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ABSTRACT
In Android applications, third-party components may bring
potential security problems, because they have the same
privilege as the applications but cannot be fully trusted.
It is desirable if their privileges can be restricted. To mini-
mize the privilege of the third-party components, we develop
Compac to achieve a fine-grained access control at applica-
tion’s component level. Compac allows developers and users
to assign a subset of an application’s permissions to some of
the application’s components. By leveraging the runtime
Java package information, the system can acquire the com-
ponent information that is running in the application. After
that, the system makes decisions on privileged access re-
quests according to the policy defined by the developer and
user. We have implemented the prototype in Android 4.0.4,
and have conducted a comprehensive evaluation. Our case
studies show that Compac can effectively restrict the third-
party components’ permissions. Antutu benchmark shows
that the overall score of our work achieves 97.4%, compared
with the score of the original Android. In conclusion, Com-
pac can mitigate the damage caused by third-party compo-
nents with ignorable overhead.

1. INTRODUCTION
Android has become the most popular smartphone plat-

form, taking more than 70 percent of the market shares [3].
Android uses permissions to restrict the behaviors of apps.
An app (In the rest of the paper, apps are used for Android
applications) needs to have specific permissions in order to
access protected resources. The app declares permissions
that it needs in AndroidManifest.xml. During app instal-
lation, users are asked to approve the declared permissions.
Upon approval, the app will be installed.

In Android, permissions are assigned at the app level.
When an app is installed, it is assigned a unique UID, and
each UID is associated with a set of permissions. At runtime,
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access control uses the UID to find out the permissions of
an app, regardless of what component of the app is making
the access. Therefore, all the components in the same app
have exactly the same permissions. This is not a problem if
all these components come from the same developer. How-
ever, this is not the case in Android and most other mobile
systems. In these systems, apps often include third-party
components. In-app advertisement is the most representa-
tive example. When an app needs to display ads, it has to
incorporate the advertisement code (e.g. Google’s AdMob).
Once incorporated, both the ads and the original app will
have the same privilege. Other commonly used third-party
components include social networking service APIs, Phone-
Gap plug-ins, etc.

In most situations, apps need more permissions than what
each component needs; when users grant the permissions
to the apps, they also grant the same permissions to the
components, leading to over-privileged components. In this
case, some components in apps have more privilege than
what they need. If they are malicious or have security flaws,
they can cause problems. Previous work [44] indicates that
several third-party components abuse apps’ permissions to
collect users’ private information, without user consent.

Several ideas, such as AdDroid [34] and AdSplit [36], have
been proposed to address the problem caused by a particular
type of third-party component, namely, advertisement. Ad-
Split proposes to put ads in another process, isolating them
from the app. AdDroid proposes to put ads into a service
and assign a new ADVERTISING or LOCATION ADVERTISING

permission to this service. However, these solutions are
mainly designed for advertisement; they are not general
enough to extend to other types of third-party components.

In this paper, we propose COMPAC (COMPonent Access
Control), a more generic solution, which extends Android’s
UID-based permission model [5] into UID- and component-
based permission model. More specifically, several untrusted
Java packages can be grouped into components, and an app
can be divided into different components; app developer as-
sign permission sets for the app and its components in An-

droidManifest.xml. In such a case, both the app and com-
ponents’ permission sets are subject to Android system’s
control. To the best of our knowledge, this is the first time
to propose a generic solution to limit part of app code’s
privileges in Android.

We have implemented Compac in Android 4.0.4, and have
conducted a comprehensive evaluation on it, not only on its
performance, but more importantly, on how Compac can be
used to solve the over-privilege problems faced by today’s

1



apps when they use third-party components. Our results
show that Compac is effective and applicable. We summa-
rize the main contributions of this work as follows:

1. To restrict the privilege of third-party components, we
propose a generic solution to contain in-app compo-
nents’ privileges by leveraging Java source code and
extending the current Android permission model.

2. We implement the prototype called Compac and con-
duct comprehensive studies and performance evalua-
tion to demonstrate that our approach can mitigate
the damage caused by third-party code.

3. We provide app developers Compac APIs encapsulated
in a customized SDK, which is compatible with the
original Android SDK. We also develop a component
permission manager to allow users to control app com-
ponents’ permissions on their devices.

2. BACKGROUND: ACCESS CONTROL IN
ANDROID

In this section, we introduce the android sandbox protec-
tion for the system and data as well as the access control for
non-privilege apps. At last, we define the reference monitors
that will be used in our work.

2.1 Android Sandboxing
Generally speaking, Android has two types of resources

that need to be protected. One is the app resources includ-
ing the processes and files. The other is the system resources,
such as camera, network, radio, GPS, and various sensors.
To protect these resources, Android has developed a sand-
boxing mechanism that prevents apps from accessing the
system resources or each other’s resources. There are two as-
pects in this protection. First, each app is assigned a unique
Linux UID, so Android can use Linux’s UID-based DAC to
restrict the privilege of apps. This naturally achieves the
isolation among apps. Second, Android assigns most of the
system resources to system UID, so they cannot be accessed
directly by non-privilege apps.

2.2 The “Windows” on the Sandbox
Obviously, merely having such a sandbox is too restric-

tive. Apps should be allowed to access the system resources,
as well as each other’s resources. However, such accesses
should be controlled, not arbitrary. The sandboxing mech-
anism eliminates the arbitrary accesses. To allow controlled
accesses, “windows” have to be opened on the sandbox, but
behind each window, there should be an access control.

System Calls. System calls are a typical way to allow
user-level programs to access kernel-level resources. Android
uses system calls to access some of the protected resources.
For example, accessing the Internet is done through system
calls, i.e., only apps with inet GID can directly access these
resources by making the corresponding system calls. When
an app invokes a system call to create an inet socket, the
system call checks if the app has the inet GID; if it has, the
app can get the socket and be able to access the Internet.

Android Permissions. Behind the GID check in priv-
ileged system calls, there are Android permissions, making
sure that the authorized non-privilege apps can access the

intended resources. Take the INTERNET permission as an
example. When an app with the INTERNET permission
is installed, Android will assign the inet GID to the app
and its processes, as one of its additional GIDs. When the
app accesses the Internet, request will be granted because of
the inet GID; Unlike kernel resources, Android framework
resources including services, content providers and broad-
casts cannot be accessed directly by the system calls. These
system resources provide an Android IPC interfaces as the
“windows” to normal apps and Android permissions access
control is built behind each window. When an app with
the required permissions tries to access the intended system
resources. The system resources call framework reference
monitor to check the caller’s permissions.

2.3 Reference Monitors
In the “windows” mentioned above, their access controls

all have to get to one point: does the app have a particular
permission? The windows themselves do not know the an-
swer, they have to ask Android for its decision. In Android,
this decision is only made in two places: at the framework
level or at the kernel. We call them Framework Reference
Monitor (FRM) or Kernel Reference Monitor (KRM).

FRM resides in the system_server process and it consists
of two system services: Activity Manager Service (AMS)
and Package Manager Service (PMS). Activities, content
providers, services, and broadcasts check permissions using
FRM. Whenever they need permission check, they send an
IPC to AMS, which works together with PMS to conduct
the check. In some cases, the caller is already in the sys-

tem_server process, so the call will be a local one, not an
IPC.

KRM resides in the kernel. Conceptually, the Linux Dis-
cretionary Access Control (DAC) is considered as KRM.
When conducting permission check, KRM cannot reach out
to AMS and PMS for the app’s permission information.
Pushing the permission information into the kernel can solve
the problem, but can introduce significant kernel-level modi-
fication. Android chooses to utilize the Linux DAC by lever-
aging the UID and GIDs of a process to make the access
control decisions in the kernel. For example, accesses to
bluetooth, sdcard and the Internet need GIDs of net_bt,
sdcard_r and inet respectively.

3. THE COMPAC DESIGN

3.1 The Overview
The main objective of Compac is to provide component-

level access control. In Compac, each app consists of one
or more components1. App developers or device users can
grant different permissions to components. For example, an
app has two components, one for the main activity, and the
other for advertisements. The app can give only one permis-
sion (INTERNET) to the advertisement components, while
assigning several permissions (such as READ PHONE STATE,
ACCESS COARSE LOCATION) to the rest of the app. Such
a fine-grained access control is not possible in the existing
Android system: each app can have one set of permissions;

1Although Android platform has its own Android compo-
nent definition, we use components to indicate Java pack-
ages. For example, Google Ads component means Google
Ads related packages. Component is an abstract concept to
facilitate the understanding of Compac.
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Figure 1: The Architecture of Compac

once granted by the users, all the components in the app
will have the same privilege.

The architecture of our design is depicted in Figure 1. It
is composed of three pieces. First, an app developer defines
the app’s permissions as well as the component permissions.
When the app is installed, its app and component permis-
sions are acquired by the reference monitors. As we men-
tioned in Section 2, Android has two permission-checking
places: Framework Reference Monitor (FRM) and Kernel
Reference Monitor (KRM). FRM still stores the app permis-
sions as usual, and we do not modify the computing logic
of the app permissions. To keep the best compatibility with
current Android access control architecture, we extend the
two RMs by adding two Policy Managers (PMs): Framework
Policy Manager (FPM) and Kernel Policy Manager (KPM).
The two PMs hold the component permissions that are ob-
tained from the app’s AndroidManifest.xml. Whenever
permission update happens in Android framework, FPM
synchronizes component permissions with KPM.

The second part is to extract the component informa-
tion (Java package call chain) at runtime. We build hooks in
Dalvik to trace the realtime Java method invocations. The
trace is a call chain, which works like a call stack (FIFO). In
order to make sure the component information is accurately
recored, each thread of the app process has a call stack. If
the thread is suspended, its call stack is locked. The thread’s
call stack follows the basic security rule. When a thread is
forked from its parent, the parent’s call stack status is in-
herited to avoid privilege escalation.

The third piece is access control enforcement. The RMs
make decisions based on app’s UID permissions and com-
ponent permissions. RMs first check if the app has the re-
quested permissions. If it does, RMs ask PMs to check the
component permissions. PMs consider a call chain as the
principal in an access control. They have the privilege to
request the call chain from Dalvik. After the PMs finish
the computation of permissions, they check the component
policy to return the result to RMs; If the app doesn’t have
the requested permission, the request is denied without any
further component permission check.

3.2 Assumption & Trusted Computing Base
Most Android apps are written in Java, but for perfor-

mance reasons, Android allows apps to include native code
(compiled from C/C++ code) [4]. To distinguish this type
of native code from that provided by the Android OS, we call
it the app-specific native code. Since this native code runs
in the same process space as Dalvik, if it is malicious, it can
tamper with the process’ stack and heap memory, including
the memory used by Dalvik.

In Compac, Dalvik provides component call-stack infor-
mation. If Dalvik’s data memory can be changed by mali-
cious components (through native code), there is no guaran-
tee on the integrity of the runtime component information.
In this paper, because of the lack of isolation between the
app-specific native code and Dalvik, we block the invocation
of app-specific native code in apps. The assumption is only
temporary and has limited impact:

1. Based on the previous study [45], only 4.75% of benign
apps have native code. Therefore, the majority of the
apps will not be affected by this assumption.

2. Isolating the app-specific native code from the rest
of the system is not impossible to implement. This
goal is already achieved in the Chrome browser by the
Native Client (NaCl) framework [43] using Software
Fault Isolation (SFI) [40]. Robusta [37, 39] has suc-
cessfully isolated the native code from Java Virtual
Machine (JVM) in the traditional OSes. It will be just
a matter of time before the isolation of the native code
from Dalvik is achieved in Android.

3. If a component’s permission set is the same as the app’s
permission set, i.e., there is no permission restriction
on this component, we do allow the native code to be
invoked by this component, because no extra privilege
can be gained by this component even if it can modify
Dalvik’s memory. The blocking of native code is only
enforced if a component has less permissions than the
app.

It is quite tempting to enforce the component-level access
control inside Dalvik, just like what the security manager
does in the traditional JVM’s security architecture [10]. In
Android, the existing access control is not enforced inside
Dalvik; instead, it is enforced either inside the kernel or in
a privileged process (i.e., system_server). Android chooses
to conduct access control in this way, rather than simply us-
ing the security architecture of JVM; this is mostly because
Android itself uses a great deal of native code, in addition
to the native code brought by apps. When an app invokes
the native code, Dalvik will have no control. Thus we en-
force the access control policy in Android framework not
Dalvik. However, in order to secure component boundaries
and ensure the correct runtime component information, we
do implement some auxiliary security rules (see section 4.2)
in Dalivk. In general, we only use Dalvik to get the runtime
component information, not for access control.

3.3 Component Permission Configuration
In the original Android platform, apps need to specify all

the permissions they need in AndroidManifest.xml. Dur-
ing the installation, users will be asked whether they want
to grant the requested permissions. Once granted the per-
missions, an app will have those permissions until it is unin-
stalled [25]. When the app requests protected resources, the
corresponding permission will be checked.
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To support component-level access control, we need to at-
tach a separate permission set to different components. Con-
sider all the participants involved in app management, We
provide component permission configuration in two different
ways. First, an app developer can specify what permissions
each component needs. This is done by adding a special
section in AndroidManifest.xml2:�

<uses-permission android:name="READ_CONTACTS
"/>

<uses-permission android:name="INTERNET"/>
<package-permission android:name="com.google.

ads">
<assign-permission android:name="INTERNET"/>

</package-permission>
� �
In the above permission definition, the app’s permissions

are defined in Android’s original uses-permission tag. The
app has the INTERNET and READ CONTACTS permissions.
We call these permissions the app’s default permissions. For
the components that are not specifically mentioned in An-

droidManifest.xml, they will have app’s default permis-
sions. If app developers want to restrict the permissions
of some third-party components, they need to specify that
using our new tag called package-permission. In the ex-
ample, we have assigned only the INTERNET permission to
the com.google.ads component. This component can use
the Internet, but will not be able to read the user’s contact
data.

Figure 2: Permission Manager Interface for Users:
third-party components with less permissions will be
displayed in system settings, and experienced users
have options to adjust component permissions in the
app info section of system settings.

Second, experienced users have options to set their own
security policies on a component, putting a restriction on
what permissions it can have (see Figure 2), regardless of
what are assigned to the component during the installation.

2For formatting reasons, permission names in our exam-
ples are shortened by removing their prefix. For exam-
ple, the full name of READ CONTACTS should be an-
droid.permission.READ CONTACTS.

This is very useful for users to control the popular com-
ponents, such as advertising components, social networking
service APIs, etc. Meanwhile, inexperienced users can keep
apps’ default settings configured by the developers. Users
set component permissions per app. For example, if a user
assigns only the INTERNET permission to the AdMob pack-
age in one app, then it will not affect the other apps’ AdMob
component permissions. This setting only overwrites the
permissions assigned to the component in this app.

All the app permission definitions will be stored in frame-
work reference monitor as what original Android does. How-
ever, all the component permission definitions will be ac-
quired by framework policy manager. Once any component
permission update happens, framework policy manager syn-
chronizes the information of the component and its permis-
sions with kernel policy manager. The synchronization is
only done when the app is installed/updated, or when users
modify the permissions assigned to a component.

3.4 Extracting Component Call Chains
To enforce component-level access control, Android needs

to know what component initiates the access in addition to
the UID information. However, that is not enough, as one
component A can invoke another component B, and B then
invokes C, which initiates the access. To make a correct
access control decision, Android needs to know the entire
call chain A → B → C, instead of C alone. This call chain
is called the component call chain in this paper. Since Dalvik
supports multi-thread, the call chain must be extracted at
the thread level, one per thread. When a new thread is
spawned, its initial call chain is inherited from the parent
thread. The new thread has to keep the initial call chain
during its lifetime to avoid escalating its privilege.

The component call chain needs to be extracted at run-
time from inside Dalvik. Dalvik functions as the Java inter-
preter in Android; it converts Java bytecode in dex format
into native code and executes the native code [23]. To ex-
tract the call chain, we put hooks in Dalvik.

3.4.1 Hooks
Dalvik’s core interpreter is called mterp [42], which inter-

prets the machine-independent bytecode to machine-dependent
code. There are many opcodes in bytecode, such as condi-
tional, mathematical, method operations, etc., but compo-
nent transitions (i.e., from one component to another com-
ponent) can only happen at the method invocation and re-
turn time, so we only focus on the opcodes related to method
invocation and return. We have identified all these op-
codes 3, and placed a corresponding hook in each of them.
These hooks check whether there is a component transition;
if so, record the transition to the call chain.

In addition to the hooks placed in mterp, we also place
hooks in the Java reflection class and DexClassLoader to ad-
dress implicit method invocation and code injection attacks.
We will further discuss these two attacks in Section 4.

3We place hooks in the following opcodes: invoke-
virtual, invoke-super, invoke-direct, invoke-static, invoke-
interface, invoke-virtual/range,invoke-super/range, invoke-
direct/range, invoke-static/range, invoke-interface-range,
invoke-virtual-quick, invoke-virtual-quick/range, invoke-
super-quick, invoke-super-quick/range, return-void, return
vx, return-wide vx, and return-object vx.
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Figure 3: Policy Manager (PM) Structure & Permission Checking Flow

3.4.2 Call-chain storage
Once call chains are collected, the first question is where

to store them. With respect to call chain extraction and per-
mission enforcement, three candidate places are safe to store
call chains: Dalvik, the kernel and the system_server pro-
cess. From cost efficiency perspective, the kernel is the best
place to store call chains. Suppose call chains are stored in
Dalvik, every time system_server checks permissions, sys-
tem_server needs to request call chain through IPCs. Sim-
ilarly, if call chains are stored in system_server, whenever
Dalvik updates a call chain, it has to talk to system_server

via IPCs. These two operations are relatively frequent, and
so many IPCs will lead to low performance. By storing call
chains in the kernel, these two kinds of IPCs turn to system
calls. According to our experiments, we find storing call
chains in the kernel boosts the speed of call-chain update
and permission checks.

Compac stores call chain based on thread. A process can
have several threads running simultaneously, thus can have
multiple component call chains, one for each thread. When
Dalvik detects a component change, it sends the new com-
ponent information into the kernel, or asks the kernel to
remove one from its call chain, depending on whether it is
an invocation or return.

Recording a call chain in Dalvik may introduce a high
overhead if it is not properly handled. For performance rea-
sons, we optimize the design in three aspects: first, we do
not record all component transitions. We only record transi-
tions among the components specified in the AndroidMani-

fest.xml and the user’s settings, because only these compo-
nents can cause permission changes. Second, we delay the
call-chain synchronization at Java Native Interface (JNI).
Dalvik does not synchronize call chain with the kernel every
time when there is a component (package) transition. In-
stead, it does that in JNI. This is because the Java code will
eventually be interpreted to native code provided by An-
droid, and JNI is the only entry point where the transition
from Java code to native code happens. Third, method invo-
cation within the same component will not be recorded. For
example, if a method in package A invokes another method

in the same package, which in turns invokes a method in
package B, the call chain will be “A→ B”.

3.5 Access Control Enforcement Based on the
Call Chain

Compac’s permission model is composed of app permis-
sion check and component permission check (see Figure 3(b)).
Compac keeps a clear and standalone design for the two per-
mission checks. Compac remains the app permission check
logic in RMs without modification, meanwhile, Compac has
two new modules called policy managers and kernel policy
manager to check the component permissions. The two Pol-
icy Managers (PMs) are built in the two Reference Moni-
tors (RMs) separately. When a permission request comes to
RMs, RMs first check app permissions. If the app does not
have the specific permission, the request is denied immedi-
ately without going to PMs. Otherwise, RMs ask PMs to
begin the component permission checking procedure. PMs
send a privileged system call to call-chain storage in order
to request component call chain. Once they receive the call
chain, they calculate the call-chain permissions and check
whether the caller’s call chain have the requested permis-
sion. PMs return the result to RMs, no matter what the
result is. After that, RMs handle the rest as what they do
in original Android.

We name the permissions calculated from component call-
chain permissions as the effective permissions. In the orig-
inal Android framework, there is no such call chain, so the
effective permissions are the same as the app’s permissions
granted during the installation. In Compac, the effective
permissions are calculated as the following definition:

Definition Effective Permission. Let C1, . . . , Cn be com-
ponents, and Pi be the permission set for the component Ci,
where i = 1, . . . , n. Assume that the current component call
chain for a thread is C1 → C2 → . . . → Cn. The effective
permission set eP of the current thread is defined as the
following:

eP = P1 ∩ P2 ∩ . . . ∩ Pn.

If Prequest ∈ eP , PMs allow the access request. In the ac-
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Figure 4: Component Intersection Cases

tual enforcement, PMs do not calculate all the permissions,
instead, PMs examine the call chain and just check each
component to see if they have the requested permission.

The policy seems too restricted, however, it is effective
and practical. First, all the components’ permissions of an
app are defined by one app developer. Consider the exam-
ple in Figure 4, there are three components C1, C2, C3, and
they have permission sets {P1}, {P1, P2, P3} and {P2}. In
case 1, when C1 calls C2 in order to use P2, the access is
denied. If the developer would like C1 to use P2, the devel-
oper will assign P2 to C1 just like C3 in case 3. Otherwise,
C1 is trying to gain P2 without user consent. So, the deny
decision is correct. In case 2, we can see the policy allows
the components with less privileges to call components with
more privileges. As long as the privileged action is not re-
quested, PMs will not check component permissions. Sec-
ond, the call chain only records components (packages) that
are specified with tag package-permission in AndroidMan-

ifest.xml. These are untrusted third-party libraries and
there are not too many cross references among them. We
conduct several experiments on Compac by recording third
party components and logging the call chains. We never see
the call chain having more than five components. We also
evaluate 34 apps (downloaded from Google Play) by restrict-
ing all the third-party components, and we never experience
false positives.

3.6 Policy Manager Implementation
Policy managers play a critical role in component call-

chain access control. Thus, we take FPM as an example
to illustrate the internal work flow in PMs. After app per-
mission request is granted, the permission request comes to
FPM and FPM begins to check component call-chain per-
missions. First, FPM gets the caller’s identity from Binder
IPC, In this case, the caller’s identity is thread ID (TID).
With the TID, FPM requests and gets the thread’s compo-
nent call chain from call-chain storage. Besides, FPM also
has the caller’s UID, so FPM can map out the app’s compo-
nents with their permissions from FPM’s internal three-level
hierarchical data structure, as shown in Figure 3(a). KPM
has a similar checking procedure except that KPM gets the
call chain much easier, because there is no IPC and context
switch involved.

During the FPM permission checking procedure, the most
difficulty is how the FPM gets the caller’s TID since there is
no TID related support in original Android. It is much eas-
ier if the caller voluntarily sends the TID to FPM. However,
such information cannot be trusted. We choose to let the
kernel provide the caller’s TID. We allow the FPM to call
getCallingTid API, which is similar to the system’s get-

CallingUid API. FPM can use getCallingUid to request
UID from binder’s kernel driver when FPM needs UID to
check app permission. In our implementation, we add the
getCallingTid API support in Binder’s kernel driver by

recording the caller’s TID when IPC happens. We also build
both the Java and native getCallingTid interfaces for any
IPC that goes through binder. As a result, FPM can get the
caller’s TID through binder object for authorization.

4. POTENTIAL ATTACKS & DEFENSE
The traditional JVM has its own built-in access control [27],

which is enforced through the security manager, access con-
troller, and security packages in java.security.*. This ac-
cess control in general falls into two categories: the access
control on resources (such as file read/write, hardware ac-
cess, etc.) and the access control on language properties
(such as whether or not a program can use Java reflection
or class loader).

To contain native code, Android relies on reference moni-
tors to protect privileged resources and removes access con-
trol entirely from Dalvik. Without this kind of access con-
trol, it is difficult to achieve the isolation among components.
For example, reflection can be used to inject code in another
Java package, blurring the boundaries among components.
Compac heavily relies on components, so we need to clearly
identify component boundaries. In this section, we describe
possible attacks on Compac and explain how we remedy
these attacks in our design. In a nutshell, we need to com-
pensate for the missing language security feature in Dalvik,
in order to secure the component-level access control.

4.1 Implicit Invocation Attack

Attack. Reflection is a powerful Java language feature,
which allows a piece of code to invoke any method of a
class, including its private and protected methods, unless
the method is marked as inaccessible for reflection. Based
on our study (Table 1) 4, we can see that around 60% of be-
nign apps use reflection to implicitly invoke other methods.
Some usages are made by the advertisement code included
in apps. After excluding that factor, about 42.49% of benign
apps use reflection. The widely used reflection functionality
drives the needs to handle this type of special invocations
instead of simply blocking them.

Table 1: Implicit Invocation Usage (Total App Sam-
ples: Benign 16000, Malware 2566)

Implicit Invocation App Sample Number Percentage

Benign including Ads 9577 59.86%
Apps excluding Ads 6798 42.49%
Malware including Ads 1377 53.66%
Apps excluding Ads 989 38.54%

Defense. Compac can easily solve the reflection problem.
The Java code is interpreted in Dalvik and Dalvik can trace
all the methods including reflection methods. So Dalvik
knows which method will be invoked in a reflection invoca-
tion. Reflection’s implicit invocation is implemented in the
reflection_native() method, which resides in the core li-
braries of Dalvik. We place a hook in reflection_native

to monitor which Java method will be invoked by reflec-
tion, and thus extract the Java package containing the real
invoked method instead of reflection packages.
4Benign apps are downloaded from Google Play, and most
malware apps are collected from Android malware genome
project [2].
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4.2 Inter-Component Code Injection Attacks
If a package can modify another package’s code, it can

break Compac, because a package with less privileges can
simply inject its code into a package with more privileges.
We call such an attack the inter-component code injection at-
tack. The Java instrumentation class, java.lang.instru-

ment [8], can be used to modify the contents of an existing
class; fortunately, it has been disabled in Android SDK. In-
stead, Android develops its own instrumentation package,
android.app.Instrumentation [11]. This package can be
disabled in AndroidManifest.xml. It seems that we are safe,
but unfortunately, in addition to instrumentation, there are
two other ways to modify other class’s code.

Attack 1. Reflection can be used to modify the field of a
class object (see the following example):�

import java.lang.reflect.Field;
Field field = classInstance.getClass().

getDeclaredField(fieldName);
/* Allow modification on the field */

field.setAccessible(true);
/* Set the field to a new value */

field.set(classInstance, newValue);
� �
The field itself can be an object of any type. If the ob-

ject field is changed, the instance is modified. Moreover,
if a class object is changed, the corresponding methods are
changed accordingly. Initially, we decide to simply block
set() method, but our study (Table 2) has shown that about
15.24% (12.03% if ads are excluded) of benign apps use the
reflection in this way.

Table 2: Reflection for Code Injection Usage (Total
App Samples: Benign 16000, Malware 2566)

Code Modification App Sample Number Percentage

Benign including Ads 2438 15.24%
Apps excluding Ads 1925 12.03%
Malware including Ads 56 2.18%
Apps excluding Ads 17 0.66%

Attack 2. The second attack is related to the class
loader. If developers restrict an untrusted component’s per-
missions, the untrusted component can escape the restric-
tion using DexClassLoader. Using the class loader, an un-
trusted component can reload a class [28], and therefore can
replace a more trustworthy component with its own ma-
licious code. This completely defeats the component-level
access control. Class reloading is not possible in JVM, as
special permissions need to be granted to an app before it
can load classes. Since Android’s Dalvik removes this access
control, class reloading becomes possible.

When using class loader DexClassLoader in Dalvik, the
protected method loadClass() in Dalvik does check whether
the class is already loaded or not; if it is, it will not reload the
same class. However, this is only enforced inside DexClass-

Loader, so if a malicious component extends DexClassLoader
and overrides loadClass(), it can successfully reload a class.

Defense for attacks. For both attacks, we enforce the
following policy in Dalvik: if code in package A tries to mod-
ify/reload a class in package B, this action is only allowed if
PB ⊆ PA, where PA and PB are the permission sets of pack-
age A and B, respectively. In other words, a component

with less privileges cannot modify/reload a class (compo-
nent) with more privileges, and thus cannot gain privilege.

4.3 Package Forgery “Attack”
Since Compac identifies components using the Java pack-

age name, a potential attack is to forge the package name,
so the restriction on the package can be circumvented. How-
ever, this is not a feasible attack. When developers intend
to include a third-party package in their apps, they have
the responsibility to ensure the integrity of the package. For
example, if they plan to include Google advertisements in
their apps, they need to ensure that the AdMob SDK they
use is indeed from Google.

5. CASE STUDIES & EVALUATION
In this section, we conduct two types of evaluations. First,

we use three case studies (Ads APIs, social networking ser-
vice APIs, and web apps) to demonstrate how the privi-
leges of components can be restricted using our component-
level access control. In all the case studies, we focus on the
most representative permissions, such as INTERNET, READ-

/WRITE/SEND SMS, READ/WRITE CONTACTS, READ PHON-

E STATE, ACCESS COARSE/FINE LOCATION. Second, we eval-
uate the performance of Compac.

5.1 Advertising APIs
We would like to evaluate how Compac works with various

advertising packages. Certain advertising APIs (like InMobi)
may use user’s phone state or location information for dis-
playing more relevant Ads to the user. To protect clients’
privacy, a developer can prevent the advertising components
from using these permissions without harming the app func-
tionality and changing the app’s permission set.

Figure 5: Angry Birds

We use the Angry Birds app [6] to demonstrate the afore-
mentioned scenario. Angry Birds uses five advertisements
including AdMob, InMobi, Millenial Media, JumpTap and
GreyStripe. In Angry Birds, advertisements display at the
top of the screen (see Figure 5), and the app randomly
chooses one advertisement from the five to display. We as-
sign only two necessary permissions for the five Ads APIs,
while the Angry Birds app has six default permissions. Com-
ponent permission tags are defined in AndroidManifest.xml

(to save space, we only show the tags for Google Ads).�
<package-permission android:name="com.google.

ads">
<assign-permission android:name="INTERNET" />
<assign-permission android:name="

ACCESS_NETWORK_STATE" />
</package-permission>
� �

We repackage app’s APK file and run the Angry Birds
game. As the game runs, we suddenly receive a pop-up win-
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Figure 6: Angry Birds: No Permission Pop-up Win-
dow

Figure 7: Ads in Angry Birds: Permission Deny
Logcat

dow (Figure 6), indicating that the developer has not de-
clared the READ PHONE STATE permission. From the logs
(Figure 7), we can see that the JumpTap package throws an
exception, but the game does not crash and continues run-
ning smoothly; this is because READ PHONE STATE is an op-
tional permission and Ads handle it properly. Experienced
users can achieve the same goal by modifying the package’s
permissions in the app setting.

Besides, we download 33 apps from Google Play and run
the extreme experiments like giving empty permission set
to an app’ Ads. The results show that we can success-
fully restrict all the Ads in these apps. 29 apps handle the
no-permission exception, so they continue to run without
any problem, except that no advertisement is displayed. 4
apps display “no INTERNET permission” toast messages
and then exit.

5.2 Social Networking Service APIs
Android apps use a number of social networking service

(SNS) APIs, such as Facebook, Twitter, and Dropbox APIs.
To use these APIs, apps can include the API packages in
the program, and interact with the classes in the packages
through the APIs. Once included, the API package will have
the same privileges as the app. Unfortunately, some of the
packages seem to abuse the privileges by collecting private
information about users. It will be more desirable if apps
can limit the privilege of these API packages.

The component-level access control in Compac can be
used for this privilege-restriction purpose. To demonstrate
that on SNS APIs, we emulate a scenario where a malicious
SNS library attempts to read user contacts. We insert a
small piece of malicious code in Facebook SDK. As long as
the app that uses this API has the permission to read user’s
contacts, the inserted code can silently read the contacts
from the phone and send them out, without user consent.
We package the malicious Facebook SDK in a sample app.
This app gets the information from the user’s friend list (in
Facebook), compares the list with the user’s contacts (on
the device), and sees whether any friend is on the contact
list. This is a typical use of Facebook APIs. Without the
protection from Compac, the privilege for reading contacts

Figure 8: Facebook: Permission Deny Toast

Figure 9: Facebook: Permission Deny Logcat

may be abused by the malicious Facebook APIs.
To block the READ CONTACTS permission, we restrict the

permissions of the Facebook SDK component to INTERNET

only. When we run the app under Compac’s protection, the
app throws a“Permission Denial”toast for READ CONTACTS

(see Figure 8). As shown in Figure 9, the action (read-
ing contacts from phone) has been blocked. The main app
still has the READ CONTACTS permission, so we can tell the
blocked event is caused by the Facebook component.

5.3 Web Applications - PhoneGap
Compac can also protect web apps, although component

hooks are not deployed in WebKit’s JavaScript interpreter.
To demonstrate that, we have conducted experiments on
a popular cross-platform web app framework called Phone-
Gap [9]. PhoneGap encapsulates a WebView, allowing de-
velopers use HTML5, JavaScript, and CSS to develop mobile
apps. The JavaScript APIs provided by PhoneGap can ac-
cess device resources through WebView’s addJavascript-

Interface API [26]. However, this API has caused many
security problems [31] because it is exposed without control.
A recent article [1] demonstrates that JavaScript code can
use reflection to gain the Java object reference, thus can
gain the app’s privilege. The security problem is because
WebView cannot contain the JavaScript code.

Compac easily fixes the above over-privilege problem by
assigning only the INTERNET permission to WebView com-
ponent. Every time the addJavascriptInterface API uses
reflection to access privileged Java API, it is recorded in the
call-chain. When the privileged Java API tries to perform
privileged actions on behalf of the JavaScript code, access
is denied; If the Java API is called by the app’s code and
the addJavascriptInterface API is not in the call-chain,
access is allowed.

Besides, Compac also provides a solution to enforce the
principle of least privilege on PhoneGap plug-ins. In Phone-
Gap, a plug-in usually conducts a particular functionality,
such as reading/sending SMS, using camera, etc. All plug-
ins are included as libraries. Once included, they have the
same privilege as the app, leading to an over-privilege prob-
lem. Since all the plug-ins have their own unique pack-
ages, third-party plug-ins can be considered as components.
Based on the functionalities of plug-ins, we evaluate six dif-
ferent plug-ins including com.seltzlab.mobile, com.leafc-
ut.ctrac, com.rearden, org.devgeeks,com.karq.gbackup,
com.practicaldeveloper.phonegap.plugins. According to
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their documents, they require permission GET ACCOUNTS,
CALL LOG, READ CONTACTS, READ PHONE STATE, READ S-

MS, SEND SMS individually.
We conduct two experiments on these plug-ins. In the first

experiment, we remove all the permissions from the plug-ins.
We have observed that Compac is able to limit the behav-
iors of five plug-ins and their requests to access the device
resources are all denied, The only exception is the Contact
View plug-in (com.rearden), which needs no permission and
does not perform privilege action directly. Instead, it dis-
plays the contacts by sending Intent to Android’s built-in
Contacts app. This is a privilege escalation problem [15] be-
tween apps and out of this paper’s discussion. In our second
experiment, we assign only the required permission as their
documents describe to the six plug-ins. Our results show
that all the plug-ins work properly. This indicates that they
do not need extra permissions. By combining the two ex-
periments, we have demonstrated that Compac can resolve
the over-privilege problem associated with the PhoneGap
plug-ins, without affecting their functionalities.

In conclusion, we demonstrate that Compac can success-
fully put access control on WebView and other web frame-
works, and this is not easily done by previous work.

5.4 Performance
The overhead of Compac mainly comes from two sources.

One is from the hooks that we insert in Dalvik, and the other
is from the component permission checks (at both framework
and kernel levels). Component permission checks are more
complicated, as the effective permissions need to be calcu-
lated from the component call chain at runtime. Dalvik
hooks just record the necessary Java packages. So, the cost
from permission checks is far more than that from Dalvik
hooks. We first evaluate the permission check overhead un-
der an extreme condition, which provides a guideline on the
upper boundary of Compac’s performance. Then we evalu-
ate the overall performance, which illustrates the overhead in
normal situations. We employ a Nexus S phone as the eval-
uation platform. Our codebase is the Android-4.0.4_r1.2

branch from the Android Open Source Project (AOSP). The
original Android and Android with Compac are originally
from the same copy of the source code.

5.4.1 Permission Checking Overhead
We first measure the overhead of Compac’s permission

checks. In Android, As we know, permissions are checked
either in the kernel through system calls, or at the frame-
work level through IPC (IPC permission checks). The cost
of an IPC permission check is always higher than a kernel
permission check, because an IPC involves several system
calls. Therefore, we only perform evaluation on IPC per-
mission checks to measure the upper boundary of overhead
caused by Compac’s access control. We use the following
pseudo-code to show how we conduct the unit test.�

time_start := System.currentTimeMillis
for i:=1 to 25000 do

check random permission
time_end := System.currentTimeMillis
excute_time := time_end - time_start
� �

We do the test by conducting the IPC permission checks
on random permissions 25000 times. On the original An-
droid, the test takes 38,153 ms, and on Android with Com-
pac, it takes 46,614 ms. Therefore, Compac’s overhead for
IPC permission checks is 22.2%. Although this number
seems high, it just provides the upper boundary of the Com-
pac’s performance and does not pose problems for the overall
performance. Because the IPC permission check happens
only when a privileged action is triggered. A normal app
does not have many such IPC permission checks.

5.4.2 Overall Performance
To evaluate Compac’s overall performance, we use three

popular benchmark apps: Antutu, CF-bench, and Linpack.
We plot the results in Figure 10. In the figure, “Original”
means the AOSP Android; “Permissive”means Android with
Compac will be in permissive mode, i.e. it will log access
control denials but not enforce them; “Enforcing” means
we restrict each package’s permissions inside the benchmark
apps and Android with Compac runs in enforcing mode.

The three benchmark apps show similar results that the
overall performance of Compac is quite close to the original
Android platform. A higher number is better in all the three
benchmarks. Take the Antutu benchmark app as an exam-
ple. Antutu produces an overall score based on the mea-
sures. The result shows that the original Android score is
3106, Compac in permissive mode scores 3033, and Compac
in enforcing mode scores 3026. Taking the original Android
score as the base, the performance of Compac in permissive
mode is 97.6% and the performance of Compac in enforcing
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mode is 97.4%. One interesting thing is that for the sin-
gle thread test with Linpack, Android with Compac has a
higher score than original Android. We run the experiment
several times and get similar results. Sometimes, Compac
in permissive mode may score better than Compac in en-
forcing mode, but both always score better than original
Android. The reason is we optimize Dalvik interpreter and
related libraries when we implement Compac. According to
Linpack for Android app’s description [7], “the Dalvik VM
has a huge impact on the Linpack number”, and “this test is
more a reflection of the state of the Android Dalvik Virtual
Machine than of the floating point performance of the un-
derlying processor. Software written for an Android device
is written using Java code that the Dalvik VM interprets at
run time”.

6. RELATED WORK
Information Flow Tracking. To protect user privacy,
the pioneering work TaintDroid [22] conducts taint analy-
sis in Dalvik to trace information flows. It has the ability
to trace when the sensitive information flows out of an app.
TaintDroid taints data in Dalvik while our work builds hooks
in Dalvik for system to make access control. AppFence [29]
is built upon TaintDroid and can block unwanted data trans-
mission.

Android Permission Control. A collection of work [19,
24, 32, 33, 35] adopt different policies to achieve fine-grained
access control on app permissions in order to control an
app’s behaviors or make sure the app has the least privi-
lege. Apex [32] and Kirin [24] allow users to accept a sub-
set of the permissions declared by apps and enforce poli-
cies at installation-time. Saint [33] enforces policies at both
installation-time and runtime, and the policies leverage the
relationship between the caller app and the callee app. The
user-driven work [35] considers certain user inputs as con-
texts. Upon occurrence of certain user actions in special UI
components, the system grants corresponding permissions
to the app. CRePE [19] uses environments as contexts to
control the behavior of an app.

In-App Reference Monitor. Aurasium [41] and pre-
vious work [12, 20, 30] build a reference monitor within an
app to achieve access control through code instrumentation
or rewriting. They can flexibly enforce app level policies
but may not enforce component-level policies. Because all
the code as well as the reference monitor run in the same
process. Without jumping out of Dalvik or the process, it
is difficult for the reference monitor to recognize the run-
ning code. Besides, the current Android does not provide
component information for access control either. However,
Aurasium can still be used by app markets to protect users
from malicious and untrusted apps if app markets wrap each
app with a reference monitor and consider the whole app as
the target.

Mandatory Access Control. Previous arts XMan-
Droid [14], TrustDroid [16], IPC inspection [15] and Quire [21]
deal with the privilege escalation problems across different
apps, while Compac focuses on the components inside the
same app (same process). They are the first work to propose
mandatory access control concept in Android. SEDalvik [13]
also intercepts the Java methods in Dalvik as Compac, but it

enforces policy within Dalvik. SEDalvik can prevent some
Java level malware, however, the system cannot be aware
of the security contexts, and Dalvik cannot understand the
contextual information of the code. So, SEDalvik turns to
a language-level mandatory access control within apps.

SEAndroid [38] implements SELinux in Android kernel
and builds middleware mandatory access control in both the
kernel and Android framework. SEAndroid ports the core
SELinux into Android’s kernel and makes all the processes,
files, sockets and other kernel resources under the control
of the MAC. Thus, SEAndroid limits root and other users’
privilege. SEAndroid’s install-time MAC, intent MAC and
content provider MAC provide a comprehensive protection
to apps and Android middleware. SEAndroid and our work
strictly follow the same design principle (least privilege prin-
ciple). SEAndroid divides the privileges of the system, users
and resources, while our work divides the privileges of the
apps.

FlaskDroid [17, 18] extends the type enforcement policy
language from SELinux to Android middleware and offers
API-oriented MAC control for multiple stakeholders includ-
ing app developers. FlaskDroid allows developers and users
to have finer-grained access controls in services and content
providers. For example, the content in content provider can
be partially displayed according to the policy. FlaskDroid
makes Android middleware be aware of the contextual in-
formation in services and content providers, and our work
makes reference monitor get the component contexts of an
app.

Component-level Access Control. AdDroid [34] iso-
lates advertising components by encapsulating them as a
service and creating ADVERTISING permission for the ad-
vertising service. AdSplit [36] enforces a fine-grained ac-
cess control by putting the advertising component entirely
in a separate process, which relies on the process-level iso-
lation to achieve the protection. This solution implements
a strong component isolation mainly for components like
advertisements, which need less or no communication with
other components. However, the solution is difficult to be
extended to other types of components, such as PhoneGap,
social networking service APIs, and WebView. Unlike adver-
tisements, these components require close interactions with
the apps. Putting them in another process will turn every
interaction into an IPC, resulting in a significant overhead.

7. CONCLUSION
To reduce the risks caused by the untrusted third-party

code included in Android apps, we propose Compac, a generic
approach to achieve component-level access control. Com-
pac extends the existing Android security model. It uses
Java package as component and enforces access control based
on the UID and component. Using Compac, a component in
an app can be given a subset of the app’s permissions. We
conduct case studies on various third-party APIs including
advertising, social networking service, PhoneGap plug-ins,
and WebView to demonstrate its effectiveness, usefulness
and the compatibility with the existing Android architec-
ture. We also evaluate its performance to show that the
overhead is quite affordable. The source code of Compac
is available upon request for now, and will be released on
GitHub to the public soon.
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