Contego: Capability-Based Access Control for
Web Browsers

Tongbo Luo and Wenliang Du*

Department of Electrical Engineering & Computer Science,
Syracuse University, Syracuse, New York, USA,
{toluo,wedu} @syr.edu

Abstract. Over the last two decades, the Web has significantly transformed our
lives. Along with the increased activities on the Web come the attacks. A recent
report shows that 83% of web sites have had at least one serious vulnerability.
As the Web becomes more and more sophisticated, the number of vulnerable
sites is unlikely to decrease. A fundamental cause of these vulnerabilities is the
inadequacy of the browser’s access control model in dealing with the features in
today’s Web. We need better access control models for browsers.

Today’s web pages behave more and more like a system, with dynamic ele-
ments interacting with one another within each web page. A well-designed ac-
cess control model is needed to mediate these interactions to ensure security. The
capability-based access control model has many properties that are desirable for
the Web. This paper designs a capability-based access control model for web
browsers. We demonstrate how such a model can be beneficial to the Web, and
how common vulnerabilities can be easily prevented using this model. We have
implemented this model in the Google Chrome browser.

1 Introduction

Over the last two decades since the Web was invented, the progress of its development
has been tremendous. From the early day’s static web pages to today’s highly dynamic
and interactive ones, the Web has evolved a lot. During the technology evolution, secu-
rity has often been overlooked. A recent report produced by WhiteHat Security indicates
that 83% of websites have had at least one serious vulnerability, 64% currently have at
least one serious vulnerability, and the average number of serious vulnerabilities per
website is 16.7 [13]. These numbers are quite alarming.

A fundamental cause for many of these problems is the browser’s failure to mediate
the interactions within each web page. In terms of access control, the Web has adopted
a policy called Same-Origin Policy (SOP), which gives all the contents from the same
origin the same privileges. Such a policy, sufficient for early day’s Web, is not appro-
priate anymore. The inadequacy of these access control models has been pointed out
by various studies [1,2,4,7,8, 10, 12]. A fundamental problem of SOP is in its coarse
granularity. Today’s web page can simultaneously contain contents with varying lev-
els of trustworthiness. For example, advertisements from a third party and inputs from

* This work was supported by Award No. 1017771 from the US National Science Foundation.



users are less trustworthy than the first-party contents produced by the websites them-
selves. These untrusted contents should not be given the same privileges as those trusted
first-party contents.

To solve the access control problems faced by SOP, our earlier work, Escudo [5],
proposes a ring access control model for web browsers. This model allows web appli-
cation servers to put contents in different rings, based on their trustworthiness: contents
that are more trustworthy are put in the higher privileged rings. Escudo ensures that
contents in the lower-privileged rings cannot access contents in the higher-privileged
rings. While Escudo has helpped solve a number of security problems on the Web, its
granularity on privileges is not fine enough.

There are two typical types of privileges within a web page. One is the privileges
to access certain objects, we call these privileges the object-based privileges. The other
type is the privileges to access certain actions, such as invoking AJAX APIs, issuing
HTTP POST requests, accessing cookies, etc. Whether a principal can access these
actions or not has security consequences. We call this type of privileges the action-
based privileges. Escudo can deal with the object-based privileges quite well, but it is
inappropriate for controlling the action-based privileges, because no specific objects
are associated to the action-based privileges. As a result, a principal in Escudo basically
has all the action-based privileges entitled to its origin, regardless of which ring it is in.
This is undesirable according to the least-privilege principle: if a Javascript code from
a semi-trusted third party only needs to send HTTP GET requests, we should not give
this code the privilege to invoke AJAX APIs or send HTTP POST requests.

To secure the Web, controlling the uses of action-based privileges must be built into
the browser’s access control model. This objective can be achieved using capability-
based access control. The main idea of capability is to define a “token” (called capabil-
ity) for each privilege; a principal needs to possess the corresponding tokens if it wants
to use certain privileges. Because of these fine-grained capabilities, we can assign the
least amount of privileges to principals.

The Web has evolved to a stage where it becomes too risky to assign all the action-
based privileges to the principals within a web page. These privileges should be sepa-
rated, and assigned to principals based on their needs and trustworthiness. The same-
origin policy model does not separate these privileges, neither does Escudo. To handle
the web applications with ever-increasing complexity and to reduce the risks of web ap-
plications, we believe that web browsers should adopt the capability model in its access
control. As a first step towards this direction, we have designed Contego, a capability-
based access control system for web browsers; we have implemented our design in the
Google Chrome browser, and have conducted case studies using our implementation.
Due to the page limitation, details of the case studies are not included in this paper; they
can be found in the extended version of the paper [9].

2 Capability for Browsers

Access control is the ability to decide who can do what to whom in a system. An access-
control system consists of three components: principals, objects, and an access-control
model. Principals (the who) are the entities in the system that can manipulate resources.
Objects (the whom) are the resources in the system that require controlled access. An



access-control model describes how access decisions are made in the system; the ex-
pression of a set of rules within the model is an access-control policy (the what). A
systematic design of an access-control model should first identify the principals and
objects in the system.

Principals in a web page are elements that can initiate actions. There are several
types of principals inside a web page: (1) Dynamic contents, such as Javascript code,
are obvious principals. (2) Many HTML tags in a web page can initiate actions, such
as a, img, form, iframes, button, meta 1 etc. These tags are considered as
principals. (3) Plugins can also initiate actions, so are also considered as principals.
Objects include everything in a web page or those associated with a web page. DOM
objects are obviously considered as objects in our access control system. Cookies are
another type of objects.

There are three major components in a capability-based access control: the list of
capabilities supported by the system, how capabilities are binded to principals, and how
access control is enforced. We will discuss each of these components in this section.

2.1 Capabilities

Learning from the history of capability design in Linux, we know that the develop-
ment of capabilities is an evolving process: in this process, rarely used capabilities may
be eliminated, more desirable capabilities may be added, new privileges may be intro-
duced, and so on. Therefore, we do not intend to come up with a list of capabilities
that are complete. We consider our efforts of introducing capabilities in web browsers
only as the first step in such an evolution. In this initial step, we have identified a list of
capabilities. They are classified into five categories:

— Access sensitive resources: bookmarks, cookies, certificates, HTMLS local storage,
and custom protocol handlers.

— Access history resources: web cache, history, downloaded item, etc.

— Access DOM elements, such as whether a principal is allowed to access DOM ob-
jects, register an event handler, or to access the attribute settings of DOM objects.

— Send HTTP Requests, Ajax GET/POST and HTTP GET/POST requests.

— Execute Javascript or plug-in programs, including Flash, PDF, video, audio, etc.

As a proof of concept, we have only implemented a subset of the above capabilities
in our prototype, including capabilities to set cookies, read cookies, use cookies (i.e.
attaching cookies to HTTP requests), capabilities to send AJAX GET/POST requests,
capabilities to send HTTP GET/POST requests, and capabilities to click hyperlinks and
buttons. We use a bitmap string to represent capability lists, with each bit of the bitmap
string representing one specific capability.

! The met a tag is supposed to be put in the header of a web page only, but most web browsers
accept it if it is embedded in the body of the page.



2.2 Binding of Capabilities

To use capabilities in access control within a web page, web developers, when con-
structing a web page, need to assign capabilities to the principals in the page, based
on the actual needs of principals. As we have discussed before, principals are DOM
elements of a web page. In Escudo, the HTML div tag is used for assigning the ring
label to each DOM element. HTML div tags were originally introduced to specify
style information for a group of HTML tags; Escudo introduces a new attribute called
the ring attribute for the div tag. To be consistent with Escudo, we take the same
approach. We add another attribute called cap for the div tag. This attribute assigns a
capability list to all the DOM elements within the region enclosed by its corresponding
div and /div tags. An example is given in the following:

<div cap="11000110"> ... contents ... </div>

In the above example, the privileges of the contents within the specified div region
are bounded by capabilities 1, 2, 6, and 7; namely no DOM elements within this region
can have any capability beyond these four.

2.3 Capability Enforcement

Enforcement in capability-based access control is well defined in the capability model:
an access action is allowed only if the initiating principal has the corresponding capabil-
ity. The main challenge in a capability system is to identify the initiating principals and
their associated capabilities. In general, identifying principals is not so difficult: when-
ever an action is initiated (either by Javascript code or by HTML tags), the browser can
easily identify the div region of the code or tags, and can thus retrieve the capabilities
binded to this region. Unfortunately, as a proverb says, the devil is in the details; iden-
tifying principals is quite non-trivial. We describe details of capability enforcement in
the Implementation section.

2.4 Ensuring Security

The key to capability enforcement is the integrity of the configuration (i.e., capability
assignment) provided by the application. We describe additional measures to prevent
the configuration from being tampered with.

Configuration Rule: Protecting against Node Splitting. Any security configuration
that relies on HTML tags are vulnerable to node-splitting attacks [6]. In a node-splitting
attack, an attacker may prematurely terminate a div region using </div>, and then
start a new div region with a different set of capability assignments (potentially with
higher privileges). This attack escapes the privilege restriction set on a div region
by web developers. Node-splitting attacks can be prevented by using the markup ran-
domization techniques, such as incorporating random nonces in the div tags [3, 11].
Contego-enhanced browsers will ignore any </div> tag whose random nonce does
not match the number in its matching div tag. The random nonces are dynamically
generated when a web page is constructed, so adversaries cannot predict them before
inserting malicious contents into a web page.



Scoping Rule. When contents are from users, they are usually put into div regions with
limited privileges. However, user contents may also include div tags with the capability
attribute. If web applications cannot filter out these tags, attackers will be able to create
a child div region with an arbitrary list of capabilities. To prevent such a privilege-
escalation attack, Contego defines the following scoping rule: The actual capabilities of
a DOM element is always bounded by the capabilities of its parent. Formally speaking,
if a div region has a capability list L, the privileges of the principals within the scope
of this div tag, including all sub scopes, are bounded by L.

Access Rule for Node Creation/Modification. Using DOM APIs, Javascript programs
can create new or modify existing DOM elements in any div region. To prevent a prin-
cipal from escalating its privileges by creating new or modify existing DOM elements
in a higher privileged region, Contego enforces the following access rule: A principal
with capabilities L can create a new or modify an existing DOM element in another
div region with capabilities L’ if L’ is a subset of L, i.e., the target region has less
privilege than the principal.

Cross-Region Execution Rule. In most web applications, Javascript functions are often
put in several different places in the same HTML page. When a Javascript program
from one div region (with privilege .A) invokes a function in another di v region (with
privilege B), Contego enforces the following rule: when the function is invoked, the
privilege of the running program becomes the conjunction of A and B, i.e., A A B.
Namely, the privilege will be downgraded if 55 has less privilege than A. After the
function returns back to the caller, the privilege of the running program will be restored
to A again.

3 Implementation

3.1 System Overview

We have implemented Contego in the Google Chrome browser?. In Chrome, there are
four major components related to our implementation: Browser Process (Kernel), Ren-
der Engine, Javascript Interpreter (V8), and sensitive resources. We added two subsys-
tems: Binding System, and Capability Enforcement System. Figure 1 depicts the posi-
tions of our additions within Chrome. We also evaluated our model on multiple web
applications; see our full paper [9] for details.

Binding System. The purpose of the binding system is to find the capabilities of a
principal, and store them in data structures where the enforcement module can access.
The capability information of each principal is stored inside the browser core. Only the
browser’s code can access the capability information; the information is not exposed to
any code external to the browser’s code base (e.g. Javascript code).

Effective Capabilities. When an access action is initiated within a web page, to con-
duct access control, the browser needs to know the corresponding capabilities of this

2 We use Version 3.0.182.1. We plan to port our implementation to the most recent version.



Browser Core Sensitive
- Resource

Loader

HTML
Parser

X MLHttp
Request
Object

Cookies

BookiMark

Render Engine 5 Listener
Vector

JavaScript T,
iste
L Interpreter Link

Sensitive

Source =il !
Principle Resource

Code [

]

Fig. 1. System Overview

access. We call these capabilities the effective capabilities. 1dentifying effective capa-
bilities is nontrivial: in the simplest case, the effective capabilities are those attached
to the principal that initiates the action. Javascript code makes the situation much more
complicated. A key functionality of our binding system is to keep track of the effective
capabilities within a web page. We will present the details later in this section.

Capability Enforcement. Our implementation takes advantage of the fact that ev-
ery user-level access to sensitive resources goes through the browser kernel, precisely,
through the local APIs. When they are invoked, the enforcement system checks whether
the effective capabilities have the required capabilities for the invoked APIs.

Actions. Within a web page, there are several types of actions. For each type, when it
takes place, we need to identify the effective capabilities that should be applied to the
actions. We discuss these different types of actions in the following subsections.

3.2 HTML-Induced Actions

Some actions are triggered by HTML tags. The effective capabilities of these HTML-
induced actions are the capabilities assigned to the tag’s div region. These capabilities
will be extracted by the HTML parser, delivered to the binding system, and stored in
a shadow DOM tree. This shadow DOM tree stores capabilities of each DOM node,
and it can only be accessed by the binding system. Although Javascript programs can
modify the attributes of DOM objects through various APIs, these APIs cannot be used
to modify the capability attributes, because the values of the capability attributes are
stored in the shadow tree, not the original tree; no shadow-tree API is exposed to
Javascript. When an action is initiated from an HTML tag, the enforcement system
identifies its DOM object, retrieves the capabilities from its shadow object, and finally
checks whether the capabilities are sufficient. If not, the action will not be carried out.

3.3 Javascript-Induced Actions

Some actions are triggered by Javascript code. Identifying the effective capabilities of
these Javascript-induced actions is quite complicated. This is because a running se-



quence of Javascript can span multiple principals with different sets of capabilities. The
system will trace the executing principal and record the effective capabilities. We use
a stack data structure in our binding system to store the effective capabilities in the
runtime (we call it the capability stack). When a Javascript program gets executed, the
capabilities of the corresponding principal will be pushed into the stack as the first el-
ement of the stack. The top element of the stack is treated as the effective capabilities,
denoted as . When code in another principal (say principal B) is invoked, the updated
effective capabilities E A Cap(B) will be pushed into the stack, where Cap(B) repre-
sents the capabilities assigned to B. When the code in B returns, the system will pop
up and discard the top element of the stack.

3.4 Event-Driven Actions

Some actions are triggered by events, not directly by principals. When these actions are
triggered, we need to find the capabilities of the responsible principals. Some events are
statically registered via HTML code; for them, it is quite easy to find their principals by
identifying the DOM nodes they belong to. Many other events are however registered
dynamically, during the runtime, such as timer events, AJAX callback events, and those
dynamically registered to DOM objects by Javascript code. Since the principals can be
easily identified during registration, Contego binds the capabilities of the principals to
the event handlers when the handlers are registered to events. Therefore, when these
events are triggered, Contego can retrieve the capabilities from the event handlers.

Additional
Cost

M Criginal
cost

Fig. 2. Performance

3.5 Performance Overhead

To evaluate the performance of our implementation, we have conducted experiments to
measure the extra cost our model brings to the Chrome. We measured how long it takes
a page to be rendered in our modified browser versus in the original browser. We used
some of the built-in tools in Chrome to conduct the measurement. In our evaluation,
we tested four web applications: Collabtive, phpBB2, phpCalendar and MediaWiki; we
measured the total time spent on rendering pages and executing Javascript code. The
configuration of the computer is the following: Inter(R) Core(TM)2 Quad CPU Q6600
@ 2.40GHz, 3.24 GB of RAM. The results are plotted in Figure 2.



The results show that the extra cost caused by the model is quite small. In most
cases, it is around three percent. For phpBB2, it is a little bit higher, because phpBB2
uses more Javascript programs than the others.

4 Conclusion and Future Work

To enhance the security infrastructure of the Web, we have designed a capability-based
access control for web browsers. This access control model, widely adopted in operating
systems, provides a finer granularity than the existing models in browsers. We have
implemented this model in Google Chrome. Using case studies, we have demonstrated
that many of the hard-to-defend attacks faced by the Web can be easily defended using
the capability-based access control model within the browser. The full details of this
work can be found in the extended version of the paper [9].

References

1. D. Crockford. ADSafe. http://www.adsafe.org.

2. M. Dalton, C. Kozyrakis, and N. Zeldovich. Nemesis: Preventing authentication & access
control vulnerabilities inweb applications. In Proceedings of the Eighteenth Usenix Security
Symposium (Usenix Security), Montreal, Canada, 2009.

3. M. V. Gundy and H. Chen. Noncespaces: Using randomization to enforce information flow
tracking and thwart cross-site scripting attacks. In Proceedings of the 16th Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA, February 2009.

4. C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Protecting browser state from web
privacy attacks. In WWW 2006.

5. K. Jayaraman, W. Du, B. Rajagopalan, and S. J. Chapin. Escudo: A fine-grained protection
model for web browsers. In Proceedings of the 30th International Conference on Distributed
Computing Systems (ICDCS), Genoa, Italy, June 21-25 2010.

6. T. Jim, N. Swamy, and M. Hicks. Defeating script injection attacks with browser-enforced
embedded policies. In WWW 2007.

7. C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner. Dynamic pharming attacks and locked
same-origin policies for web browsers. In CCS 2007.

8. B. Livshits and U. Erlingsson. Using web application construction frameworks to protect
against code injection attacks. In PLAS 2007.

9. T. Luo and W. Du. Contego: Capability-based access control for web browsers (full version).
http://www.cis.syr.edu/~wedu/Research/paper/contego_full.pdf.

10. L. A. Meyerovich and V. B. Livshits. Conscript: Specifying and enforcing fine-grained se-
curity policies for javascript in the browser. In IEEE Symposium on Security and Privacy,
pages 481-496, 2010.

11. Y. Nadji, P. Saxena, and D. Song. Document structure integrity: A robust basis for cross-
site scripting defense. In Proceedings of the 16th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, February 2009.

12. B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and A. Perrig. CLAMP: Practical
prevention of large-scale data leaks. In Proc. IEEE Symposium on Security and Privacy,
Oakland, CA, May 2009.

13. WhiteHat Security. Whitehat website security statistic report, 10th edition, 2010.



