
Capability-Based Access Control for Web Browsers

Tongbo Luo and Wenliang Du
Department of Electrical Engineering & Computer Science

Syracuse University, Syracuse, New York, USA

ABSTRACT
Over the last two decades, the Web has significantly trans-
formed our lives. Along with the increased activities on the
Web come the attacks. A recent report shows that 83% of
web sites have had at least one serious vulnerability. As the
Web becomes more and more sophisticated, the number of
vulnerable sites is unlikely to go down. A fundamental cause
of these vulnerabilities is the inadequacy of the browser’s
access control model in dealing with the features in today’s
Web. We need better access control models for browsers.

Today’s web pages behave more and more like a system,
with dynamic elements interacting with one another within
each web page. A well-designed access control model is
needed to mediate these interactions to ensure security. The
capability-based access control model has many properties
that are desirable for the Web. This paper designs a capability-
based access control model for web browsers. We demon-
strate how such a model can be beneficial to the Web, and
how common vulnerabilities can be easily prevented using
this model. We have implemented this model in the Google
Chrome browser, and have conducted case studies and eval-
uation on our design and implementation.

1. INTRODUCTION
Over the last two decades since the Web was invented,

the progress of its development has been tremendous. From
the early day’s static web to today’s highly dynamic and
interactive Web 2.0, the Web has evolved a lot, and there is
no sign that the evolution will slow down in the next decade:
with the highly expected arrival of HTML5 and the so-called
“Web 3.0”, the Web will become more and more powerful,
sophisticated, and ubiquitous.

During the technology evolution, security has often been
overlooked. In the early days of the Web era, attacks on the
web were not many. However, a recent report produced by
WhiteHat Security indicates that 83% of websites have had
at least one serious vulnerability, 64% currently have at least
one serious vulnerability, and the average number of serious

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2011 Syracuse University.

vulnerabilities per website is 16.7 [24]. These numbers are
quite alarming.

It is very tempting to blame the developers of web appli-
cations for these vulnerabilities, because the vulnerabilities
are indeed caused by their mistakes. However, this blame
cannot explain an obvious fact: the percentage of vulnerable
websites is way too high, much higher than what we have
seen in traditional software. Although mistakes are made by
developers, something more fundamental might have caused
such a significant increase in mistakes.

To find out the fundamental causes, we need to look at
the evolution of the Web. Figure 1 depicts the change of
the Web during the evolution. A clear trend highlighted in
the figure is the evolution of web contents from static to
dynamic. With more and more dynamic entities included
in web pages, and more and more interaction among these
entities, a web page starts to behave like a system. If these
entities are not equally trusted, their interactions must be
mediated, and thus a well-designed access control system is
necessary to mediate the interactions within each web page.

Early days Present (Web 2.0) Future (HTML5, “Web 3.0”)Timeline

Pa
ge

Co
nt

en
ts

A
cc

es
s

Co
nt

ro
l i

n
W

eb
 P

ag
es

Current situation: 83% of web applications are vulnerable

Same Origin Policy: The model has never changed

Static Dynamic Even more dynamic

Contents are trusted Trusted & Untrusted contents mixed

Not much privilege Contents have more and more privileges

Figure 1: The Evolution of the Web

Unfortunately, there is no such an access control system
in the current Web. In terms of access control, the Web
has adopted a policy called Same-Origin Policy (SOP). This
policy protects entities of one origin from those of others.
It does not provide access control on the interaction within
a page. Such a protection is unnecessary in the early day’s
Web, because contents were mostly data. When dynamic
contents were first introduced, most contents then were equally
trusted because they were generated mostly by the websites
themselves. Today’s web has a totally different picture. A
web page can simultaneously contain entities with varying
levels of trustworthiness. For example, advertisement enti-
ties from a third-party and entities provided by users are
less trustworthy than the entities provided by the websites.

Without an in-page access control system in browsers,

1

there is no way to directly mediate the interaction among
these entities. Web application developers are forced to find
alternatives. A common alternative is to conduct valida-
tion at the server side before putting untrusted entities in a
web page. For example, validation can attempt to remove
dynamic entities, disable dynamic entities, or restrict their
behaviors. The objective of the validation is to conduct the
control at the server side, so when the entities arrive at the
browser side later, no undesirable access is possible. This
approach is quite awkward, because in typical access con-
trol, control is conducted when the access has already been
initiated. However, this alternative conducts “control” be-
fore any access is initiated. Because the actual accesses are
unknown, developers have to infer what potential accesses
are from the contents. This inferring process is quite error-
prone, and has contributed to a large portion of the high
percentage of vulnerabilities in web applications [24]. The
best solution is to conduct access control after the access
action is already initiated and thus becomes known, but the
current web does not have such an access control system.
That is a design mistake, and this mistake is one of the
fundamental causes of the security problems in the Web.

As the Web is still evolving, it is not too late to fix this
design problem. Actually, there are already efforts toward
this goal. There are two types of approaches: one approach
is to propose specific features to incrementally build an ac-
cess control system for the web. This approach have re-
sulted in various proposals [6, 9, 12, 13, 15, 17, 18, 22], and
the features that are proven to be good will eventually be
adopted. Another approach takes a holistic view: it treats
the task as developing a complete access control system for
web browsers, not as developing pieces for such a system.
Once this becomes the goal, there are lot of things that we
can learn from, such as the access-control design in operating
systems, databases, and many other computer systems.

A representative work of the holistic approach is the Es-
cudo work [11]. Based on the special needs in web ap-
plications, Escudo proposes a ring access control for web
browsers. Escudo is a start towards designing a good access
control system for browsers, but there are needs that can-
not be easily satisfied by Escudo. Looking at the evolution
history of access control systems in operating systems, one
lesson that we have learned is that one model may not be
able to fit all the needs. In current operating systems, many
models coexist. For example, in Linux, Access Control List
(ACL), Capability, and Role-Based Access Control (RBAC)
coexist; in Windows 7, ACL, Capability, and Multi-level Ac-
cess Control coexist. These models jointly address the dif-
ferent protection needs in operating systems. The fact that
these particular models are chosen is the results of many
years of evolution in operating systems. We strongly believe
that the Web will and should go down a similar evolution
path; sticking to the current SOP model prevents us from
starting this evolution path.

Motivated by the evolution of access control in operat-
ing systems, and by the shortcomings of SOP and Escudo,
we decided to study another model that has been widely
adopted by modern operating systems. This is the capability-
based access control. The main idea of capability is to divide
the privileges in a system into smaller pieces, so they can be
assigned to the tasks based on the privileges they need. The
capability allows us to follow the principle of least privileges,
one of the essential principles in designing security systems.

The benefit of having a capability-based access control
model in browsers is three-fold. First, by dividing the priv-
ileges of web contents into smaller pieces, web browsers can
conduct a a finer-grained access control. Second, because
the privileges are divided into smaller pieces, web applica-
tion developers can assign different sets of small privileges to
the contents with different levels of trustworthiness. With
this model, web developers do not need to conduct the com-
plicated and error-prone process to filter out dangerous con-
tents from the untrusted contents; instead, they can simply
assign less privilege (or no privilege at all) to the contents
that are not so trustworthy. This is the essence of the least-
privilege principle. Third, the capability model allows the
system to dynamically adjust the privileges based on en-
vironment conditions. For example, if a web page is em-
bedded into a third-party iframe, or is overlapping with an-
other iframe (a technique used in clickjacing attacks [7]), the
page can require the browsers to downgrade the privileges
for safety purpose. These three benefits will be discussed in
more details in the rest of the paper.

2. ACCESS CONTROL MODELS

2.1 The Needs
Access control is the ability to decide who can do what

to whom in a system. An access-control system consists of
three components: principals, objects, and an access-control
model. Principals (the who) are the entities in the system
that can manipulate resources. Objects (the whom) are
the resources in the system that require controlled access.
An access-control model describes how access decisions are
made in the system; the expression of a set of rules within
the model is an access-control policy (the what). A system-
atic design of an access-control model should first identify
the principals and objects in the system.

Principals in a web page are elements that can initiate ac-
tions. There are several types of principals inside a web page.
(1) Dynamic contents, such as Javascript code, are obvious
principals. It should be noticed that Javascript code can
be invoked in many different ways: through an embedded
script tag, being triggered by events, such as onload, on-
mouseover, and time. (2) Many HTML tags in a web page
can initiate actions, such as a, img, form, iframes, but-

ton, meta 1, etc. These tags are considered as principals.
(3) Plugins can also initiate actions, so are also considered
as principals. However, since plugins usually have their own
built-in access control mechanisms, this type of principals is
beyond the scope of this paper.

Objects include everything in a web page or those associ-
ated with a web page. Web browsers represent the internal
contents of a web page using a hierarchical data structure
called Document Object Model (DOM), and principals can
use DOM APIs to access the objects (called DOM objects)
in a web page. DOM objects are obviously considered as
objects in our access control system. Cookies are another
type of objects. Although they are not included in a web
page, they are associated with the web pages from the same
domain. Principals can access/modify cookies.

1The meta tag is supposed to be put in the header of a web
page only, but most web browsers accept it if it is embedded
in the body of the page. The Set-Cookie attribute in the
meta tag can change cookies.

2

Modern web applications are quite complicated. Typi-
cally, a server-side script combines data and programs from
several sources to create a web page. As a result, a web page
is composed of several principals and objects with varying
levels of trustworthiness, and a proper access-control model
must recognize and support this diversity. Some portions of
the web page may contain user-supplied contents; principals
arising from such HTML excerpts should have limited privi-
leges. For example, consider a blog application: a web page
may display a blog post with comments from other users.
The original blog post and the comments from users should
be isolated from one another so that a deftly constructed
malicious comment cannot affect the original blog post.

2.2 The Escudo’s Ring Model
Escudo introduces a ring concept, which is borrowed from

the Hierarchical Protection Rings (HPR) [20] access control
model. Rings in Escudo are labeled 0, 1, . . ., N , where N is
application dependent and defined by the developers of web
applications. In the HPR model, higher numbered rings
have lesser privileges than lower numbered rings; namely,
ring 0 is the highest-privileged ring, and ring N is the least-
privileged ring.

Escudo places all the principals and objects in a web page
into these rings based on their trustworthiness. To achieve
this, Escudo introduces an attribute called ring for the
<div> tag to assign a ring label to each div region. Escudo-
enabled browsers will then enforce a simple access control
rule based on these ring labels: principals at the ring p can
only access the objects at rings o if p ≤ o. This rule pre-
vents the less trustworthy principals from accessing (read
and modify) the more trustworthy contents.

2.3 Capability Model
There are two types of privileges within a web page. One

is the privileges to access certain objects (DOM objects and
cookies), we call these privileges the object-based privileges.
The other type is the privileges to access certain actions,
such as invoking AJAX APIs, issuing HTTP POST requests,
accessing cookies, etc. Whether a principal can access these
actions or not has security consequences. We call this type
of privileges the action-based privileges. Escudo can deal
with the object-based privileges quite well, but it is inap-
propriate for controlling the action-based privileges, because
no specific objects are associated to the action-based priv-
ileges. As a result, a principal in Escudo basically has all
the action-based privileges entitled to its origin, regardless
of which ring it is in. This is a clear violation of the least-
privilege principle: if a Javascript code from a semi-trusted
third party only needs to send HTTP GET requests within
the page, we should not give this code the privilege to invoke
AJAX APIs or send HTTP POST requests.

With the evolution of the Web, many new action-based
privileges will be introduced. AJAX is such an example,
it is a newly introduced feature for the Web; being able
to conduct AJAX is therefore a new action-based privilege.
HTML5 introduces many more action-inducing tags, such
as the <canvas> and <video> tags. These tags increase the
attack surface of HTML5-enabled web applications. There-
fore, the privileges to initiate these new HTML5 actions
should not be given to every principal.

To secure the Web, controlling the uses of action-based
privileges must be built into the browser’s access control

model. This is not the first time that we face this issue; op-
erating systems encountered the same issue long time ago. In
operating systems, many applications require action-based
privileges. For example, the ping program in Unix requires
the privilege to use raw sockets, the system backup pro-
grams require the privilege to read all the files, etc. These
programs use to be setuid programs, i.e., when they are
running, they have all the privileges of the root account.
This is clearly a violation of the least-privilege principle. The
modern operating systems solved this problem using the ca-
pability concept. The main idea of capability is to define
a “token” (called capability) for each privilege; a principal
needs to possess the corresponding tokens if it wants to use
certain privileges. Because of these fine-grained capabilities,
we can assign the least amount of privileges to principals.

The Web has evolved to a stage where it becomes too
risky to assign all the action-based privileges to the princi-
pals within a web page. These privileges should be sepa-
rated, and assigned to principals based on their needs and
trustworthiness. The same-origin policy model does not
separate these privileges, neither does Escudo. To handle
the web applications with ever-increasing complexity and
to reduce the risks of web applications, we believe that web
browsers should adopt the capability model in its access con-
trol. As a first step towards this direction, we have designed
a capability-based access control for web browsers; we have
implemented our design in Google Chrome, and have con-
ducted case studies using our implementation.

3. CAPABILITY FOR BROWSERS
There are three major components in a capability-based

access control: the list of capabilities supported by the sys-
tem, how capabilities are binded to principals, and how ac-
cess control is enforced. We will discuss each of these com-
ponents in this section.

3.1 Capabilities
Learning from the history of capability design in Linux,

we know that the development of capabilities is an evolv-
ing process: in this process, rarely used capabilities may be
eliminated, more desirable capabilities may be added, new
privileges may be introduced when the system evolves, and
so on. Therefore, we do not intend to come up with a list of
capabilities that are complete. We consider our efforts of in-
troducing capabilities in web browsers only as the first step
in such an evolution. In this initial step, we have identified a
list of capabilities 2. They are classified into five categories:

• Capabilities to access sensitive resources, including book-
marks, Cookies, Certificates, HTML5 LocalStorage,
and Custom protocol handlers.

• Capabilities to access history resources, including Web
Cache, History, Downloaded items, Search box terms.

• Capabilities to access DOM elements, such as whether
a principal is allowed to access DOM objects, register
an event handler, or to access the attribute settings of
DOM objects.

• Capabilities to send HTTP Requests, including Ajax
GET/POST and HTTP GET/POST requests.

2Not all features in HTML5 are included in this paper, as
HTML5 is still a work in progress.

3

• Capabilities to run Javascript programs or plug-in pro-
grams, including Flash, PDF, Video, Audio, etc.

As a proof of concept, we have only implemented a subset
of the above capabilities in our prototype, including capa-
bilities to set cookies, read cookies, use cookies (i.e. attach-
ing cookies to HTTP requests), capabilities to send AJAX
GET/POST requests, capabilities to send HTTP GET/POST
requests, and capabilities to click hyperlinks and buttons. In
our system, we use a bitmap string to represent capability
lists, with each position of the bitmap string representing
one specific capability. Figure 2 illustrates the specification
of the bitmap.

Figure 2: Capability Bitmap

3.2 Static Binding of Capabilities
To use capabilities in access control within a web page,

web developers, when constructing a web page, need to as-
sign capabilities to the principals in the page, based on the
actual needs of principals. As we have discussed before,
principals are DOM elements of a web page. In Escudo, the
HTML div tag is used for assigning the ring label to each
DOM element. HTML div tags were originally introduced
to specify style information for a group of HTML tags; Es-
cudo introduces a new attribute called the ring attribute for
the div tag. To be consistent with Escudo, we take the same
approach. We add another attribute called cap for the div

tag. This attribute assigns a capability list to all the DOM
elements within the region enclosed by its corresponding div

and /div tags. An example is given in the following:

<div cap="110001111">
... contents ...

</div>

In the above example, the privileges of the contents within
the specified div region are bounded by capabilities 1, 2, 4,
and 6; namely no DOM elements within this region can have
any capability beyond these four.

3.3 Dynamic Binding of Capabilities
Although the actual capability bindings are carried out at

the browser side, the static bindings are already decided at
the server side by the server-side programs. Such a decision
does not consider any environment condition at the browser
side, as the decision is already finalized before web pages
is sent to browsers. Therefore, static bindings do not allow
web applications to adjust the privileges of principals based
on the environment conditions of the browser. We use a

case study to demonstrate why knowing the environment
conditions is important to security.

ClickJacking. ClickJacking [7] is one of the attacks that
many web applications are facing. The attack does not ex-
ploit any vulnerability of web applications, but instead, it
exploits the transparent iframe feature in web browsers. In
ClickJacking attacks, attackers load the target web page (say
gmail.com) into an iframe in their own pages (say evil.

com). Attackers make this iframe transparent (invisible) to
users, and overlay it with an visible iframe page. Attackers
then lure victims to visit their web site. These two iframes
can be set up in a way such that when victims click in the
area within the visible iframe, the actual click goes to the
invisible iframe. The above setup creates an visual illusion
to users, because what the victims have actually done is
different from what they think they have done. As a con-
sequence in the above example, users can be tricked into
clicking a sequence of buttons in the visible iframe that lead
to the deletion of the emails in their Gmail accounts (in the
invisible iframe) 3.

Although the ClickJacking problem can be defended by
various solutions [8,14,25], those solutions are quite specific
to the ClickJacking problem alone. They are not general
solutions: if some other features like the transparent iframe
is introduced in browsers, we have to come up with other
specific solutions. We need to think about what fundamen-
tal changes that we can make, so we can systematically deal
with a class of problems that come up due to the intro-
duction of new features in web browsers. From the access
control perspective, the ClickJacking problem is caused by
the failure of knowing the browser-side environment condi-
tion by the server-side programs. This is a dilemma of the
static binding approach, because the privileges of the con-
tents of a web page has to be decided before the page is sent
to browsers.

Dynamic bindings can solve the ClickJacking (and alike)
problem in a fundamental way. Dynamic bindings allow
the binding of privileges to principals to be based on the
environment condition on the browser side. For example, to
solve the ClickJacking problem, we can specify the following
dynamic binding policies:

if (not in a iframe)
Bind capabilities 0, 1, 3, 4,

else if (embedded in a non-overlapping iframe)
Bind capabilities 0, 3

else if (embedded in overlapping iframe)
Bind no capability

The basic idea of the above example is to reduce the capa-
bility assigned to principals depending on whether the web
page is embedded in an iframe. If the iframe does not over-
lap with other iframes (or other contents of the hosting web
page), the privilege of principal is downgraded a little bit; if
the iframe does overlap with other contents, all privileges of
the principal are taken away.

The above dynamic binding policy can be implemented
using bitmap masks. We introduce two bitmap masks. The
first is called iframemask, specifying which capabilities can
be assigned to principals if the page is loaded into an iframe
of a third-party web page. The second mask is called over-

lapmask, specifying which capabilities can be assigned to

3The attack will only succeed if the victim have an active
session with Gmail.

4

principals if the page is loaded into an iframe that over-
laps with other contents in the page. The actual capability
list is cap & iframemask or cap & iframemask & overlap-

mask, respectively, where & is a bit-wise AND operation. The
above policy example can be specified in the followings:

<div cap="11011" iframemask ="10010"

overlapmask="00000">

... contents ...

</div>

3.4 Capability Enforcement
Enforcement in capability-based access control is well de-

fined in the capability model: an access action is allowed
only if the initiating principal has the corresponding capabil-
ity. The main challenge in a capability system is to identify
the initiating principals and their associated capabilities. In
general, identifying principals is not so difficult: whenever
an action is initiated (either by Javascript code or by HTML
tags), the browser can easily identify the div region of the
code or tags, and can thus retrieve the capabilities binded
to this region. Unfortunately, as a proverb says, the devil is
in the details; identifying principals is quite non-trivial. We
describe details of capability enforcement in the Implemen-
tation section.

4. ENSURING SECURITY
The key to capability enforcement is the integrity of the

configuration (i.e., capability assignment) provided by the
application. We describe additional measures to prevent the
configuration from being tampered with.

Configuration Rule: Protecting against Node Split-
ting. Any security configuration that relies on HTML tags
are vulnerable to node-splitting attacks [12]. In a node-
splitting attack, an attacker may prematurely terminate a
div region using </div>, and then start a new div region
with a different set of capability assignments (potentially
with higher privileges). This attack escapes the privilege
restriction set on a div region by web developers. Node-
splitting attacks can be prevented by using markup random-
ization techniques, such as incorporating random nonces in
the div tags [6, 17]. Capability-enhanced browsers will ig-
nore any </div> tag whose random nonce does not match
the number in its matching div tag. The random nonces
are dynamically generated when constructing a web page,
so adversaries cannot predict those numbers before they in-
sert their malicious contents into a web page.

Scoping Rule. When contents are from users, they are
usually put into div regions with limited privileges. How-
ever, user contents may include div tags with the capability
attributes. If web applications cannot filter out these tags,
attackers will be able to create a child div region with ar-
bitrary capabilities. To prevent such an privilege escalation
attack, we define the following scoping rule:

Scoping Rule: The actual capabilities of a DOM
element is always bounded by the capabilities of
its parent.

Formally speaking, if a div region has a capability list L,
the privileges of the principals within the scope of this div

tag, including all sub scopes, are bounded by L. See the

following example (note that nonces are used for protecting
against node-splitting attacks):

<div id="A" cap="10101" nonce=893232>
... contents ..
<div id="B" cap="11111" nonce=932398>

... contents ...
</div nonce=932398>

</div nonce=893232>

In the above example, the div region A is the parent of an-
other region B, so B’s actual capabilities is bounded by A’s
capabilities (“10101”), even though B’s capability attributes
says “11111”. Therefore, if A does not have a capability, B
will not have it either, regardless of whether the capability
attribute of B includes that capability or not.

Access Rule for Node Creation/Modification. Using
DOM APIs, Javascript programs can create new DOM ele-
ments or modify existing DOM elements in any div region.
To prevent a principal from escalating its privileges by cre-
ating new DOM elements or modify existing DOM elements
in a higher privileged region, we enforce the following access
rule:

Access Rule: A principal with capabilities L
can create a new DOM element or modify an
existing DOM element in another div region with
capabilities L′ if L′ is a subset of L, i.e., the
target region has less privilege than the principal.

Cross-Region Execution Rule. In most web applica-
tions, Javascript functions are often put in several different
places in the same HTML page. When a Javascript program
from one div region invokes a function in another div re-
gion, what should be considered as the principal, and whose
capabilities should be used? A simple design is to only treat
the initiating program as the principal, and use its capabili-
ties in access control. A downside of this design is that when
the invoked function is in an area less trustworthy (i.e. hav-
ing less privileges) than the invoking program, the function
will be actually invoked with higher privileges than what it
is entitled to.

To avoid the above situation, a modified design is to allow
a Javascript program with privilege A to invoke a function
with privilege B, only if A is a subset of B. Namely, no
Javascript can invoke a function with less privilege. This
way, we can always use the initiating program’s privilege A
throughout the entire execution.

A more general solution is to allow the invocation regard-
less of what relationship A and B has, but ensure that when
the function is invoked, the privilege of the running program
becomes the conjunction of A and B, i.e., A ∧ B. Namely,
the privilege will be downgraded if B has less privilege than
A. After the function returns back to the caller, the privi-
lege of the running program will be restored to A again. We
have implemented this general solution in our prototype.

5. IMPLEMENTATION

5.1 System Overview
In Google Chrome 4, there are four major components

4We use Version 3.0.182.1, simply because this is the version
we had when we started the implementation. We plan to
port our implementation to the most recent version.

5

closely related to our implementation: Browser Process (Ker-
nel), Render Engine, Javascript Interpreter (V8), and sensi-
tive resources. We add two subsystems to Chrome: Binding
System, and Capability Enforcement System. Figure 3 de-
picts the positions of our addition within Chrome.

Figure 3: System Overview

Binding System. The purpose of binding system is to
find the capabilities of a principal, and store them in data
structures where the enforcement module can access. In
Chrome, principals are identified in several components, in-
cluding HTML parser (which parses the HTML code and
generate DOM tree) and Javascript Interpreter (which com-
piles Javascript code into V8 objects). We need to modify
those components to bind capabilities to principals when
principals are created.

The capability information of each principal is stored in-
side the browser core. Only the browser’s code can access
the capability information; the information is not exposed to
any code external to the browser’s code base (e.g. Javascript
code). At this point, we do not foresee any need for the ex-
ternal code to access such information, so no API is provided
by the browser for the access of the capability information.

Effective Capabilities. When an access action is initiated
within a web page, to conduct access control, the browser
needs to know the corresponding capabilities of this access.
We call these capabilities the effective capabilities. Identi-
fying effective capabilities for actions is nontrivial: in the
simplest case, the effective capabilities are those attached to
the principal that initiates the action. Javascript code makes
the situation much more complicated. A key functionality
of our binding system is to keep track of the effective capa-
bilities within a web page. We will present the details later
in this section.

Capability Enforcement. Our implementation takes ad-
vantage of the fact that every user-level access to sensitive
resources goes through the browser kernel, precisely, through
the local APIs. For example, AssembleRequestCookies()

in the URLRequestHttpJob class will be invoked to attach
cookies to HTTP requests; XMLHttpRequest::send() will
be called for sending Ajax requests. We add the capability
enforcement to these APIs. When they are called, the en-
forcement system checks whether the effective capabilities
have the required capabilities for the invoked APIs.

Actions. Within a web page, there are two types of ac-
tions: (1) HTML-induced actions: this type of actions are
initiated by HTML tags, such as the HTTP requests caused

by , <iframe>, <meta Set-Cookie>, submit buttons,
etc. (2) Javascript-induced actions: this type of actions are
initiated by Javascript code. For both types of actions, when
they take place, we need to identify the effective capabilities
that should be apply to the actions.

5.2 HTML-Induced Actions
The effective capabilities of HTML-induced actions are

the capabilities assigned to the div region that the initiating
HTML tags belong to. When a web page reaches a browser,
it will be parsed by the browser’s HTML parser. A main
function of the parser is to generate a DOM tree, and the
contents of a web page will be placed in DOM objects in the
tree. The div regions will be represented as DOM objects.

The capability attributes introduced by us will be treated
by the parsers as attributes of a tag, just like any other
attribute. After extracting the capability attributes, the
HTML parser will pass the information to our binding sys-
tem, which maintains a shadow DOM tree. This shadow
DOM tree stored the capabilities of each DOM node, and
it can only be access by our binding system. Although
Javascript programs can modify the attributes of DOM ob-
jects through various APIs, these APIs cannot be used to
modify the capability attributes, as the values of the ca-
pability attributes are stored in the shadow tree, not the
original tree. No API is exposed to Javascript programs for
accessing the shadow tree.

When an action is initiated from a HTML tag, the en-
forcement system identifies the DOM object that the tag
belongs to, retrieves the capabilities from its shadow object,
and finally checks whether the capabilities are sufficient to
carry out the action or not. If not, the action will not be
carried out.

5.3 Javascript-Induced Actions
Identifying the effective capabilities of Javascript-induced

actions is quite complicated. This is because a running se-
quence of Javascript can span multiple principals with dif-
ferent sets of capabilities. For example, the execution may
start from the Javascript code in one div region, but the
code can invoke Javascript functions in other div regions.
In this case, the cross-region execution rule described in Sec-
tion 4 will apply. For example, if A calls B, B calls C, and
C calls D, then when executing D, the effective capabilities
are the conjunction of the capabilities of A, B, C, and D.
When function D returns to C, the effective capabilities will
become the conjunction of the capabilities of A, B, and C.

We use a stack data structure in our binding system to
store the effective capabilities in the runtime (we call it the
capability stack). When a Javascript program gets executed,
the capabilities of the corresponding principal will be pushed
into the stack as the first element of the stack. The top
element of the stack is treated as the effective capabilities,
denoted as E. When a function in another principal (say
principal B) is invoked, the updated effective capabilities
E ∧ Cap(B) will be pushed into the stack, where Cap(B)
represents the capabilities assigned to B. When the function
in B returns, the system will pop up and discard the top
element of the stack.

The capability stack must be updated every time the prin-
cipal of code changes during the execution. Therefore, our
binding system must be involved when the principal of ex-
ecution changes. Since the invocation of functions happens

6

insider the Javascript Interpreter (the V8 engine), the ideal
solution is to build part of the binding system in V8: when
the HTML parser sees Javascript code, it identifies the ca-
pabilities of the principal, and pass them into V8. This way,
each function object within V8 is attached with a capability
list; when a function is invoked, V8 can push the effective
capabilities into the capability stack.

The situation is further complicated by another fact: V8
compiles Javascript code into native code at run-time; there-
fore when a function invocation happens, it may not go
through the V8 engine, and thus our binding system can-
not be triggered to update the capability stack.

An alternative solution is to not modify the V8 engine,
but instead to modify the Javascript code. We introduce a
code rewriting module, which rewrites code before sending
it to the V8 engine. The rewritten code first pushes the
effective capabilities of the next running principal into the
capability stack before executing the invoked function, and
pop the top element from the capability stack right after
the current function returns. To accomplished this goal, we
introduce two built-in Javascript functions:

void Cap_Push(capability, random_number);

void Cap_Pop(random_number);

Because the invocation of these two built-in Javascript
function can change the runtime effective capabilities, we
cannot allow user’s code to call these functions; we can only
allow our rewriting module to add the invocation of these
two functions into Javascript programs. To achieve this goal,
we pass a random number to these two functions. This
number is generated by our rewriting module for each page.
When Cap_Push and Cap_Pop are invoked, the numbers in
their arguments must match with the random number held
by the browser kernel for that page. Since the contents of
rewritten code are invisible to Javascript code, and the ran-
dom number is only known to the browser, it will be hard for
attackers to guess this random number; any invocation with
a mismatched number will cause the invocation to return
without doing anything.

The following code gives an example on how the rewriting
module wraps the function foo():

Original function:
function foo(arg) { /*function body*/ }

Rewritten function:
var _tempAOP_12453 = foo;
foo = function(arg){

try{ Cap_Push(‘10101’,83940);
return _tempAOP_12453.apply(this, arg); }

finally{ Cap_Pop(83940); }
}

The call _tempAOP_12453.apply() will basically invoke
the original function foo. The code in the finally clause
will be invoked upon the finish of the invocation.

5.4 Event-Driven Actions
Some Javascript-induced actions are triggered by events,

not directly by principals. When these actions are triggered,
we need to find the capability of the responsible principals.
There are three types of events: DOM-registered events,
timer events, and AJAX callback events.

DOM-Registered Events. In browsers, it is possible to
register handlers for specific event types and specific DOM
nodes. Whenever the specified event occurs to the registered

DOM nodes, the handler for that event, if any, is called. In
this situation, we need to identify the responsible principals
and their associated capabilities.

There are two ways to register handlers. One way is to do
it statically through HTML tags/attributes, and the other is
to do it using Javascript. In the static method, event handler
is specified using HTML event attributes, such as onclick,
onload, onclick, etc. The following HTML excerpt regis-
ters a block of code as an event handler to a button; when
the button is clicked, the code will be triggered:

<button onclick=" ... code ... ">

Another way to register handlers is to use Javascript. To
register an event handler (say onclick) for a DOM ob-
ject (say dom_obj), we can use the following Javascript code
(clickHandler is a Javascript function):

dom_obj.onclick = clickHandler;

Timer Events. Javascript can set timer events using var-
ious functions, such as setTimeout() and setInterval().
These events are not tied to any DOM objects, instead, they
are directly tied to the global window object:

window.setTimeout (code, timeout);

window.setInterval(code, delay);

AJAX Callback Events. When AJAX sends out a re-
quest, it registers a callback function to the system; the
function will be invoked when the response comes back. A
typical way to register callbacks is shown in the following:

xmlhttp.onreadystatechange

= function() { /*handler code*/}

Binding Capabilities to Event Handlers. Event han-
dlers are triggered by the system (i.e. the browser), not a
particular principal. To identify which capabilities should be
used when executing the handlers, we need to find out who
is responsible for registering the event handlers. The capa-
bilities should be the effective capabilities when the handlers
were registered. If they are registered via HTML, such as
the onclick and onsubmit attributes, then the capabilities
for the handlers should be those entitled to their containing
DOM objects. If they are registered via Javascript, the ca-
pabilities for the handlers should be the effective capabilities
at the point of registration.

Figure 4: Event Mechanism in Chrome

7

Figure 4 shows how event registration and triggering work
in Google Chrome. Principals that are allowed to register
events maintain an “eventListener vector” for each type
of events. Each item in the vector is an event handler.
Each event-register operation should go through the API
addEventListener() (marked by number 1 in the figure);
this API inserts the event handler into the principal’s eventLis-
tener vector. The invocation of event handler goes through
the function HandleEvent() (marked by number 2 in the
figure).

We modified the addEventListener() function, so we can
store the effective capabilities into event handlers during the
event registration. We also modified the function HandleEvent(),
so when an event is triggered, we can retrieve the effective
capabilities from the event handler objects, and push them
into the capability stack.

5.5 Backward Compatibility
Our implementation is backward compatible. There are

two scenarios. First, when our modified browser sees a web
page without capability attributes, it knows that the page
is not enhanced with our capability model, and thus pro-
vides all capabilities to the contents, basically going back to
the same-origin policy. Second, if a web page is enhanced
with our capability tags, but is rendered by a browser that
does not implement our capability model, according to the
standard, the browser will simply ignore those capability
attributes.

6. CASE STUDIES AND EVALUATION
To evaluate how useful, effective, and easy-to-use the ca-

pability model is in securing web applications, we have con-
ducted case studies using a number of open-source web appli-
cation programs, including Collabtive, PhpBB2, PhpCalendar,
and MediaWiki. For each application, we focus on evaluating
the following aspects: (1) defense against Cross-Site Script-
ing attacks, (2) defense against malicious advertisement, (3)
defense against ClickJacking attacks, and (4) limiting the
privileges of untrusted inputs. Due to the page limitation,
we cannot describe all our case studies in this paper. We will
only present several representative ones. Full details will be
included in the extended version of this paper.

6.1 The Orkut worm
On 25th September 2010, a new worm affecting Orkut

emerged. The basic idea of this worm is to inject a short
Javascript code into the victim page using the onload event
of iframe. This code is a “bootstraping” code; its sole pur-
pose is to download and run the attacking Javascript code
from another site. Here is the key snippet of the code:

<iframe onload="a = document.createElement(’script’);
a.src = ’www.malicious.com/malware.js’;
document.body.appendChild(a)"></iframe>

Defending against this attack using capability is quite
straightforward. Since this block of HTML contents are in-
puts from users, they should be put in an area that does not
have much privilege. For example, they can be put in the
following area:

<div cap="000000000" nonce="3433893">
<iframe onload="a = document.createElement(’script’);

a.src = ’www.malicious.com/malware.js’;
document.body.appendChild(a)"></iframe>

</div nonce="3433893">

Because this region is not given any capability, there are
several reasons why the attacks will not be effective. First,
because of the lack of HTTP-Request capabilities, no HTTP
request can be sent out from this region; therefore, the at-
tacking code cannot be downloaded. Second, even if the
region is given the HTTP-Request capabilities, the down-
loaded code will not gain more privileges; therefore, as long
as the cookie-access capability is not given to this region, no
effective attack can be launched.

6.2 Untrusted input - AD Network
As a performance-based advertising network, admedia.com

connects advertisers to consumers across many channels.
One of the channels is called affiliating in-text advertising;
this is done by importing the following 3rd-party Javascript
file into the host page (i.e. the publisher).

<script src=’http://inline.admedia.com/?count=5&id=OzooNic’>
</script>

When visitors browse the host page, they will see the con-
tents of the page as usual; but when they scroll over the
linked text, they will be able to see advertisements. The
imported 3rd-party Javascript code gets to determine which
text will be linked and how often. The Javascript code need
to modify the page to achieve this effect.

Since this 3rd-party Javascript code was imported into
the host page (publisher), it has the same privilege as those
coming from the publisher, i.e., it can do a great damage
if the code is malicious. Admedia.com claims that the code
only adds hyperlinks to the page, so it is against the prin-
ciple of least privileges if the code is given the privileges
beyond what is needed to modify the page; there is no need
to allow the code to access cookies, history, etc. Web de-
velopers of the host page can limit the privileges assigned
to the Javascript code from Admedia.com using capabilities.
The following example gives the code limited capabilities:

<div cap="000001111" nonce="5528053">
<script src=’http://inline.admedia.com/?count=5&id=OzooNic’>
</script>

</div nonce="5528053">

Javascript code from Admedia.com is only given four ca-
pabilities (HTTP GET/POST and click capabilities), which
are sufficient for the code to achieve its purpose. According
to the“access rule”discussed before, the code from Admedia.com

is restricted to access and modify the areas that have equal
or less privilege. These should include most of the text ar-
eas. If the code is unfortunately malicious, it can deface the
web page for sure, but due to the lack of privileges to access
cookies, its damage is greatly limited.

6.3 Prevent ClickJacking in PhpBB
To attack PhpBB using the classical ClickJacking attack

method, attackers embed the PhpBB web forum into their
own web page, putting PhpBB into a transparent iframe
that is overlapped with another dummy iframe. When vic-
tims click buttons/links in the dummy page, they actually
click the ones in PhpBB (e.g. member delete button, mes-
sage post button). To defeat this attack is quite straightfor-
ward using capabilities: the web developers of PhpBB forum
can use the dynamic binding to downgrade the privilege of
the entire page if the page is embedded in an overlapping
iframe:

<html>
<div cap="111111111" overlapmask="111111100" nonce="3996820">

8

... the entire page ...
</div nonce="3996820">

<html>

Because this div region is the outermost region of the
page, it is usually assigned all the privileges; its sub-regions
will be assigned the privileges based on their needs. How-
ever, the overlapmask is set to all ones except the last two
bits, indicating that the page is not given the hyperlink-
click or the button-click capabilities, if the page is loaded by
a third-party web site into an overlapping iframe. Basically,
the page in the iframe becomes unclickable, so ClickJacking
attacks become impossible. Of course, the overlapmask can
be set to all zeros to drop all the privileges if that is more
desirable.

6.4 Prevent XSS in Collabtive
Collabtive is an open-source web-based project manage-

ment software intended for small to medium-sized businesses
and freelancers. This web application provides several chan-
nels for users to interact with one another, including message
posting, online chatting, project assignment, and user feed-
back. To prevent Cross-Site Scripting (XSS) attacks, the
application has installed many filters and encoding schemes,
but still attacks are possible. We can instead use capabilities
to defend against XSS attacks.

Modifying Collabtive to benefit from our capability model
is quite easy because of the Smarty template [2] used by Col-
labtive. Because the outputs of web applications are web
pages, they have to deal with how to construct web pages
using HTML. This is called the view part of web applica-
tions. In the past, the view part was often mixed together
with the rest of the program logics. Nowadays, thanks to
the technologies such as Smarty, web applications can sep-
arate the view part from the program logics. For instance,
using Smarty, web developers can define a view template
file, which contains the majority of HTML code, along with
several holes to be filled later by programs.

The assignment of capabilities is done on views. There-
fore, if views are already separated from the program logics,
assigning capabilities becomes quite simple: we just need to
modify the template file. It only took several hours for us to
finish the task for Collabtive. The following shows a change
we made to a template file called message.tpl in Collabtive:

<div class="message-in"> <div class="message-in"
cap="000000000" nonce={$rand}>

{$message.text} -> {$message.text}
</div> </div nonce={$rand}>

The $message.text area is a hole in the template, and this
hole will be filled when the template is used. In Collabtive,
$message.text will be filled with data provided by users,
and no privilege is needed in this hole. Therefore, we assign
no capability to this hole. Even if user’s inputs contain
malicious contents (such as code or action-inducing HTML
tags), no damage can be achieved.

6.5 Performance Overhead
To evaluate the performance of our implementation, we

have conducted experiments to measure the extra cost our
model brings to the Chrome. We measure how long it takes
a page to be rendered in our modified browser versus in
the original browser. We use some of the built-in tools in
Chrome to conduct the measurement. In our evaluation, we

tested four web applications: Collabtive, phpBB2, phpCal-
endar and MediaWiki; we measure the total time spent on
rendering pages and executing JS code. The configuration
of the computer is the following: Inter(R) Core(TM)2 Quad
CPU Q6600 @ 2.40GHz, 3.24 GB of RAM. The results are
plotted in Figure 5.

Figure 5: Performance

The results show that the extra cost caused by the model
is quite small. In most cases, it is about 3 percent. For
phpBB2, it is a little bit higher, because phpBB2 uses more
Javascript programs than the others.

7. RELATED WORK
The limitations of SOP have received substantial atten-

tion in recent work. Jackson et al. [9] extends the SOP to
browser cache content and visited link information to ad-
dress the problem. Livshits and Ulfar [15] extends the SOP
to additionally account for the principal names added to tag
groups for neutralizing some XSS and RSS injection attacks.
Karlof et al. [13] proposes extending the SOP to account
for certificate errors in the origin to distinguish resources
in the authentic domain from a spoofed domain to address
dynamic-pharming attacks. While each of these proposals
addresses a specific shortcoming in the SOP, they do not ad-
dress the general gap between the SOP’s fundamental model
and the security requirements of modern web applications.
In contrast, our proposed capability model is a fine-grained
protection model specifically designed to meet the protec-
tion needs of modern web applications.

Another way to overcome the limitation of SOP is to use
static and dynamic verifiers to verify the conformance of a
Javascript program to a safe subset of the language [1, 4].
The primary target of these tools are applications that em-
bed untrusted and semi-trusted Javascript programs from
third parties. Verifiers can be considered as an alternative
approach to dealing with the browser’s access-control fail-
ure. One limitation of this approach is that web applications
must trust that the content provider also uses the verifier on
their Javascript programs. For example, a web application
may lease a portion of its web page to an advertiser; cur-
rently it has to trust the advertiser to use a verifier on the
Javascript programs provided to display the advertisement.
Another limitation of the Javascript verifiers is that these
verifiers cannot restrict the access initiated by the HTTP-
request issuing principals, which do not involve Javascript
programs at all.

Several recent works have proposed new browser architec-
tures. The OP web browser isolates each web page instance

9

and various browser components using OS processes [5].
Tahoma isolates each instance of a web application inside
the browser using separate virtual machines [10]. Essen-
tially, these are two different approaches for isolating web
applications from one another and limiting their permissible
behavior. Unlike our work, these two approaches are not
designed to enforce protection within a web page.

Chromium [3,19] and Gazelle [23] are two new web browsers
that use an architecture in which the browser is separated
into two portions: kernel and applications. The new ar-
chitecture has desirable security and reliability properties.
However, the access control mechanism is still based on the
same-origin policy.

Current work has proposed several solutions for XSS at-
tacks [6,12,17,18,22]. All these solutions are attack-specific
patches to the application or browser. In contrast to these
solutions that address the symptoms of the underlying prob-
lem, our capability model is not a patch for XSS prob-
lems. Rather, it is a fine-grained protection model for web
browsers suited for modern web applications. XSS problems
are thwarted as a side effect of addressing the fundamental
weakness in the protection model of web browsers.

Recently, several papers proposed fine-grained security
policies for browsers. Content Security Policy [21] intends to
provide a security mechanism for web developers to specify
how contents interact on their web sites. ConSCRIPT [16]
presents a client-side advice system for hosting page to ex-
press fine-grained application-specific security policies that
are enforced at runtime. Essentially, they introduce capa-
bility concepts to web browsers; however, they focus on
specifying policies for Javascript code. Our work treats
all action-inducing page contents as principals, and enforce
capability-based access control on their actions. These prin-
cipals not only include Javascript code, but also include
action-inducing HTML tags. Because of this, our access
control model can help solve the ClickJacking problem by
putting access restrictions on the iframe HTML tag. Ca-
pability models for Javascript cannot solve the ClickJacking
problem, because the attack does not involve Javascript.

8. CONCLUSION AND FUTURE WORK
To enhance the security infrastructure of the Web, we have

designed a capability-based access control for web browsers.
This access control model, widely adopted in operating sys-
tems, provides a finer granularity than the existing models
in browsers. We have implemented this model in Google
Chrome. Using case studies, we have demonstrated that
many of the hard-to-defend attacks faced by the Web can
be easily defended using the capability-based access control
model within the browser.

9. REFERENCES
[1] Caja. http://code.google.com/p/google-caja/.
[2] Smarty template engine. http://www.smarty.net/.
[3] A. Barth, C. Jackson, and C. Reis. The security

architecture of chromium browser.
http://crypto.stanford.edu/websec/chromium/.

[4] D. Crockford. ADSafe. http://www.adsafe.org.

[5] C. Grier, S. Tang, and S. T. King. Secure web browsing
with the op web browser. In Proceedings of the 2008 IEEE
Symposium on Security and Privacy (S&P’08), pages
402–416, Washington, DC, USA, 2008. IEEE Computer
Society.

[6] M. V. Gundy and H. Chen. Noncespaces: Using
randomization to enforce information flow tracking and
thwart cross-site scripting attacks. In Proceedings of the
16th Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February 2009.

[7] R. Hansen and J. Grossman. Clickjacking.
http://www.sectheory.com/clickjacking.htm, 2008.

[8] C. Jackson. Defeating frame busting techniques.
http://crypto.stanford.edu/framebust, November 16,
2005.

[9] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell.
Protecting browser state from web privacy attacks. In
WWW 2006.

[10] R. C. Jacob, R. S. Cox, J. G. Hansen, S. D. Gribble, and
H. M. Levy. A safety-oriented platform for web
applications. In In IEEE Symposium on Security and
Privacy, pages 350–364, 2006.

[11] K. Jayaraman, W. Du, B. Rajagopalan, and S. J. Chapin.
Escudo: A fine-grained protection model for web browsers.
In Proceedings of the 30th International Conference on
Distributed Computing Systems (ICDCS), Genoa, Italy,
June 21-25 2010.

[12] T. Jim, N. Swamy, and M. Hicks. Defeating script injection
attacks with browser-enforced embedded policies. In WWW
2007.

[13] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner.
Dynamic pharming attacks and locked same-origin policies
for web browsers. In CCS 2007.

[14] E. Lawrence. IEBlog: IE8 Security Part VII: ClickJacking
Defenses, February 2009.

[15] B. Livshits and U. Erlingsson. Using web application
construction frameworks to protect against code injection
attacks. In PLAS 2007.

[16] L. A. Meyerovich and V. B. Livshits. Conscript: Specifying
and enforcing fine-grained security policies for javascript in
the browser. In IEEE Symposium on Security and Privacy,
pages 481–496, 2010.

[17] Y. Nadji, P. Saxena, and D. Song. Document structure
integrity: A robust basis for cross-site scripting defense. In
Proceedings of the 16th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA,
February 2009.

[18] T. Pietraszek and C. V. Berghe. Defending against
injection attacks through context-sensitive string
evaluation. In RAID 2005.

[19] C. Reis and S. D. Gribble. Isolating web programs in
modern browser architectures. In EuroSys ’09: Proceedings
of the 4th ACM European conference on Computer
systems, pages 219–232, New York, NY, USA, 2009. ACM.

[20] M. D. Schroeder and J. H. Saltzer. A hardware architecture
for implementing protection rings. Commun. ACM,
15(3):157–170, 1972.

[21] S. Stamm, B. Sterne, and G. Markham. Reining in the web
with content security policy. In WWW, pages 921–930,
2010.

[22] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna. Cross-site scripting prevention with dynamic
data tainting and static analysis. In NDSS 2007.

[23] H. Wang, C. Grier, A. Moshchuk, S. King, P. Choudury,
and H. Venter. The multi-principal os construction of the
gazelle web browser. Microsoft Technical Report
MSR-TR-2009-16, February 2009.

[24] WhiteHat Security. Whitehat website security statistic
report, 10th edition, 2010.

[25] M. Zalewski. Dealing with UI redress vulnerabilities
inherent to the current web.
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/
2008-September/016284.html, September 2008.

10

