
Privacy-Preserving Cooperative Scientific Computations ∗†

Wenliang Du and Mikhail J. Atallah

Department of Computer Sciences and

Center for Education and Research in Information Assurance and Security

Purdue University, 1315 Recitation Building

West Lafayette, IN 47907

Email: {duw,mja}@cs.purdue.edu

Abstract

The growth of the Internet has triggered tremendous
opportunities for cooperative computation, in which
multiple parties need to jointly conduct computation
tasks based on the private inputs they each supply.
These computations could occur between mutually un-
trusted parties, or even between competitors. For exam-
ple, two competing financial organizations might jointly
invest in a project that must satisfy both organizations’
private and valuable constraints. Today, to conduct
such a computation, one must usually know the in-
puts from all the participants; however if nobody can
be trusted enough to know all the inputs, privacy will
become a primary concern.

Linear systems of equations problem and linear
least-square problem problems are two important scien-
tific computations that involve linear equations. Solu-
tions to these problems are widely used in many areas
such as banking, manufacturing, and telecommunica-
tions. However, the existing solutions do not extend
to the privacy-preserving cooperative computation situ-
ation, in which the linear equations are shared by mul-
tiple parties, who do not want to disclose their data to
the other parties.

In this paper, we formally define these specific
privacy-preserving cooperative computation problems,
and present protocols to solve them.

∗Portions of this work were supported by Grant EIA-9903545

from the National Science Foundation, and by sponsors of the

Center for Education and Research in Information Assurance

and Security.
†In Proceedings of the 14th IEEE Computer Security Foun-

dations Workshop, Pages 273-282, Nova Scotia, Canada, June

11-13, 2001.

1 Introduction

The growth of the Internet has triggered tremendous
opportunities for cooperative computation, in which
multiple parties need to jointly conduct computation
tasks based on the private inputs they each supply.
These computations could occur between mutually un-
trusted parties, or even between competitors. For ex-
ample, two competing financial organizations might
jointly invest in a project that must satisfy both or-
ganizations’ private and valuable constraints. Today,
to conduct such a computation, one must usually know
inputs from all the participants; however if nobody can
be trusted enough to know all the inputs, privacy will
become a primary concern. For example, consider the
following applications:

Two financial organizations plan to cooperatively
work on a project for mutual benefit. Each of the orga-
nizations would like its own requirements being satis-
fied (usually, these requirements are modeled as linear
equations). However, the requirements includes their
projects of the likely future evolution of certain com-
modity prices, interest and inflation rates, economic
statistics, and customers’ portfolio holdings. These
are valuable proprietary data that nobody is willing to
disclose to other parties, or even to a “trusted” third
party. How could these two financial organizations co-
operate on this project?

Two companies A and B are investigating an op-
portunity for a partnership. Company A’s goal is to
optimize the cost of a manufacturing process. As part
of the partnership, company B will conduct part of
the process. Because of this, A does not know B’s
constraints on that part of the process, unless B tells
A, nor does B know A’s constraints. Usually, the con-
straints reflect the information about the company’s re-
source, strategic plans, cost information, and business
decisions. They are so critical that both companies try

1

every measure to protect them. Considering that the
partnership is not formed yet, B is afraid that, if the
partnership eventually falls through, the information it
provides to A might be used by A for B’s disadvantage.
With such a concern, B really does not feel comfortable
to give its information to any other company, neither
does A. How could these two companies find out the
benefit of a potential partnership without risking their
private information?

The above examples, without the privacy concerns,
could usually be modeled as linear systems of equa-
tions problems or linear least squares problems [15].
These scientific computation problems have proved
valuable for modeling many and diverse types of prob-
lems in planning, routing, scheduling, assignment, and
design. Industries that make use of these problems and
their extensions include banking, transportation, en-
ergy, telecommunications, and manufacturing of many
kinds. Although these problems have been well stud-
ied in the literature, their current solutions rarely ex-
tend to the situation in which multiple parties want to
jointly conduct the computations based on the private
inputs. For instance, Alice has k linear equations in n

unknown variables xi; Bob has n−k linear equations in
the same n unknown xi. Alice and Bob want to find the
solution (x1, . . . , xn) that satisfies the combined n lin-
ear equations. We know how to solve the problem if Al-
ice can give her equations to Bob or vice versa, because
it is just a normal linear system of equations problem.
However, if the equations owned by each party are so
valuable proprietary data that neither party is willing
to disclose to the other, the problem can no longer be
solved using the traditional methods, such as Gaus-
sian elimination and LU factorization, because these
methods assume that one who conducts the computa-
tion knows all the inputs, an assumption that is not
true any more in the privacy-preserving cooperative
computation situation. We need to find solutions that
allow Alice and Bob to jointly solve their combined n

linear equations while not disclosing each person’s pri-
vate equations to the other.

Currently, to solve the above problems, a commonly
adopted strategy is to assume the trustworthiness of
the participants, or to assume the existence of a trusted
third party. Such assumptions are quite strong and
maybe infeasible, and clearly it is desirable to have
solutions that do not rely on the complete trustwor-
thiness of participants or third parties. Moreover,
in certain situation, even though we could trust that
the other parties will not use our private information
against our wish, we cannot guarantee that their sys-
tems being secure enough to prevent our information
from being stolen. On the other hand, from the trusted

parties’ point of view, in order to conduct such a co-
operative computation, they have to carry the extra
burden of securing other party’s data. If a disgruntled
employee or a security breach causes the compromise
of the data, these trusted parties might face expensive
lawsuits. Therefore, it is to the favor of every par-
ticipants that nobody knows the other parties’ secret
information. Protocols that can support this type of
joint scientific computations while protecting the par-
ticipants’ privacy are of growing importance.

In this paper, we introduce the privacy-preserving
cooperative scientific computations (PPCSC) problem.
The general definition of the PPCSC problem is that
two or more parties want to conduct a scientific compu-
tation based on their private inputs, but neither party
is willing to disclose its own input to anybody else
(including a so-called trusted third party). We have
further defined several specific PPCSC problems, in-
cluding privacy-preserving cooperative linear system of
equations (PPC-LSE) problem, and privacy-preserving
cooperative linear least-square (PPC-LLE) problem,
all of which involve a matrix.

There are several ways to share a matrix. Depending
on how such a matrix is shared by Alice and Bob, or in
another word how Alice and Bob cooperate with each
other, the problems could appear in a variety of forms.
Figure 1 describes three different types of cooperation.

Figure 1(b) depicts the homogeneous cooperation,
in which each party provides its own equations; Figure
1(c) depicts the heterogeneous cooperation, in which
both parties have to jointly specify each single equa-
tion; Figure 1(d) depicts the hybrid cooperation, in
which both parties cooperate in an arbitrary way. (b)
and (c) are more meaningful cooperations than (d) in
real life, and they are two special cases of problem (d).
We have developed a protocol to solve the problem (d):
(M1 + M2)x = b1 + b2, where matrix M1 and vector b1

belong to one party, matrix M2 and vector b2 belong to
the other party. At the end of the protocol, both par-
ties know the solution x while nobody knows the other
party’s private inputs. Based on this protocol and the
similar techniques, we have solved PPC-LSE problems
and PPC-LLE problems.

The generalization of the PPCSC problem is referred
to as Secure Multi-party Computation problem (SMC)
in the literature [22]. Generally speaking, a secure
multi-party computation problem deals with comput-
ing any probabilistic function on any input, in a dis-
tributed network where each participant holds one of
the inputs, ensuring that no more information is re-
vealed to a participant in the computation than can be
computed from that participant’s input and output [8].

Goldreich states in [6] that the general secure multi-

2

X = M b

X = b

b2

b1M1

M2

(a) Normal Linear Equations
 (without cooperation)

(b) Homogeneous Cooperation

(c) Heterogeneous Cooperation (d) Hybrid Cooperation

Legend: M1: Alice’s private matrix, M2: Bob’s private matrix
b1: Alice’s private vector, b2: Bob’s private vector

M1 M2 X =

X =

M1 + M2 b1+ b1

Figure 1. Various ways of cooperation

party computation problem is solvable in theory, but he
also points out that using the solutions derived by these
general results for special cases of multi-party compu-
tation can be impractical; special solutions should be
developed for special cases for efficiency reasons. Mo-
tivated by this assertion, we are interested in seeking
special solutions to the specific PPCSC problem, solu-
tions that are more efficient than the general theoretic
solutions.

In the rest of this paper, the next subsection presents
the related work. Section 2 presents formal definition of
the privacy. Section 3 describes the PPC-LSE, PPC-
LLE protocols and their applications. Section 4 dis-
cusses the efficiency of these protocols. Section 5 sum-
marizes the paper and lays out some future work.

1.1 Related Work

The history of the multi-party computation prob-
lem is extensive since it was introduced by Yao [22]
and extended by Goldreich, Micali, and Wigderson
[18], and by many others. In the past, secure multi-
party computation research has mostly been focus-
ing on the theoretical studies, very few applied prob-
lems have been studied. Those few applied problems
include Private Information Retrieval problem (PIR)
[12, 3, 11, 10, 13, 17, 14, 9], Joint digital signature
[21, 5] and joint decryption, elections over the Inter-
net, electronic bidding [2], and privacy-preserving data
mining [16, 1].

1-out-of-N Oblivious Transfer

An 1-out-of-N Oblivious Transfer protocol [7, 4] refers
to a protocol where at the beginning of the protocol one
party, Bob has N inputs X1, . . . , XN and at the end of
the protocol the other party, Alice, learns one of the
inputs XI for some 1 ≤ I ≤ N of her choice, without
learning anything about the other inputs and without
allowing Bob to learn anything about I . An efficient
1-out-of-N Oblivious Transfer protocol was proposed
in [19] by Naor and Pinkas. Their solution can achieve
O(m) communication complexity, where m is the se-
curity parameter (i.e. the length of a number that is
hard to factor). This protocol serves as an important
building block for our protocols, and the ideas of using
the 1-out-of-N Oblivious Transfer protocol as building
block are pioneered by Naor and Pinkas in [19].

2 Security Definition

The model for this work is that of general multi-
party computation, more specifically between two
semi-honest parties. Our formal definitions are accord-
ing to Goldreich in [6]. We now present in brief the
definition for general two-party computation of a func-
tionality with semi-honest parties only. They are taken
from [6].

Definition 2.1. (privacy w.r.t. semi-honest behav-
ior): Let f : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗ × {0, 1}∗ be
a functionality, where f1(x, y)(resp., f2(x, y) denotes
the first (resp., second) element of f(x, y), and Π be a

3

two-party protocol for computing f . The view of the
first (resp., second) party during an execution of Π on
(x, y), denoted V IEW Π

1
(x, y) (resp., V IEW Π

2
(x, y)),

is (x, r1, m1

1
, . . . , m1

t) (resp., (y, r2, m2

1
, . . . , m2

t)), where
r1 (resp., r2) represents the outcome of the first (resp.,
second) party’s internal coin tosses, and m1

i (resp.,
m2

i) represents the ith message it has received. The
output of the first (resp., second) party during an exe-
cution of Π on (x, y), denoted OUTPUT Π

1
(x, y) (resp.,

OUTPUTΠ
2 (x, y)), is implicit in the party’s view of the

execution.

• We say that π privately computes f if there ex-
ist polynomial time algorithms, denoted S1 and S2

such that

{(S1(x, f1(x, y)), f2(x, y))}x,y∈{0,1}∗

≡ {(V IEWΠ

1
(x, y), OUTPUTΠ

2
(x, y))}x,y∈{0,1}∗

{(f1(x, y), S2(y, f2(x, y)))}x,y∈{0,1}∗

≡ {(OUTPUTΠ

1 (x, y), V IEWΠ

2 (x, y))}x,y∈{0,1}∗

where ≡ denotes computational indistinguishabil-
ity.

V IEWΠ

1
(x, y) and V IEWΠ

2
(x, y), OUTPUTΠ

1
(x, y)

and OUTPUTΠ

2
(x, y) are related random variables, de-

fined as a function of the same random execution.

3 Some Privacy-Preserving Coopera-

tive Scientific Computations

In this section, we describe two related protocols
for privacy-preserving cooperative scientific computa-
tion, including the protocols for the privacy-preserving
cooperative linear system of equations (PPC-LSE)
and privacy-preserving cooperative linear least-square
problem (PPC-LLS). We assume a finite field F , and
all computations are over this finite field, meaning that
entries of matrices (or vectors) are elements of a fi-
nite field and addition and multiplication are defined
with respect to that field. As a result, this assump-
tion makes the scope of the computations somewhat
different than the original computations. Such an as-
sumption is made to achieve the privacy requirements
according to Goldreich’s definitions [6]. We believe that
dropping this finite field assumption is possible if dif-
ferent privacy requirements (defined in an infinite do-
main) can be used.

3.1 Two Models of Cooperation

A common property of the above PPC-LSE and
PPC-LLE problems is the combining knowledge of a
matrix M and of a vector b. We have described in

Figure 1 three different ways of combining knowledge,
with (b) and (c) being the special cases of (d). How-
ever, in real life, cases (b) and (c) are more meaningful
than (d) because they tend to model the ways of actual
cooperations.

In the PPC-LSE and PPC-LLE problems, M and
b usually represent a set of linear constraints. Some-
times the cooperating parties each has its own set of
constraints, but sometimes they have to jointly specify
each single constraint. Therefore we classify the coop-
eration to two basic models, the heterogeneous model
and the homogeneous model.

Model 1. (Homogeneous Model) Alice has a matrix
M1 and a vector b1; Bob has a matrix M2 and a vector
b2. The size of M1 is m1 ×n, the size of M2 is m2 × n;
the lengths of the vectors b1 and b2 are m1 and m2,
respectively. Alice and Bob want to solve

(

M1

M2

)

x =

(

b1

b2

)

The model could be transformed to the the following
form:

((

M1

0

)

+

(

0
M2

))

x =

(

b1

0

)

+

(

0
b2

)

Model 2. (Heterogeneous Model) Alice has a matrix
M1; Bob has a matrix M2. The size of M1 is m × n1,
the size of M2 is m×n2, where n1 +n2 = n. Alice and
Bob both know a vector b of length m. They want to
solve

(

M1 M2

)

x = b

The above linear equations could be transformed to
the the following form:

((

M1 0
)

+
(

0 M2

))

x = b + 0

Because both models are the special cases of the
hybrid model (Figure 1 d), our solutions are developed
for the hybrid model.

3.2 Linear System of Equations Problem

Problem 1. (PPC-LSE) Alice has a matrix M1 and
a vector b1, and Bob has a matrix M2 and a vector
b2, where M1 and M2 are n × n matrices, and b1 and
b2 are n-dimensional vectors. Without disclosing their
private inputs to the other party, Alice and Bob want
to solve the linear equation

(M1 + M2)x = b1 + b2

4

The Protocol Without concerning about the privacy,
a straightforward solution would be to ask one party
(say Bob) to send his M2 and b2 to the other party,
Alice. This however does not work if Bob is concerned
about the privacy of his data. Bob cannot simply send
M1 and b1 to Alice; he has to disguise the data in a way
such that Alice cannot derive the original data from the
disguised data.

Our solution is based on the fact that the solu-
tion to the linear equations (M1 + M2)x = b1 + b2

is equivalent to the solution to the linear equations
P (M1 + M2)QQ−1x = P (b1 + b2). If Alice knows
M ′ = P (M1 + M2)Q and b′ = P (b1 + b2), she can
solve the linear equation problem: M ′x̂ = b′, and thus
getting the final solution x, where x = Qx̂. But how
can Alice know M ′ and b′ without being able to derive
the value of M2 and b2? To solve this problem, Bob
generates two invertible random n× n matrices P and
Q. Then Alice and Bob use secure protocols (will de-
scribe them later) to get Alice (and only Alice) to learn
the value of P (M1 + M2)Q and P (b1 + b2). However,
Alice will not learn the value of PM1Q, PM2Q, Pb1,
Pb2, much less P , Q, M2, or b2.

After Alice gets M ′ = P (M1 + M2)Q and b′ =
P (b1 + b2), she can solve the linear equations M ′x̂ = b′

by herself, and then send the solution x̂ to Bob, who
can compute the final solution x = Qx̂. Finally Bob
sends the solution to Alice. Although we do not pre-
vent disruption of the entire computation if Alice or
Bob misbehaves, we do allow Alice to detect the case
where Bob learns the correct answer but does not allow
Alice to learn the correct answer. For example, after
getting the actual solution, with an evil mind, Bob may
decide not to tell Alice the actual solution x. He can do
this without being caught because he can send an arbi-
trary vector to Alice, who has no way to verify whether
the received vector is the actual solution or not. This is
not fair to Alice. To achieve the fairness, Alice should
request Bob to send back a vector v = M2x− b2 along
with the solution x. This vector does not give Alice
any more power to derive Bob’s data because if Bob
is honest, Alice will know the value of M2x − b2 any-
way because of (M1 + M2)x = b1 + b2. But if Bob still
wants to cheat, he has to find two vectors x′ and v′,
such that M1x

′ − b1 = v′. Without knowing M1 and
b1, Bob cannot find these two vectors. The protocol is
described in the following:

Protocol 1. (PPC-LSE) Alice has a matrix M1 and
a vector b1, and Bob has a matrix M2 and a vector
b2. M1 and M2 are n × n matrices; b1 and b2 are n-
dimensional vector.

1. Bob generates two invertible random n×n matri-

ces P and Q.

2. Alice and Bob use a secure protocol (will describe
it later) to evaluate M ′ = P (M1 + M2)Q. Only
Alice knows the result M ′.

3. Alice and Bob use a secure protocol (will describe
it later) to evaluate b′ = P (b1 + b2). Only Alice
knows the result b′.

4. Alice solves the linear equations M ′x̂ = b′. If the
solution does not exist, Alice tells Bob so, then ter-
minates the protocol. If the solution exists, Alice
sends the solution x̂ to Bob.

5. Bob computes x = Qx̂ and v = M2x − b2, then
sends both vectors x and v to Alice.

6. Alice checks whether x is the actual solution by
verifying whether ||(M1x− b1) + v|| equals to zero
(or close to zero within the acceptable range if
computation errors are inevitable).

Private Evaluation of M ′ = P (M1 + M2)Q

To privately evaluate M ′, Alice could send p matrices
to Bob, with one of the matrices being M1 and the rest
of the matrices being random; however, Bob does not
know which one is M1. Then Bob computes the P (Hi+
M2)Q for each matrices Hi he receives. At the end
Alice uses the 1-out-of-N oblivious transfer protocol
to get back from Bob one and only one of the result,
the result of M ′ = P (M1 + M2)Q. Because of the
way the 1-out-of-N oblivious transfer protocol works,
Alice can decide which result to get, but Bob cannot
learn which one Alice has chosen. However there is
one drawback in this approach: if the value of M1 has
certain public-known properties, Bob might be able to
differentiate M1 from the other seemly random vectors.
More seriously, after Bob finally gets the solution x, it
only takes him p2 tries to find both M1 and b1.

The above drawback can be fixed by dividing the
matrix M1 into m random matrices X1, . . . , Xm, with
M1 =

∑m

i=1
Xi. Alice and Bob can use the same

method as described above to compute P (Xi + M2)Q.
As a result of the protocol, Alice gets P (Xi + M2)Q
and Bob only knows one of the p vectors is Xi, but
because of the randomness of Xi, Bob cannot find out
which one is Xi. Certainly, there is 1 out p possibility
that Bob could guess the correct Xi, but since M1 is
the sum of m such random matrices, the chance that
Bob guess the correct M1 is 1 out pm, which could be
very small if we chose pm large enough.

However, knowing the values of P (Xi + M2)Q for
i = 1, . . . , m might make it easier for Alice to figure out

5

the value of M2, therefore, Bob also needs to disguise
the results of P (Xi + M2)Q. One way to do this is to
divide M2 to m random matrices (Y1, . . . , Ym) as well,
each time Bob returns the values of P (Xi + Yi)Q + Ri

for i = 1, . . . , m, where Ri’s are also random matrices.
After Alice gets P (Xi + Yi)Q + Ri for i = 1, . . . , m,

she can sum them up and get P (M1+M2)Q+
∑m

i=1
Ri.

Bob can send the result of
∑m

i=1
Ri to Alice who can

then get P (M1 + M2)Q. Figure 2 explains how the
protocol works. The detail of the protocol is described
in the following:

Protocol 2. Alice has a Matrix M1, and Bob has a
Matrix M2 and two random matrices P and Q.

1. Alice and Bob agree on two numbers p and m, such
that pm is so big that conducting pm additions
is computationally infeasible. For example, Alice
and Bob could choose p = 2 and m = 1024.

2. Alice generates m random matrices X1, . . . , Xm,
such that M1 = X1 + . . . + Xm.

3. Bob generates m random matrices Y1, . . . , Ym,
such that M2 = Y1 + . . . + Ym.

4. For each j = 1, . . . , m, Alice and Bob conduct the
following sub-steps:

(a) Alice sends the following sequence to Bob:

(H1, . . . , Hp)

where for a secret 1 ≤ k ≤ p, Hk = Xj ; the
rest of the sequence are random matrices. k is
a secret random number known only by Alice,
namely Bob does not know the position of Xj

in the whole sequence.

(b) Bob computes P (Hi + Yj)Q + Rj for each
i = 1, . . . , p, where Rj is a random matrix.

(c) Using the 1-out-of-N Oblivious Transfer pro-
tocol, Alice gets back the result of

P (Hk + Yj)Q + Rj = P (Xj + Yj)Q + Rj

5. Bob sends
∑m

j=1
Rj to Alice.

6. Alice computes M ′ =
∑m

j=1
(P (Xj +Yj)Q+Rj)−

∑m

j=1
Rj = P (M1 + M2)Q.

Intuitively, Alice preserves her privacy by both di-
viding her matrix M1 to p random matrices which are
further hidden among many other random matrices,
and by getting the results back using the 1-out-of-N
oblivious transfer protocol. Bob’s privacy is preserved
by the 1-out-of-N oblivious transfer protocol, random
matrices Yi’s and Ri’s.

Theorem 1. The protocol Π for computing M ′ =
P (M1 + M2)Q is private.

Proof. We show a simulator S1 for simulating
viewΠ

1
(M1, M2) such that {S1(M1, M

′),−} is indistin-
guishable from {(viewΠ

1
(M1, M2), outputΠ

2
(M1, M2))}.

S1 receives as input (M1, M
′) (input/output) of Al-

ice. Recall that the view of a party is defined by
(x, r, m1, m2, . . .) where x is the input, r is the private
coin tosses and mi the ith message received.

• S1, upon input (M1, M
′) first chooses two invert-

ible random matrices P ′ and Q′ (these matrices
simulate P and Q respectively).

• S1 then finds M ′
2

(to simulate M2) by solving
P ′(M1 + M ′

2)Q
′ = M ′.

• S1 then generates m random matrices Y ′
i for i =

1, . . . , m, such that
∑m

i=1
Y ′

i = M ′
2
.

• S1 generates matrices Xi for i = 1, . . . , m using
the same coin tosses r that Alice uses in generating
these matrices.

• S1 generates matrices Ri for i = 1, . . . , m.

Let S1(M1, M
′) = {M1, r, P ′(X1 + Y ′

1
)Q′ + R′

1
, . . . ,

P ′(Xm+Y ′
m)Q′+R′

m,
∑n

i=1
R′

i}. Since viewΠ

1
(M1, M2)

= {M1, r, P (X1+Y1)Q+R1, . . . , P (Xm +Ym)Q+Rm,
∑n

i=1
Ri}. And {S1(M1, M

′),−} is computationally
indistinguishable from {viewΠ

1
(M1, M2),−}

We now show a simulator S2 for simulating
viewΠ

2 (M1, M2) such that {M ′, S2(M2,−)} is indistin-
guishable from {(outputΠ

1
(M1, M2)), viewΠ

2
(M1, M2)},

Bob generates m ∗ p random n × n matrices
{(H ′

1,1, . . . , H
′
1,p), . . . , (H ′

m,1, . . . , H
′
m,p)}. Each ele-

ment is uniformly distributed. Therefore, S2(M2,−)
= {M2, r, (H ′

1,1, . . . , H
′
1,p), . . . , (H ′

m,1, . . . , H
′
m,p)}. We

also have viewΠ
2 (M1, M2)} = {M2, r, (H1,1, . . . , H1,p),

. . . , (Hm,1, . . . , Hm,p)}. Because of the definition
of Hi,j , {M ′, S2(M2,−)} is computationally indistin-
guishable from {(outputΠ1 (M1, M2)), viewΠ

2 (M1, M2)}.

Private Evaluation of b′ = P (b1 + b2)

This protocol is similar to the protocol of evaluating
M ′. and the security property can be proved similarly.

Protocol 3. Alice has a vector b1, Bob has a vector
b2 and a random matrix P .

1. Alice and Bob agree on two numbers p and m, such
that pm is so big that conducting pm additions is
computationally infeasible.

6

Alice Bob

Alice gets:

X1 X3X2 X4

X1

X2

X3
P(X1+Y1)Q+R1, ...,

Oblivious Transfer
1−out−of−N

among random matrices

hiding X1,...,X4
X4

P(X4+Y4)Q+R4

private input: M1 private input M2=Y1+...+Y4

M1=X1+X2+X3+X4

P(M1+M2)Q =P(X1+Y1)Q+R1 + ...+P(X4+Y4)Q+R4− (R1+...+R4)

Figure 2. Private Evaluation of P (M1 + M2)Q

2. Alice generates m random vectors x1, . . . , xm, such
that b1 = x1 + . . . + xm.

3. Bob generates m random vectors y1, . . . , ym, such
that b2 = y1 + . . . + ym.

4. For each j = 1, . . . , m, Alice and Bob conduct the
following sub-steps:

(a) Alice sends the following sequence to Bob:

(h1, . . . , hp)

where for a secret 1 ≤ k ≤ p, hk = xj ; the
rest of the sequence are random vectors. k is
a secret random number known only by Alice,
namely Bob does not know the position of xj

in the whole sequence.

(b) Bob computes P (hi + yj) + rj for each i =
1, . . . , p, where rj is a random vector.

(c) Using the 1-out-of-N Oblivious Transfer pro-
tocol, Alice gets back the result of

P (hi + yj) + rj = P (xj + yj) + rj

5. Bob sends
∑m

j=1
rj to Alice.

6. Alice computes b′ =
∑m

j=1
(P (xj + yj) + rj) −

∑m

j=1
rj = P (b1 + b2).

Theorem 2. The protocol for computing b′ = P (b1 +
b2) is private.

Theorem 3. PPC-LSE protocol is a protocol for pri-
vately computing the solution to the Linear System of
Equations problem.

Proof. We need to show a simulator S1

for simulating viewΠ
1 ((M1, b1), (M2, b2))

such that {S1((M1, b1), x), x} is indistin-
guishable from {(viewΠ

1 ((M1, b1), (M2, b1)),
outputΠ2 ((M1, b1), (M2, b2)))}.

• Alice generates random matrix M ′, and then sets
b′ = M ′x. M ′ is to simulate P (M1 + M2)Q, and
b′ is to simulate P (b1 + b2).

• From the proof of the protocols for evaluating M ′

and b′, we can similarly simulate Alice’s view upon
the input of (M1, M

′) (resp., (b1, b
′)).

Based on the proof of the protocols for evalu-
ating M ′ and b′, we know that {S1((M1, b1), x), x}
is indistinguishable from {(viewΠ

1
((M1, b1), (M2, b2)),

outputΠ2 ((M1, b1), (M2, b2)))}.
The design of the simulator S2 is similarly based on

the simulators used in the proof of the protocols for
evaluating M ′ and b′.

3.3 Privacy-Preserving Cooperative Linear
Least-Squares Problem

The linear system of equations problem consists of
n equations of n unknown variables. There are situa-
tions where we have more equations to satisfy than the
number of unknown variables. Most often, we cannot
satisfy all of these equations, but we may find a solution
that can satisfy them as best as we can. This problem
is called the linear least-squares problem. We solve
the privacy-preserving cooperative linear least-squares
problem (PPC-LLS) in this subsection.

7

Problem 2. (PPC-LLS) Alice has a matrix M1 and
a vector b1, and Bob has a matrix M2 and a vector b2,
where M1 and M2 are m×n matrices (m > n), and b1

and b2 are m-dimensional vectors. Without disclosing
their private inputs to the other party, Alice and Bob
want to solve the linear equations

(M1 + M2)x = b1 + b2

Since there are more conditions (equations) to be sat-
isfied than degrees of freedom (variables), it is unlikely
that they can all be satisfied. Therefore, they want to
attempt to satisfy the equations as best as they can–
that is, make the size of the residual vector r with
components

rj = cj −

n
∑

i=1

ajixi

as small as possible (aji are the entries in the new ma-
trix M = M1 +M2, cj are the entries in the new vector
b = b1 + b2). The least-squares criterion is the use of
the Euclidean (or least-squares) norm for the size of r;
that is, minimize

√

√

√

√

m
∑

j=1

r2

j = ||r||2

Solution: Linear least squares problem Mx = b can
be expressed in linear system:

MT Mx = MT b

which contains n linear equations in the n unknowns xi,
hence can be solved using the usual methods for the lin-
ear equations problem, such as the the Gaussian elimi-
nation method and the Cholesky method, Such an ap-
proach to solve the least-squares problem is called the
normal equations approach because MT Mx = MT b

are normal equations.
In the privacy-preserving cooperative linear least-

squares problem, M = M1 + M2, b = b1 + b2, therefore
we have MT M = MT

1 M1 +MT
1 M2 +MT

2 M1 +MT
2 M2,

and MT b = MT
1

b1 + MT
1

b2 + MT
2

b1 + MT
2

b2.
Therefore, the linear equations MT Mx = MT b be-

comes the following:

(MT
1 M1 + MT

1 M2 + MT
2 M1 + MT

2 M2)x

= (MT
1 b1 + MT

1 b2 + MT
2 b1 + MT

2 b2)

Using the Matrix-Vector Product protocol and the
Matrix Product protocol (both protocols will be de-
scribed next), Alice and Bob can get the following:

V1 + V2 = MT
1

M2

W1 + W2 = MT
2

M1

v1 + v2 = MT
1

b1

w1 + w2 = MT
2

b2

where matrices V1, W1, vectors v1 and w1 are known
only to Alice; matrices V2, W2, vectors v2 and w2 are
known only to Bob. Let M ′

1
= MT

1
M1 + V1 + W1,

M ′
2 = MT

2 M2 + V2 + W2, b′1 = MT
1 b1 + v1 + w1, b′2 =

MT
2

b2 + v2 + w2, we have

(M ′
1 + M ′

2)x = b′1 + b′2

where M ′
1 and M ′

2 are n×n matrices, and b′1 and b′2
are vectors of length n; M ′

1
and b′

1
are known only to

Alice, and M ′
2

and b′
2

are known only to Bob. This is
a PPC-LSE problem. It can be solved using the PPC-
LSE protocol described in 3.2.

Protocol 4. (Matrix Product Protocol) Alice has a
private matrix A, Bob has a private matrix B. At the
end of the protocol, Alice gets Ra, and Bob gets Rb,
where Ra +Rb = AB, Ra and Rb are random matrices.

1. Alice and Bob agree on two numbers p and m, such
that pm is so big that conducting pm additions is
computationally infeasible.

2. Alice generates m random matrices X1, . . . , Xm,
such that A = X1 + . . . + Xm.

3. For each j = 1, . . . , m, Alice and Bob conduct the
following sub-steps:

(a) Alice sends the following sequence to Bob:

(H1, . . . , Hp)

where for a secret 1 ≤ k ≤ p, Hk = Xj ; the
rest of the sequence are random matrices. k is
a secret random number known only by Alice,
namely Bob does not know the position of Xj

in the whole sequence.

(b) Bob computes HiB−Rj for each i = 1, . . . , p,
where Rj is a random matrix.

(c) Using the 1-out-of-N Oblivious Transfer pro-
tocol, Alice gets back the result of

HkB − Rj = XjB − Rj

4. Alice gets Ra =
∑m

j=1
(XjB − Rj) = AB −

∑m

j=1
Rj , and Bob gets Rb =

∑m

j=1
Rj .

8

Protocol 5. (Matrix-Vector Product Protocol) Alice
has a private matrix A, Bob has a private vector b.
At the end of the protocol, Alice gets ra, and Bob gets
rb, where ra + rb = Ab, Ra and Rb are random vectors.

The protocol is similar to the Matrix Product pro-
tocol. Just replace each occurrence of matrix B in
the Matrix Product protocol with the vector b; replace
the random matrix Rj with the random vector rj for
j = 1, . . . , m; also replace the matrix Ra with the vec-
tor ra, and Rb with rb.

Protocol 6. (PPC-LLS)

1. Using the Matrix-Vector product protocol and the
Matrix product protocol, Alice gets V1, W1, v1,
and w1; Bob gets V2, W2, v2, and w2; where, Ui

and Wi are matrices, vi and wi are vectors, and
V1 + V2 = MT

1 M2, W1 + W2 = MT
2 M1, v1 + v2 =

MT
1

b1, w1 + w2 = MT
2

b2.

2. Alice computes M ′
1 = MT

1 M1 + V1 + W1 and b′1 =
MT

1
b1 + v1 + w1.

3. Bob computes M ′
2

= MT
2

M2 + V2 + W2 and b′
2

=
MT

2
b2 + v2 + w2.

4. Alice and Bob use PPC-LSE protocol to solve
(M ′

1
+ M ′

2
)x = b′

1
+ b′

2
.

The linear least-squares problem are normally used
in regression and mathematical modeling. Consider
building an investment model for a financial organiza-
tion. One example is to model customers’ investment
as a function of age. In such a case the bank knows
or believes or hopes there are n different factors–all
related to the age–that influence the customers’ de-
cision on investment, and the bank wants to build a
mathematical model according to these n factors. For-
mally speaking, the bank want to find out the function
b(t) =

∑n

i=1
xifi(t), where t is the variable represent-

ing the age, and fi(t) express the different age factors.
Suppose now that the bank takes a large number

of observation from the data it collected, and obtains
values bj for t values tj , j = 1, . . . , m, and m > n. The
problem of building such a mathematical model is just
to solve the following linear least-square system:

dj =

n
∑

i=1

fi(tj)xi, j = 1, . . . , m

There are times when one financial organization
does not have the sufficient data to build such a math-
ematical model, it thereby needs to cooperate with an-
other financial organization, who also wants to benefit
from such a cooperation. So both financial organiza-
tions would contribute their own data toward building

such a model. Because this type of data usually con-
sists of proprietary information that none of the finan-
cial organizations is willing to disclose to the others,
these two financial organizations need to find a way to
build the mathematical model without violating their
privacy constraints. They can use PPC-LLS protocol.

Theorem 4. PPC-LLS protocol is a protocol for pri-
vately computing the solution to the Linear Least-
Squares Problem.

The theorem is correct because the PPC-LLS pro-
tocol is reduced to the PPC-LSE protocol, which is
already proved.

4 Protocol Efficiency

A Comparison to Generic Solutions.

The motivation of this research, i.e. designing spe-
cific solutions for each specific problems, is to reduce
the communication cost. Therefore, in this section, we
will compare the communication cost of our approach
with that of the general solutions (the circuit evalua-
tion approach)

For the PPC-LSE problem (and also for the PPC-
LLE problem because it can be reduced to the PPC-
LSE problem), assume the size of the matrix M is n×n,
and the d is the maximum length to represent a number
in F . Assume that Gaussian elimination method is
used in both the PPC-LSE protocol and the general
solution.

As we know that the cost of Gaussian elimination
takes O(n3) multiplication operations. And by a rough
estimate, the size of a secure circuit for a single mul-
tiplication is about O(d2). Therefore, the total size
of the circuit to conduct the Gaussian elimination is
O(n3 ∗ d2).

In the PPC-LSE protocol, the cost of communi-
cation is O(µ ∗ n2), where µ is the security parame-
ter. Since the difficulty to compromise the security is
O(2µ ∗ n2) (n2 is introduced by the multiplication of
a matrix and a vector, and 2µ is introduced by the
oblivious transfer), setting µ = 256 is reasonably se-
cure. Therefore the cost of communication O(µ ∗ n2)
is significantly better than O(n3 ∗ d2).

5 Conclusion and Future Work

In this paper, we have defined a set of new privacy-
preserving cooperative scientific computation prob-
lems: privacy-preserving cooperative linear system of
equations problem and privacy-preserving cooperative
linear least-square problem. We have developed proto-
cols to solve these problems.

9

The major limitation of this work is due to the fi-
nite field assumption, which makes the computations
in our paper somewhat different from the original sci-
entific computations. In our future work, we would
like to define a finite field that makes our computa-
tions consistent with the original scientific computa-
tions. Another alternative is to devise meaningful pri-
vacy requirements over infinite field, rather than using
what Goldreich defined for a finite domain.

Rice points out that using MT Mx = MT b to solve
the linear least-square problem is not always the best
approach, because it introduces the ill-conditioned ma-
trix MT M–the condition number of MT M is the con-
dition number of M squared [20]. In the case where con-
dition number of MT M is too bad, the solution might
be random numbers unrelated to the original problem.
In those cases, other approaches–such as the Gram-
Schmidt Orthogonalization approach and the Orthogo-
nal Matrix Factorization approach– are better than the
normal equations approach. Developing protocols to
solve the least-square problem using these approaches
is an avenue we could pursue in the future work.

There are some other interesting scientific computa-
tion problems that we will study in the future work,
such as how to compute eigenvalues, eigenvectors, de-
terminants, conditions, and factorization of a matrix in
the privacy-preserving cooperative computation situa-
tion.

Acknowledgments

We are very grateful to Rebecca Wright for her valu-
able suggestions and advice. We also thanks anony-
mous reviewers for their valuable comments.

References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-
preserving data mining. In Proceedings of the 2000
ACM SIGMOD on Management of data, pages 439–
450, Dallas, TX USA, May 15 - 18 2000.

[2] C. Cachin. Efficient private bidding and auctions with
an oblivious third party. In Proceedings of the 6th ACM
conference on Computer and communications security,
pages 120–127, Singapore, November 1-4 1999.

[3] B. Chor and N. Gilboa. Computationally private in-
formation retrieval (extended abstract). In Proceedings
of the twenty-ninth annual ACM symposium on The-
ory of computing, El Paso, TX USA, May 4-6 1997.

[4] G. Brassard, C. Crepeau and J. Robert. All-or-nothing
disclosure of secrets. In Advances in Cryptology -
Crypto86, Lecture Notes in Computer Science, volume
234-238, 1987.

[5] Y. Desmedt. Some recent research aspects of threshold
cryptography. In Lecture Notes in Computer Science
1396, pages 158–173. Springer-Verlag, 1997.

[6] O. Goldreich. Secure multi-party com-
putation (working draft). Available from
http://www.wisdom.weizmann.ac.il/home/oded/public html/
foc.html, 1998.

[7] S. Evan, O. Goldreich and A. Lempel. A randomized
protocol for signing contracts. Communications of the
ACM, 28:637–647, 1985.

[8] S. Goldwasser. Multi-party computations: Past and
present. In Proceedings of the sixteenth annual ACM
symposium on Principles of distributed computing,
Santa Barbara, CA USA, August 21-24 1997.

[9] Y. Gertner, S. Goldwasser and T. Malkin. A random
server model for private information retrieval. In 2nd
International Workshop on Randomization and Ap-
proximation Techniques in Computer Science (RAN-
DOM ’98), 1998.

[10] G. Di-Crescenzo, Y. Ishai and R. Ostrovsky. Univer-
sal service-providers for database private information
retrieval. In Proceedings of the 17th Annual ACM
Symposium on Principles of Distributed Computing,
September 21 1998.

[11] Y. Ishai and E. Kushilevitz. Improved upper bounds
on information-theoretic private information retrieval
(extended abstract). In Proceedings of the thirty-first
annual ACM symposium on Theory of computing, At-
lanta, GA USA, May 1-4 1999.

[12] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan.
Private information retrieval. In Proceedings of IEEE
Symposium on Foundations of Computer Science, Mil-
waukee, WI USA, October 23-25 1995.

[13] E. Kushilevitz and R. Ostrovsky. Replication is not
needed: Single database, computationally-private in-
formation retrieval. In Proceedings of the 38th annual
IEEE computer society conference on Foundation of
Computer Science, Miami Beach, Florida USA, Octo-
ber 20-22 1997.

[14] Y. Gertner, Y. Ishai, E. Kushilevitz and T. Malkin.
Protecting data privacy in private information re-
trieval schemes. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, Dallas, TX
USA, May 24-26 1998.

[15] C. L. Lawson and R. J. Hanson. Solving Least Squares
Problems. Prentice-Hall, Englewood Cliffs, 1974.

[16] Y. Lindel and B. Pinkas. Privacy preserving data min-
ing. In Advances in Cryptology - Crypto2000, Lecture
Notes in Computer Science, volume 1880, 2000.

[17] C. Cachin, S. Micali and M. Stadler. Computation-
ally private information retrieval with polylogarith-
mic communication. Advances in Cryptology: EU-
ROCRYPT ’99, Lecture Notes in Computer Science,
1592:402–414, 1999.

10

[18] O. Goldreich, S. Micali and A. Wigderson. How to play
any mental game. In Proceedings of the 19th annual
ACM symposium on Theory of computing, pages 218–
229, 1987.

[19] M. Naor and B. Pinkas. Oblivious transfer and poly-
nomial evaluation (extended abstract). In Proceedings
of the 31th ACM Symposium on Theory of Computing,
pages 245–254, Atanta, GA, USA, May 1-4 1999.

[20] J. R. Rice. Matrix Computations and Mathematical
Software. McGraw-Hill Book Company, 1981.

[21] A. Shamir. How to share a secret. Communication of
the ACM, 22(11):612–613, 1979.

[22] A. Yao. Protocols for secure computations. In Proceed-
ings of the 23rd Annual IEEE Symposium on Founda-
tions of Computer Science, 1982.

11

