamic window
scheme that is the combination of the authentication-first and the
forwarding-first scheme, which can achieve a good trade-off be-
tween the broadcast delay for authentic messages and energy sav-
ings for faked messages.

The basic idea of our scheme is that, sensor nodes gradually shift
to authentication-first scheme if they start receiving many faked
messages, but will remain in forwarding-first mode if the majority
of the messages they receive are authentic. The decision is based
on the validity of the incoming broadcast messages they receive.



Every broadcast message keeps record of the number of hops it
has passed since its last authentication, and sensor nodes maintain
an authentication window size, which will be updated dynamically.
Based on both the window size on sensor nodes and the number
of hops the incoming message passes after its last authentication,
the nodes decide which mode to use: if window size is the larger,
they use forwarding-first mode; otherwise, they use authentication-
first mode. In our scheme, we use Additive Increase Multiplicative
Decrease (AIMD) techniques to dynamically manage the window
size on sensor nodes: if the message they receive is authentic, the
window size increases; otherwise, window size decreases.

Specifically, we make the following contributions in our paper:

Design: Our dynamic window scheme is an efficient yet effec-
tive protocol that can contain the damage of DoS attacks to a small
portion of the sensor nodes. AIMD itself is not a new idea; it has
been used in congestion control in sensor networks as well as in
general networks. However, designing a DoS resistant scheme for
broadcast authentication in sensor networks is not a trivial exten-
sion of previous works: sensor nodes have no idea on who is ma-
licious and who is not. What is more, sensor nodes are extremely
resource-constrained, and they should not be carried away by the
overwhelming attacks from the adversaries. The design of this DoS
resistant scheme is an important contribution of this paper.

Analysis: We analyze the various patterns of DoS attacks the ad-
versaries may implement, and evaluate the performance of the pro-
posed scheme under these attacks. The analysis may also be ex-
tended to other applications, which is an important contribution of
this paper. We also validate these analysis with experiments.

Organization The organization of our paper is as the following:
Section 2 discusses the related works, followed by the description
of the system model and design goal of the scheme. In Section 4,
we present our scheme (a dynamic window scheme) and its proper-
ties. This is followed by the evaluation and analysis of our scheme
in Section 5. Finally, Section 6 concludes the paper.

2. RELATED WORKS
DoS attacks are very serious threats to the resource-constrained

sensor networks. Wood and Stankovic summarized the various
DoS attacks against sensor networks in [14]. McCune et al. [6] pro-
posed a secure implicit sampling scheme to detect DoS attacks in
sensor networks, where base stations probabilistically request au-
thenticated acknowledgment from a subset of nodes per broadcast.
However, for the attacks discussed earlier, broadcast messages still
reach the intended receivers, so the attack is still difficult to detect.
Deng et al. [2] proposed using a one-way hash chain to protect end-
to-end communication in sensor networks against path-based DoS
attacks, but the proposed solution cannot handle the DoS attacks
described previously either.

Broadcast authentication is used in sensor network to prevent
the attackers from impersonating the base stations. Previous broad-
cast authentication schemes in sensor networks focus primarily on
symmetric keys. For example, µTESLA, proposed by Perrig et
al. [9], is based on one-way hash chain of commitments. It is re-
silient to packet loss and has low communication overheads, but
receivers cannot verify signature instantly. In [8], µTESLA was
extended to an immediate authentication mechanism by replacing
receiver buffering with sender buffering, but it is not desirable for
applications where broadcast commands cannot be predicated in
advance. These shortcomings make public key operations desir-
able for broadcast authentication, but the high costs of public keys
used to limit the usage of public keys in sensor nodes [9]. Recently,
studies show that public keys are feasible in sensor networks, es-

pecially with the Elliptic Curve Cryptography (ECC). For exam-
ple, [5] points out that signature verification can be done in 1.6
seconds with 160-bit ECC keys on ATmega128 8-bit CPU. A lot of
researches on public keys in sensor networks have been conducted
in the literature [3, 4, 7]. However, compared with symmetric keys,
public keys are still expensive for sensor networks: they take more
time to process, and consume more energy. If sensor nodes keep
executing public key operations, their energy will quickly get de-
pleted.

Additive Increase Multiplicative Decrease (AIMD) is a frequently
used technique to control the traffic of networks. The most no-
ticeable application of AIMD is the congestion control scheme in
TCP/IP [10]. The use of AIMD in general networks has been stud-
ied extensively, such as Yang and Lam [15], Chiu and Jain [1].
In sensor networks, AIMD has also been used to implement rate
control. For example, Rangwala et al. proposed an interference-
aware fair rate control protocol in [11], where AIMD control law
is used to converge a fair and efficient rate control. and Woo and
Culler [13] proposed a rate control mechanism where sensor nodes
adjust their transmission rate based on whether the previous packet
has been successfully forwarded or not. Wan, Eisenman and Camp-
bell proposed CODA [12], which samples the channel load period-
ically, and compare the fraction of time that the channel is busy to
the optimal channel utilization. There are other schemes that use
AIMD technique, but they are based on the assumption that sensor
nodes will honestly follow the protocol and refrain from sending
more messages, which is not true when there are malicious nodes
in the network.

3. SYSTEM MODEL AND DESIGN GOAL
We describe our system model and design goals in this section,

as well as the notations used in the description of the scheme.

3.1 Attacking model
In this paper, we assume that the goal of the attackers is to ex-

haust the energy of the sensor nodes, and to increase the response
time of the sensor nodes to the authentic broadcast messages. The
primary attacking method of the adversaries is to broadcast large
number of faked messages. In order to fool honest nodes, attackers
may forward authentic messages from time to time. To implement
the attack, adversaries can compromise honest nodes, or deploy
malicious sensors of their own. There are other types of DoS at-
tacks such as jamming or black hole attack, but we do not consider
them in this paper.

We assume that the attacks are static: adversaries, as well as sen-
sor nodes and base stations, stay in fixed locations throughout the
attack. That is, the topology of the network is fixed. Attackers can
choose their locations, or take multiple identities, but they cannot
move during the attack.

3.2 Design goal
Our goal is to defend sensor networks against DoS attacks, espe-

cially the type of attacks that aim at exhausting the energy of sensor
nodes. Due to the wireless nature of sensor networks, it is impossi-
ble to design a scheme that is totally immune to DoS attacks, so our
goal is to reduce the damage of the attacks on the entire network.
In other words, we want to contain the damage of DoS attacks to a
small portion of the sensor nodes.

Specifically, our design goal includes: (1) Effectiveness: the pro-
posed scheme should be effective in containing the damage of DoS
attacks to a small portion of sensor nodes; (2) Efficiency: the pro-
posed scheme should not bring too much extra cost to the sensor
nodes; (3) Responsiveness: the proposed scheme should not intro-



duce too much broadcast delay for authentic messages; (4) Flexi-

bility: the proposed scheme should be able to adapt to the various
needs of different applications.

Notations The following notations are used in the description of
the scheme. The explanation of these parameters will be discussed
in detail in Section 4.

• m: broadcast message.
• t: unit timeslot.
• ω: current authentication window on sensor nodes.
• ψf and ψs: updating functions of ω.
• da: number of hops m has passed since its last authentication.
• δ: the intensity of attack (i.e., ratio of the number of faked

messages and that of the authentic ones).
• k: the number of authentic broadcast messages during unit

timeslot.

4. A DYNAMIC WINDOW SCHEME TO CON-

TAIN DOS ATTACK
To minimize the damage of DoS attacks, sensor nodes need to

drop faked messages as early as possible; they need a mechanism
to effectively find out where the malicious nodes are, and drop the
faked packets from those malicious nodes. The authentication-first
scheme can achieve this, but the delay caused by this scheme is not
affordable. The ideal solution is, sensor nodes know which nodes
are malicious: messages from these nodes are verified before for-
warded, while messages from other sources are forwarded before
verified. However, this is hard to do: malicious nodes always pre-
tend to be forwarding messages instead of initiating new ones; hon-
est nodes have no idea whether on they are the first-hop victims of
malicious nodes or not.

A different angle to look at the problem is: is it possible that
sensors gradually shift toward authentication-first mode in a way
such that eventually, only the first-hop victims of the attackers stay
in authentication-first mode?

4.1 Dynamic Window Scheme

4.1.1 Scheme overview

In the dynamic window scheme, each sensor node s needs to
maintain a new parameter: authentication window size (ω). This
parameter specifies the largest number of hops an incoming mes-
sage can be forwarded without being verified. Correspondingly,
each broadcast message m keeps record of a new field: distance
(da), which is used to record the number of hops the message has
passed since its last authentication.

When node s receives messagem, s compares the authentication
window size (ω) with the number of hops m passes since its last
authentication (da). If da < ω, s is in the forwarding-first mode:
it increases da, and forwards m without verification. However, if
da ≥ ω, s is in the authentication-first mode, which authenticates
m first: if the authentication fails, s drops m; otherwise, s resets
da to 0, and forwards m to its next hop neighbors.

We notice that in broadcast authentication, sensor nodes always
authenticate incoming messages. So what really matters in our
scheme is when the authentication happens: it can be before the
messages are forwarded, or afterwards. In either case, if the authen-
tication fails, s decreases its own ω value; otherwise, s increases ω.

An example is given in Figure 1(a), in which S is the base station,
and A,B are sensor nodes 4 and 5-hop away from the base station.
At some point, the sizes of the authentication window of A and B
are 4. When S broadcasts a new message m, intermediate nodes
(shaded ones in the figure) will increase the da field of m. At node

A, the ω value of A (ω = 4) is compared with the da value of
m (da = 3). Since da < ω, A is in the forwarding-first mode,
which will increase da to 4, and forward m without verification.
At B, now that da = ω, B is in authentication-first mode: it will
authenticate m first. If m is authentic, B resets da of m to 0, and
then forwards it; if m is faked, B will drop m.

4.1.2 Scheme explained

The dynamic window scheme includes the following steps: sys-
tem initialization, message broadcast, message forwarding and up-
dating, and authentication window size modification. Below is the
detailed explanation:

1. System initialization Prior to deployment, the authentica-
tion window size of each sensor, ωi, i = 1, · · · , n, is initialized
as ωmax, the largest possible number of hops sensor nodes away
from the base station. This means that all sensor nodes are put in
forwarding-first mode. This is to minimize the initial broadcast de-
lay. Window size updating functions are also loaded into the sensor
nodes.

2. Message Broadcast When base station broadcasts a message
m, the da field of m is set to “0”. Base station will then broadcast
m to its neighbors, which will relay m to nodes far away from the
base station.

3. Message forwarding and updating When node s receives
a message m′, it will compare the value of its own window size
(ωs) with the da field of m′. If ωs > da, then s will increase the
da value of m′, and forward m′ without verification. If ωs ≤ da,
s will check the validity of m′ first: if m′ is authentic, it will be
forwarded, and da is reset to 0; otherwise, it will be dropped.

4. Authentication window size updates No matter whether s
verifies m′ before forwarding it or afterwards, if m′ is authentic,
ωs is increased, unless the upper limit of ωs is reached (ωmax); if
m′ is faked, ωs is decreased, unless the lower limit of ωs is reached
(ωmin). In the future, we use ψf to indicate the increasing function,
and ψs to indicate the decreasing function of ωs.

Sensor nodes will follow these procedures until every node in the
network has a copy of the message (if it is authentic). In the case
that the message is faked, it will be dropped by the intermediate
nodes. The whole process is illustrated in Figure 1(b).

4.2 Properties of the basic scheme
In this section, we discuss the properties of the basic dynamic

window scheme, where there is just a single attacker, and the win-
dow size updating functions follow basic AIMD law: ψf (ω) =
ω + 1 (unless ωmax is reached), and ψs(ω) = ⌊ω

2
⌋ (unless ωmin

is reached). We will extend to multi-source attacks and general
AIMD functions later in this paper. To simplify discussion, we as-
sume that the attacking ratio is δ: among unit time t, there are k
authentic messages, and δk faked ones.

4.2.1 Different patterns of DoS attack

One question we may ask is, from the attacker’s point of view,
how to maximize the damage of the DoS attacks? Consequently,
what impact does it have on sensor nodes?

Before we answer the questions, we notice that for any scheme,
so long as the decreasing is faster than the increasing, the final win-
dow size will converge to the minimum size allowed. A natural
extension to our dynamic window scheme is that so long as the
decreasing of authentication window size is faster than the increas-
ing, the authentication window size on sensor nodes will converge
to one, which is the minimum value allowed.

In the attacks we study, nodes one hop away from the attacker
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Figure 1: Illustration of dynamic window scheme.

always receive faked messages. For basic AIMD law, the decreas-
ing is faster than the increasing, so if the number of faked mes-
sages outweighs that of the authentic ones, the window size of the
nodes one hop away from the malicious node will converge to one
(ωmin) at some point. Therefore, to simplify our analysis, we al-
ways choose unit time t such that at the beginning of t, the authen-
tication window of the nodes one hop away from the attacker is
one.

When multiple sensor nodes transmit messages at the same time,
collision may happen: sensor nodes may need to contend for avail-
able channels. For the sake of simplicity, we do not consider mes-
sage collision in our analysis. In our simulation, however, we will
study the effect of packet loss caused by the collision and channel
contentions on the dynamic window scheme.

We classify the DoS attacks into three types: Non-consecutive
Authentic message Attack (NAA), All-consecutive Authentic mes-
sage Attack (AAA), and Mixed-Authentic message Attack (MAA).
Figure 2 illustrates the three different types of attacks.

Non-consecutive Authentic message Attack (NAA) In this type
of attacks, there are no consecutive authentic messages. As illus-
trated in Figure 2(a), between every pair of authentic messages
(black dots in the figure), there are always faked messages (hollow
dots).

We can prove that, under this scenario, the attack can be easily
contained: faked messages will be dropped by the first two hop
nodes of the malicious attacker. This is shown in the following
property:

Property 1 If there are no consecutive authentic messages during

DoS attacks, faked messages will eventually be dropped by the first

two hops of the sensor nodes.

We provide the sketch of the proof of the property here: at the
beginning of the attack, the authentication window of sensor nodes
one hop away from the attacker is one (we can always choose unit
timeslot this way), which means under this situation, faked mes-
sages will be checked and dropped before the possible forwarding
by the one-hop nodes. When one authentic message is present, the
window size of nodes one hop away is increased to two, which
means succeeding faked messages can reach nodes two hops away.
In turn, window size for those two-hop nodes will converge to one.
Since there are no consecutive authentic messages, after this point,
the window size of the two hop nodes will never exceed two, which
means every faked message will be verified and dropped by them.

We want to emphasize that the above proof is by no means com-
plete. Rather, it is an outline of one possible way to prove it. We
will provide more formal and complete proofs in our more detailed
work. But this property does show that our scheme is quite ro-

bust against DoS attacks if the attack is intense: if faked messages
far outweigh the authentic ones, it is possible that no two authen-
tic messages are consecutive. In this case, little damage would be
made to the entire network.

All-consecutive Authentic message Attack (AAA) If the attacker
wants to affect as many nodes as possible, he needs to arrange the
attack such that all authentic messages are transmitted consecu-
tively, which is illustrated in Figure 2(b). As shown in the next
property, the faked messages can affect most nodes this way.

Property 2 Given k authentic messages and δk faked ones, if

the k authentic messages are consecutive, faked ones will reach the

most sensor nodes. In this case, at least δk − ⌈log(k + 1)⌉ faked

messages are dropped by the one-hop nodes.

The way to prove this property is similar to the previous one.
The basic idea is, in these attacks, the authentication window will
reach its maximum value only when the k authentic messages are
transmitted consecutively. We skip the complete proof in this paper,
but we will provide the formal proof in our more detailed work.
This property tells us that, the damage of this type of DoS attacks
to our scheme is also contained: δk−⌈log(k + 1)⌉ faked messages
will never pass the first hop sensor nodes.

Mixed-Authentic Message attack (MAA) NAA and AAA repre-
sent two extreme types of DoS attacks, but the damages of NAA

and AAA are both limited. AAA, in particular, is only meaningful
theoretically. Smart attackers may implement attacks where there
are no such explicit relationships, which is illustrated in Figure 2(c)

This attack is difficult to analyze, but we can partition all the
k+ δk messages based on those authentic messages. For example,
we assume that in a smaller timeslot t′, the authentication window
size of a node close to the malicious node is 1, and there are m1

consecutive authentic messages, followed by n1 faked messages,
and then m2 authentic messages followed by n2 faked messages.
We can view the smaller unit timeslot t′ as a special case of AAA.
Then, so long as n2 ≥ log⌈m2 + log

2
n1 (1 +m1)⌉, the window

size of node becomes 1 during n2. We will provide more detailed
discussions in our future works.

This can be extended to the more general cases: if the distri-
bution of the messages is m1, n1, · · · ,mi, ni, where mi refers to
authentic messages, and ni refers to faked messages, we can al-
ways treat the smaller timeslots as special cases of AAA. We will
provide more analysis and discussion of this in our future work.

For nodes one hop away from the attacker, they will always re-
ceive δk faked messages. Besides the number of faked message
they receive, what matters most is the number of faked messages
they forward. Since if the authentication window of nodes one hop
away from the attacker is one, the succeeding faked messages will



(a) Non-consecutive Authentic
message Attack (NAA)

(b) All-consecutive Authentic
message Attack (AAA)

(c) Mixed-Authentic message Attack (MAA)

Figure 2: Patterns of DoS attacks.

be dropped, we can use the formulae obtained earlier to estimate the
number of dropped packets in MAA. They are not in closed form,
but they can serve as a criteria to evaluate the performance of the
scheme.

4.2.2 Energy saving in the presence of DoS attacks

Reducing the amount of faked messages received by the sensor
nodes is of vital importance for DoS resistant schemes. This is
because, the energy saving for the sensor nodes is comprised of
two parts: energy saving on communication (receiving/forwarding
packets), and energy saving on computation (signature authentica-
tion). In our analysis, we do not calculate exactly how much Joule

of energy is saved. Rather, we focus on the percentage of faked
messages the sensor nodes receive, and the percentage of nodes
that are affected by the faked messages.

THEOREM 4.1. In NAA, sensor nodes two hops away from the

attacker are immune from the attack; in AAA, sensor nodes more

than two hops away from the malicious attacker will receive at most

⌈log(k + 1)⌉ faked messages.

Proof: The correctness of this Theorem can be directly obtained
from Property 1 and 2. From Property 1, we know that faked mes-
sages will be dropped by the nodes two hops away from the mali-
cious node; from Property 2, we know that at most ⌈log(k + 1)⌉
faked messages can reach nodes more than two hops away from the
malicious node. These are exactly the conclusion of the Theorem.

We can further study the overall energy savings on sensor net-
works for all the nodes. For example, assume the density of the
network is d, the transmission range of sensor node is r, and the to-
tal number of sensor nodes is n. Then, for NAA, only rd nodes will
be affected by the faked messages, which means, (n − rd) nodes
will not waste energy on the δk faked messages. The overall energy
saving will be at least (n − rd)δk. Similarly, for AAA, the lower
bound of overall energy saving is (n− rd)⌈δk − log(k + 1)⌉.

For MAA, it is difficult to obtain a closed form of energy savings,
but we can use the formula obtained in the discussion of MAA to
estimate the energy savings: if the authentication window of sensor
nodes one hop away from the malicious nodes becomes one, suc-
ceeding faked messages are dropped, which means that the rest of
nodes save energy on those faked messages. We must emphasize
that this is only the lower bound of energy savings for the nodes
two hops away from the malicious node. In most cases, the energy
saving is much larger.

4.2.3 Broadcast delay for authentic messages

Broadcast delay in our scheme is determined by the number of
intermediate nodes that verify the incoming message before for-
warding it. To calculate the broadcast delay of our scheme, we need
to find out how many intermediate nodes are in the authentication-
first mode.

Assume that for a node i-hop away from the base station, the in-
termediate nodes are s1, s2, · · · , si. Correspondingly, the authen-
tication window sizes on those nodes are ω1, ω2, · · · , ωi. If we use

vj , 1 ≤ j ≤ ωmax to indicate the number of nodes whose window
size is j, then we observe the following interesting property:

Observation If v1, v2, · · · , vi are sorted (in increasing or de-

creasing order), then the number of nodes that are in authentication-

first mode is at most
Pj=ωmax

j=1
⌈

vj

j
⌉.

Again, we omit the proof of this observation in this paper, but
will provide a formal proof in our more detailed work. The ob-
servation provides a way to estimate the upper bound of broadcast
delay for a message to reach nodes i-hop away from the base sta-
tion. In the dynamic window scheme, however, it is possible that
v1, · · · , vi are not sorted. In that case, we can always divide the un-
sorted array of v1, · · · , vi to smaller arrays where they are sorted.
Assume ns is the number of such smaller sorted sub-arrays, vhj

refers to the number of nodes whose window size is j in sub-array
h, and tv is the time to authenticate a broadcast message, then we
can calculate the upper limit of broadcast delay using the follow-
ing formula: tdelay ≤ tv ·

Ph=ns

h=1

Pj=ωmax

j=1
⌈

vhj

j
⌉. Again, this

formula is not in a closed form, but it can be used to analyze the
broadcast delay of authentic messages to nodes i-hop away from
the base station.

4.3 Extension of the Basic Scheme
The window size updating functions play a very important role in

our scheme, so what should we expect for those functions? More-
over, previous discussions are based on single attacker scenario, but
in reality, there may be multiple attackers, then how will these mul-
tiple attackers affect the scheme? We will discuss these issues in
this section.

4.3.1 Window size updating functions

Requirements for window size updating functions The decreas-
ing and increasing of the authentication window size are important.
For the scheme to be effective in containing DoS attacks, window
size updating functions should have the following properties: (1)
Gradient distribution: sensor nodes close to the attacking source
should have smaller windows than the nodes far away from the at-
tacker; (2) Fast decrease: upon a failed authentication, the authenti-
cation window should be decreased rapidly so that the network can
quickly contain DoS attacks; (3) Slow increase: upon a successful
authentication, the window should be increased slowly; otherwise,
attackers can take advantage of this by mixing faked messages with
authentic ones, thus easily defeat the containment.

AIMD technique that is used in the basic scheme is quite effi-
cient, which will not introduce too much computing overhead to
sensor nodes. We want to know more about the window size up-
dating functions, which is discussed as the following.

General window size updating functions In the discussion of
the basic scheme, we use basic AIMD law: ψf (ω) = ω + 1, and
ψs(ω) = ⌊ω

2
⌋, ωmin ≤ ω ≤ ωmax. Other increasing and de-

creasing functions may be used to improve the performance of the
scheme. When applying general AIMD laws to our study, we can
assume that the increasing function is ψf (ω) = ω+α, and the de-
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Figure 3: Window size on sensors under multi- attacks.

creasing function is ψs(ω) = ω/β, where α > 0, β > 1, ωmin ≤
ω ≤ ωmax. So long as the decreasing of the authentication window
is faster than the increasing, Property 1 in Section 4.2.1 still holds,
but Property 2 needs to be modified.

Property 2.1 (Extension of Property 2) Given k authentic mes-

sages and δk faked messages, and given ψf (ω) = ω+α, ψs(ω) =
ω/β, if the adversary tries to affect most nodes, at least {δk −
⌈logβ(αk + 1)⌉} faked messages are dropped by the first hop of

the malicious nodes.

Again, the proof of the property is similar to that of Property 2,
and we leave the complete proof in our more detailed work. What
we know from these properties is that, the energy saving depends
on both the increasing and decreasing functions. We can choose the
appropriate functions that fit our needs. For example, one intuitive
observation is that, the faster the authentication window increases,
the smaller number of nodes in the authentication-first mode there
will be, thus the smaller broadcast delay. However, in that case, we
need to carefully choose the decreasing functions. Moreover, it is
possible that we use non-linear increasing or decreasing functions.
That will be more complicated to analyze though. We will further
study the impact of the various ways to update the window size on
sensor nodes in section 5.

4.3.2 Multi-source attacks

In hostile environments, the adversaries can compromise or in-
ject multiple nodes into the network to implement DoS attacks. The
damage to the network will be more severe, because now sensor
nodes may receive faked messages from multiple sources.

However, the dynamic window scheme can handle these multi-
ple attackers, and the damage caused by the attackers is still limited
to only a portion of the sensor nodes. Figure 3 illustrates this. In
this example, two malicious nodes located at (10, 10) and (35, 35)
keep broadcasting faked messages. Sensor nodes close to them will
be affected, but for nodes far away from both of them, the impact
is quite limited: faked messages broadcasted from the malicious
nodes are dropped by the intermediate nodes. Generally speaking,
the multiple malicious nodes will divide the entire network into
several smaller sub-areas, and the sensor nodes close to the attack-
ers will have smaller authentication window than nodes far away.
When a message arrives at these nodes, it is more likely that this
message will be verified before being forwarded.

Multiple attackers will affect the broadcast delay in our scheme.
When the window size on sensor nodes becomes smaller, nodes are
more likely to be in the authentication-first mode, and the incoming
messages are more likely to be authenticated before forwarded. We
can still use the formula derived in Section 4.2.3 to estimate the up-
per bound of broadcast delay. The only problem is, the delay will
be larger than that in the single source attack, since the authentica-

tion window of the sensor nodes tend to be smaller. In other words,
Ph=ns

h=1

Pj=ωmax

j=1
⌈

vhj

j
⌉ becomes larger. Since this is the upper

bound of the delay, the situation may not be too bad, as messages
may take alternative routes to their destinations. We will further
investigate the issues in this area in our future research.

5. EVALUATION AND ANALYSIS
The purpose of DoS attacks can be multi-folded: exhaust the en-

ergy of sensor nodes, prevent sensor nodes from receiving authen-
tic messages, or increase the response time sensor nodes receive
messages. The proposed dynamic window scheme can limit the
damage of DoS attacks to a portion of sensor nodes, but some pa-
rameters may have significant impacts on the performance of the
scheme. such as the window size on each sensor node, the intensity
of the DoS attacks, the number of one-hop neighbors of the sensor
nodes, etc.

In this section, we study the effect of various parameters on
the performance of the proposed scheme by comparing the perfor-
mance of our scheme with that of the forwarding-first scheme and
the authentication-first scheme. The criteria of our evaluation are
the energy savings of all the sensor nodes, and the delay for authen-
tic messages to reach sensor nodes far away. To be more specific,
we evaluate the following metrics: (1) Average delay of authentic

broadcast message, which measures how long it takes for each sen-
sor to receive a legitimate packet; (2) Portion of nodes that receive

faked messages, which shows how much energy is wasted on re-
ceiving and verifying those faked messages; (3) Portion of nodes

that forward faked messages, which indicates how effective the dy-
namic window scheme is in containing DoS attacks.

5.1 Environmental setup
In our simulation, 5000 sensor nodes are randomly deployed

into an area of 200m×200m, with the transmission range of sen-
sor nodes set as 6m. We assume that it will take 2 seconds for a
node to authenticate a message (signature authentication). As dis-
cussed earlier, we assume that base stations, as well as attackers,
are located at the fixed locations. We simulate the Mixed-Authentic
Message Attacks, as this is more realistic in the real applications.
We assume that the malicious nodes keep sending faked messages,
but they may also forward authentic messages from time to time.
Initially, the authentication window size on each sensor node is 64
(ωmax).

Unless specified otherwise, we assume single source attack, and
the window size updating functions follow basic AIMD law: ψf (ω) =
ω + 1, ψs(ω) = ⌊ω/2⌋, 1 ≤ ω ≤ ωmax. In the experiments that
we design, these parameters (or functions) may change in order to
evaluate the performance of the dynamic window scheme.

5.2 Simulations and results
Intensity of DoS attacks: We simulate the attacking scenarios in
which the ratio between the number of faked messages and authen-
tic messages ranges between 0.5 and 15. This means, the faked
messages make up 33% to 94% of the total messages. The results
are shown in Figure 4.

Figure 4(a) shows that only a small portion of the nodes will re-
ceive faked messages, with an even smaller portion of the nodes
forwarding the faked messages. More importantly, when the at-
tacks become more intense, the scheme performs even better. The
reason is that when the attacks become more severe, the dynamic
window scheme can isolate the malicious nodes more quickly. If
there are fewer faked messages than authentic messages, the perfor-
mance of our scheme, specifically, energy saving, may not be very
impressive. It is still good though, as illustrated by the first cou-
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Figure 4: Effects of various DoS attack intensities and packet loss rates.
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Figure 5: Effects of multiple attackers.

ple of markers in Figure 4(a). However, for DoS attacks, usually
faked messages far outweigh the authentic ones. In that case, our
scheme can filter out most of the faked messages, and thus achieve
more significant energy saving. This is a clear indication that the
proposed scheme is robust against DoS attacks.

We also notice that the proposed scheme does not introduce too
much broadcast delay. As shown in Figure 4(b), in the presence
of faked messages, the delay for authentic broadcast message re-
mains relatively small: on average, the delay of the dynamic win-
dow scheme is about one-fourth of that of the authentication-first
scheme.

Packet loss rate: Packet loss can be caused by many reasons. For
example, when multiple sensor nodes transmit messages simulta-
neously, collision may happen, and some packets get lost. This is a
serious issue for broadcast authentication. In the experiments con-
ducted in this part, we want to study the impact of packet loss on
our scheme. To make the comparison, we change the packet loss
rate between 0 and 0.5 in our simulation. The results are show in
Figure 4(c).

It is interesting to observe that the dynamic window scheme
achieves good energy saving when there are packet losses. Espe-
cially, when the packet loss rate increases, the number of nodes re-
ceiving faked messages decreases exponentially. We do notice that
packet loss itself may contribute to the energy saving: faked mes-
sages never reach some intended receivers due to the packet loss.
However, this experiment does show that the proposed scheme can
achieve good energy savings when there are packet losses.

Multiple malicious attackers: In this experiment, we want to
study the effect of multiple attackers on our scheme. In our simula-
tion, there is one base station, but there are multiple attackers in the

network. To keep the same attacking intensity as the single attacker
case, each malicious attacker will send out a portion of the faked
messages. Figure 5 shows the result.

In these figures, we can see that, when there are multiple attack-
ers in the network, the performance of the dynamic window scheme
deteriorates: more sensor nodes will receive faked messages, and
longer times are needed for authentic messages to reach nodes far
away from the base station. We do notice that our scheme can still
filter out most of the faked messages, while the delay is not too bad.
Moreover, the cost for the adversaries to implement the attacks is
dramatically increased.

Window size updating functions: Experiments in this section
are used to study the impact of various window size updating func-
tions. We study the effect by comparing three different approaches
to update the authentication window of sensor nodes: (1) updating
is independent of the current window size; (2) updating depends
on current window size; and (3) updating is based on the validity
history of the incoming messages.

Specifically, in approach (1), we adopt basic AIMD law: ψf (ω) =
ω+1,ψs(ω) = ⌊ω/2⌋; in approach (2), we use an improved AIMD
law: ψf (ω) = ω + ⌊ω/4⌋, ψs(ω) = ⌊ω/2⌋; and for approach (3),
we collect the last 10 messages that the sensor nodes receive: as-
sume there are α authentic messages in these 10 messages, then
ψf (ω) = ω+⌊αω/10⌋, ψs(ω) = ⌊(10 − α)ω/10 + 1⌋. In all the
above cases, 1 ≤ ω,ψf (ω), ψs(ω) ≤ ωmax.

The results of the experiments are shown in Figure 6. As shown
in these figures, the third approach, updating window size based on
the validity history of the incoming messages, is the best in terms
of containing DoS attacks (smallest number of nodes receiving and
forwarding faked messages), and broadcast delay (lowest broad-
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Figure 6: Effects of various ways to update window size.
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Figure 7: Handling attacks that change da value.

cast delay). However, its cost is also the largest among the three,
because sensor nodes need to remember more information. These
figures also show interesting relationship between the first and the
second approach: the broadcast delay for the first approach is larger
than that of the second one, but the energy saving of the first ap-
proach is better. This means, there is a tradeoff between these two
properties. We can adjust the parameters of our scheme to fit with
the specific needs of various applications.

Handling faked da value: Messages (authentic or faked) for-
warded by the malicious nodes may contain a bogus distance value
(da). The malicious nodes can assign a random initial da value to
a faked message, or change the da field of the honest messages. In
this part, we conduct experiments to study what would happen if
the malicious attacker does change the da value. The result is show
in Figure 7.

In our tests, if the malicious node forwards a faked message, the
da field of the message is set as 0, but if it decides to forward an
authentic message, the da field of the message is a random num-
ber (instead of increasing by one). This kind of behaviors may
cause the most damage to the honest sensor nodes. But as shown
in Figure 7(a), the attacker gained little advantage (if any) in in-
creasing broadcast delay, and almost no advantage on exhausting
the energy of sensor nodes, as shown in Figure 7(b). The reason is,
some honest nodes will check the validity of the messages before
they forward those messages, and the number of such nodes is de-
termined by both the broadcast message and the nodes themselves.
Again, this is a clear indication that our scheme is robust against
DoS attacks.

6. CONCLUSION AND FUTURE WORK

Denial of Service attacks are very difficult to prevent in sensor
networks. In this paper, we discussed a specific type of DoS at-
tacks, and classify the different attacking patterns. We also pre-
sented a dynamic window scheme that can effectively contain the
damage of DoS attacks to a small portion of the nodes. Our scheme
allows each individual node to make its own decision on whether
to forward a message first or verify it first. Even though sensors
have no idea where the malicious attackers are, they can effectively
locate the attackers and contain the damage caused by them. Our
scheme is efficient, and does not introduce too much broadcast de-
lay. It is also very flexible: the parameters of the scheme can be
configured such that the different needs of the various applications
are met.

In order to fully evaluate the performance of our scheme, we
need to further study the distribution of the size of authentication
window on sensor nodes. Also, the window size updating functions
are of significant importance in our scheme: experiments show that
past history will be especially helpful in improving the performance
of our scheme. In our future work, we will keep investigating the
possibility to include this in the defending of DoS attacks in sensor
network. We will further investigate the impact of multiple attack-
ers in the sensor networks, and consider the per-source or source-
class algorithms in defending DoS attacks in sensor networks in the
future.
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