
Using An Instructional Operating System In

Teaching Computer Security Courses ∗

Wenliang Du
Systems Assurance Institute

Department of Electrical Engineering and Computer Science
Syracuse University

121 Link Hall, Syracuse, NY 13244
Tel: 315-443-9180 Fax: 315-443-1122

Email: wedu@ecs.syr.edu

Abstract

To address national needs for computer security education, many universities have incorpo-
rated computer and security courses into their undergraduate and graduate curricula. In these
courses, students learn how to design, implement, analyze, test, and operate a system or a net-
work to achieve security. Pedagogical research has shown that effective laboratory exercises are
critically important to the success of this type of courses. However, such effective laboratories
do not exist in computer security education.

To fill this gap, we have developed an instructional operating system SMinix based on the
instructional OS (Minix) developed for operating system and network courses. We use SMinix
as a basic framework, and build laboratory exercises on top of the framework; each exercise
requires students to add a different security mechanism into the system. The instructional
system is designed in such a way that makes it easy for students to focus on the part of the
system that are related to the security concepts covered in our classes. The similar approach
has proved to be effective in teaching operating system and network courses, but it has not yet
been used in teaching computer security courses.

We have already used SMinix for our Computer Security course, students have demonstrated
great interests in our laboratory exercises.

1 Introduction

The high priority that information security education warrants has been recognized since the early
1990’s. The 1991 National Research Council systems security study recommended that “Computer
system security and trustworthiness must become higher priorities for ...educators...” [4]. In 1997,
Matt Bishop of University of California at Davis noted that few computer science students are
required to develop robust, thoroughly tested code, and that until this gap is addressed “security
problems will continue to plague computer systems” [1]. In 2001, Gene Spafford of Purdue Univer-
sity’s Center for Education and Research in Information Assurance and Security, testified before
Congress that “to ensure safe computing, the security (and other desirable properties) must be
designed in from the start. To do that, we need to be sure all of our students understand the many
concerns of security, privacy, integrity, and reliability” [14].

∗The project is supported by Grant DUE-0231122 from the National Science Foundation and by fundings from
CASE center.

1



To address these needs, many universities have incorporated computer and information security
courses into their undergraduate and graduate curricula; in many, computer security and network
security are the two core courses. These courses teach students how to design, implement, analyze,
test, and operate a system or a network with the goal of making them secure. For this type of
course, pedagogical research has shown that students’ learning is enhanced if they can engage in
a significant amount of hands-on exercises. Therefore, effective laboratory exercises (or course
projects) are critically important to the success of our computer security education.

Traditional courses, such as operating systems or complier, have effective laboratory exercises,
the result of twenty years maturation. In contrast, laboratory designs in security education courses
are still embryonic. A variety of approaches are currently used; three of the most frequently
used designs are described. (1) The free-style approach where instructors allow students to pick
whatever security-related topics they like for the course project. (2) The dedicated computing
environment where students conduct security implementation, analysis and testing [7, 10] in a
contained environment. (3) The build-it-from-scratch approach, where students are required to
build a secure system from scratch [12].

Free-style design projects are effective for creative students who enjoy the freedom if affords;
however, most students become frustrated with this strategy because of the difficulty in finding
an interesting topic. With the dedicated-environment approach, projects can be very interesting,
but the logistical burdens of the laboratory - obtaining, setting up, and managing the computing
environment - are considerable for instructors. In addition, course size is constrained by the size of
the dedicated environment. The third design approach requires that students spend considerable
time on activities irrelevant to security issues, but essential for a meaningful system.

Understanding the drawbacks of the existing approaches, we propose to develop a new approach
for the laboratories of computer security courses. We want our labs to have the following properties:
(1) It should be well designed, and each laboratory should clearly lay out its goals and tasks. (2) The
lab does not need special computing environment or super-user privilege. Students with normal user
accounts should be able to carry out the lab assignments. (3) Most importantly, the lab provides
an infrastructure to students, so they do not need to implement everything from scratch. Their
implementation should be part of a much more complex system, they can immediately see how their
implementation behaves without having to build the rest of the complex system. For example, if
the task is to build an access control mechanism, after students finish their implementation, they
can immediately see how their access control mechanism affects file access within a file system
without having to implement the file system.

Such a laboratory design does not exist in computer security education, but similar laboratory
designs exist in other more traditional and mature courses, such as operating systems (OS), compil-
ers, and networks. In OS courses, a widely adopted successful practice is to use an instructional OS
(e.g. Minix [15], Nachos [3], and Xinu [5]) as the framework and ask students to write significant
portions of each major piece of a modern OS. The compiler and network courses adopted a similar
approach. Inspired by the success of the instructional OS strategy, we will adapt it to our computer
security courses. Specifically, we will provide students with a system as the framework, and then
ask them to implement significant portions of each fundamental security-relevant functionalities for
a system. Although there are a number of instructional systems for OS courses, to our knowledge,
this approach has not yet been applied in computer and information security courses.

We identified Minix instructional operating system as our basis for two reasons: first, Minix is
very complete comparing to other unix-style instructional OS; second, Minix can run in Solaris
operating system as a normal process, hence needs no special privilege. Based on Minix system, we
build our own system by introducing more security mechanisms; we call our system the Security-
enhanced Minix (SMinix). Our design fills what we see as a gap in computer security education:

2



the lack of effective and efficient laboratory exercises. SMinix encompass the fundamental security
concepts, principles, and technologies; therefore, it can serve as the framework and platform for
students to practice their security design, implementation, analysis, testing and operation skills.

SMinix provides the framework for fundamental security functionalities, while leaving the de-
tailed implementation to students. For example, while teaching the Discretionary Access Control
(DAC) concept, we will give students a version of the SMinix system without the DAC mechanism.
Students will need to write programs to implement MAC into the system. However, since the basic
framework for DAC exists in SMinix, students will not be starting from scratch, rather they will
build upon the existing framework. Such a framework makes it possible for students to do more
exercises.

2 System Design

Using Minix directly for students’ projects proved to be difficult for the following reasons: (1) Some
projects require students to make significant architectural change to the Minix system. Although
this is also a good practice for students, it might be too difficult. We want to be able to adjust
the degree of difficulties so we can customize the projects for students at different levels, e.g.
undergraduate level and graduate level. We can also adjust the difficulties based on the amount
of time we plan to give to students. (2) Some projects need to modify kernel data structure. For
example, to implement a full Access Control List (ACL) mechanism, we need to store the ACL
information in the i-node; however, the i-node data structure in Minix does not have a field for
that. Adding another entry to this critical data structure is not a trivial job because many other
modules of the Minix depend on it. Moreover,, modifying kernel data structure is not the emphasis
of this course. Therefore, it will better if the system we provide to students already have some
unused entries in the i-node data structure.

For these reasons, we decided to modify Minix, especially modify its security architecture and
data structures. Our goal is to make the projects easy to be customized, and reduce students’
burden on tasks that are not the focus of this class. We call our modified system the SMinix
operating system.

The SMinix system comprises an operating system (OS), with the basic operating system com-
ponents, the basic security architecture and components, and a number of plug-in modules. The
basic OS components all come directly from Minix. The security architecture is designed in such a
way that all of the projects described in Section 3 can be supported. Each of the plug-in modules
implements a specific security mechanism, such as the Access Control, Capabilities, and Sandbox-
ing. The basic SMinix is functional with and without the plug-in modules. The overall architecture
of the SMinix is depicted in Figure 1.

The SMinix system is especially useful in teaching students two fundamental skills: (1) security
analysis and testing, and (2) security design and implementation.

2.1 Security Analysis and Testing

To master the security analysis and testing skills the students have learned from the class, they
need to practice those skills in some system. One way to do this is to give them a system, such
as Windows 2000 or Linux and ask them to find security flaws in those systems. Although these
systems definitely contain a lot of vulnerabilities, finding them is not a trivial work for those who
have just learned the basic skills. Furthermore it is difficult to choose the type of vulnerabilities to
make the exercises focus on what students have just learned.

3



Basic Operating System Security Components

Fundamental Security
Architecture & Modules

Security Design & ImplementationSecurity Exploit, Analysis & Testing

Plug−in Security Modules

Components 

(From Minix)

SMinix

(Set−UID) Sandboxing
Privilege Access

Control

Encrypted 
Capability File System 

Vulnerabilities Preparation

Lab 6 Lab 7Lab 1 Lab 5Lab 4Lab 3Lab 2

Figure 1: SMinix System Architecture

In this project, we will create various versions of the SMinix system, each of which contains
injected vulnerabilities. Based on the real-life vulnerabilities appearing in many systems, we will
modify some components of SMinix system to make them contain some specific vulnerabilities.
The system is then given to students, who need to find those vulnerabilities and exploit them to
compromise the security of the system. The types of vulnerabilities we plan to inject into the SMinix
system include buffer-overflow errors, race condition errors, sym-link errors, input validation errors,
authentication errors, domain errors, and design errors [8]. Before starting these exercises, the
students are equipped with theoretical knowledge of these vulnerabilities, the methods of detection
and exploitation, and the methodologies of penetration testing and standard security testing. The
analysis and testing skills they learned will be used throughout the semester when they test their
own implementation in other laboratories.

2.2 Security Design and Implementation

In addition to the security analysis and testing skills, we want to let our students learn how to
build a security system, so their systems will not have as many security flaws as what they saw in
our previous lab exercises.

A modern operating system usually employs many security mechanism, such as Authentication,
Access Control, Capability, Sandboxing, Secure file system, and Privilege, all of which will be covered
in our course. Ideally, we want to let students implement most of them during one semester period.
To learn how long it takes an average student to implement just one of them, we did an experiment
in spring 2002 while we taught the computer security course. We asked students to add one of
the security mechanism mentioned above to the Minix operating system from scratch. The results
shows that the amount of coding is not so significant. However, the students spent most of their
time figuring out how the new security components that they are suppose to implement fit into
the system, where the new components should be put, and how these components interact with
the rest of the system. These tasks are very time consuming, they require students to understand

4



the Minix operating system kernels and its security architectures. We want students to learn all of
these, and at the same time, we want them to have opportunities to implement a spectrum of the
security mechanisms.

To this end, we decided to teach students the necessary knowledge about the system, lay out
the foundation for each security mechanism, and provide enough details about the project, so the
students do not need to read through thousands lines of code to figure them out.

To make our goal feasible, we develop the SMinix system in the following way: In the first stage,
we will design the SMinix system, so it can contain all of the security mechanisms we mentioned
above. This involves the designing of the security architecture and adding the necessary data
structure. Each security mechanisms should be implemented as an individual module, and the
interaction among modules should be reduced to minimum. In the second stage, we will implement
the SMinix system, as well as implementing all of the security mechanisms. We will call each
module a complete module. In the third stage, we will turn each complete module into a skeleton
module by taking out all of the contents of each complete module and leaving only the interface
untouched. We call the resulting system SMinix/S (S means the skeleton). The SMinix/S is still
functional, but since the contents of each module is taken out, the security mechanisms will have
no effect. Sometimes, we can just take partial contents out of the complete module, and construct
a different version of a skeleton module; this version contains more information, and will make lab
exercises easier. In another words, we can control the degree of the information that is to be taken
out of a complete module for different level of students (graduate and undergraduate).

Based on SMinix/S, we can now develop lab exercises. For each lab exercises, students will
need to implement a security mechanism for SMinix/S. Because SMinix/S has already provided a
skeleton module for such security mechanism, the students will easily understand the relationship of
this module with the rest of the system, and they can quickly start their coding. The coding is just
like filling the blank once the students know where to put their codes. This approach dramatically
reduces the time for each project, and at the same time, with the help of the skeleton modules,
students still learn the important knowledge, such as how the new security modules interact with
the whole system.

There are a number of advantages using our approach: (1) SMinix provides students with a
structured framework upon which they can build various security mechanisms. (2) The SMinix/S
is functional even if the students have not implemented the security modules completely. This
gives students quick feedback as to how their implementations work and whether the modules are
implemented correctly. (3) Because our design is highly modularized, the instructors can freely
plug in any available modules to construct various versions of SMinix systems, each of which has
different security functionalities.

3 The SMinix Laboratories

3.1 Laboratories Overview

We have developed a set of laboratory exercises for SMinix system; through these laboratories
students will develop a thorough understanding of computer security concepts, principles and tech-
niques by “learning by doing”. In particular, we want students to learn various computer vulnera-
bilities, how those vulnerabilities could be exploited, how to detect them by using various testing
methodologies, and how various security mechanisms work.

“Learning by doing” forces students to digest the information presented in class to the point
where they can instruct the computer how to apply it. Active learning such as this has a higher

5



chance of having a lasting effect on students than if the students passively listen to lectures without
reinforcement [11].

3.2 Laboratories Setup

All of the laboratories exercises will be conducted in SUN Solaris environment using C language.
Except for giving students more disk space (100 Megabytes) to store the files of SMinix system,
SMinix poses no special requirements on the general Solaris computing environment. Therefore,
the laboratories can be conducted in the existing computing infrastructure provided by the Depart-
ment of Electrical Engineering and Computer Science in our school. Such a computing environment
is quite general and is available in many universities.

3.3 Laboratories Descriptions

Below is a list of the seven assignments closely related to computer security. The first assignment
is intended to familiarize students with the process used in all the laboratories. The sixth lab teach
about vulnerabilities and their exploitation. The rest of labs teach various techniques and concepts
that are used to enhance system security. Depending on how much time the instructors want the
students to spend, they can choose a subset of these seven labs. Instructors can always extend this
set of laboratories to include their own laboratories.

Lab 1: Preparation (3 Weeks)

Objectives: We use this project to let students become familiar with the Minix operating system.
After finishing this project, they should be able to conduct the following tasks in Minix operating
system: installation, compiling source codes, administration (e.g. adding/removing users), modi-
fying source files, modifying existing system calls, adding new system calls, and understanding the
data structure of i-node and process table. Students with operating system background (the
prerequisite for this course) should be able achieve the above goals within two weeks.

Project Description: Students need to finish the following tasks: (1) Compile and install Minix,
then add three users account to your system. (2) Change the password verification procedure, such
that a user is blocked for 15 minutes after three failed trials. (3) Implement system calls to enable
users to print out attributes in i-node and process table. Appropriate security checking should
be implemented to make sure a user cannot read other users’ information.

Lab 2: Set-UID Programs (2 Weeks)

Objectives: Set-UID is an important security feature in Unix operating system; it is also a good
example to show students how privileges could be managed in a system, and what problems a
system could have if privileges are not handled properly. We use this project to let students
become familiar with the Set-UID concept, its implementation, and potential problems.

Project Description: Students need to finish the following tasks: (1) Figure out why passwd,
chsh, su commands need to be Set-UID programs. What will happen if they are not. (2) Students
are given a binary code for passwd program, which contains a number of security flaws injected by
the instructor. Students need to identify those flaws, and exploit them to gain root privilege. (3)
Read the OS source codes of SMinix, and figure out how Set-UID is implemented in the system.
(4) Modify the OS source code to disable the Set-UID mechanism.

6



Lab 3: Access Control (3 Weeks)

Objectives: Access control is an important security mechanism implemented in many systems,
and there are different types of access control: Discretionary Access Control (DAC) and Mandatory
Access Control (MAC). The goal of this project is two-fold: (1) to get first-hand experience with
DAC and MAC, and (2) to be able to implement DAC and MAC.

Project Description: Students are given a version of SMinix with no access control mechanism.
They need to implement all (or some) of the following access control mechanisms: (1) Abbreviated
ACL: the access control is based on three classes: owner, group, and others. (2) Full ACL: the
access control can be based on individual users. (3) MAC: design and implement a simple MAC
access control mechanism for SMinix.

Lab 4: Capability (3 Weeks)

Objectives: The goal of this project is to let students be familiar with the capability concept. We
plan to achieve this by asking them to implement a simplified capability mechanism.

Project Description: Students are supposed to implement a simple capability mechanism in
SMinix. Such a mechanism should support the following: (1) Permission Granting based on ca-
pability: To simplify the lab, we fix the permission to a small set. e.g. here are some examples:
the capability to execute a specific system call, such as chown (change owner), the capability to
run setuid program, etc. (2) Capability Copying: A process should be able to copy its capability
to another process. (3) Capability Amplifying/Reduction A process should be able to amplify or
reduce its current capability. For example, a process can temporarily remove its own setuid capa-
bility, but later can add it back. Of course, a process cannot add a new capability to itself if it
does not already own the capability. (4) Capability Revocation: The root should be able to revoke
the capability from current and future processes.

Lab 5: Sandboxing (4 Weeks)

Objectives: A sandbox is an environment in which the actions of a process are restricted according
to a security policy [2]. Sandboxing is an important concepts for computer security, we want
students to understand such a concept by studying an existing sandbox system and by implementing
a sandbox for SMinix. In addition to the sandboxing concept, this project also includes a number
of other concepts related to security, such as access control, system calls, isolation, and security
policies. Therefore, we view this lab as a comprehensive project.

Project Description: Janus [6] implements a sandbox. It is an execution environment in which
system calls are trapped and checked. The system is well documented. The task of this lab is to
study how Janus work, and then implement a simplified version of Janus for SMinix.

Lab 6: Vulnerability Analysis (3 Weeks)

Objectives: The first goal of this lab is to let students gain first-hand experience on software
vulnerabilities, to be familiar with a list of common security flaws, to understand how a seemly-
not-so-harmful flaw in a program can become a great risk to the system. The second goal of this lab
is to give students opportunities to practice their vulnerability analysis and testing skills. Students
learn a number of of methodologies from the class, such as vulnerability hypothesis [9], penetration
testing methodology [13], code inspection technique, and blackbox and whitebox testing. They
need to practice using these methodologies in this lab.

7



Project Description: The students are given a version of the SMinix operating system that is full
of injected vulnerabilities. These vulnerabilities simulate system flaws caused by incorrect design,
implementation, and configuration. The students are also given some hints, such as a list of possible
vulnerabilities, the possible locations of the vulnerable programs, etc. Their task is to find those
vulnerabilities.

Lab 7: Encrypted File System (EFS) (4 Weeks)

Objectives: Traditional file system does not encrypt the files that are stored on a disk, so if the
disk is stolen, contents of those files can be recovered. An EFS solves this problem by encrypting
all files on the disk, such that only users who knows the encryption keys can access the files. The
encryption/decryption operations should be transparent to users. Designing and implementing such
a system require students to combine together the knowledge about encryption, key management,
authentication, access control, security in the OS kernel, and file systems. Therefore this project is
meant to be a comprehensive project. We suggest giving this project as a final project after most
of the relevant concepts have already been covered in class.

Project Description: Students are given the description of how EFS should work, and their
task is to design and implement an EFS for SMinix operating system. Students should use their
creativity to design the system the way they want.

4 Experience

We did an teaching experiment in the 2002 spring semester when we taught the computer security
course (CSE 785). At that time, we have not developed the SMinix, so we decided to use the
original Minix operating system and asked students to modify its kernel to add certain specific
security mechanisms into the system. We only give them one project for the whole semester
because modifying an OS seems to be a daunting job for most of the students. The students
liked the projects very much and were highly motivated. At the end of the semester, the students
provided a number of useful suggestions. For example, many students noted, “most of our time was
spent on figuring out how such an operating systems work, if somebody or some documentation can
explain that to us, we could have done four or five different projects of this type instead of doing
one during the whole semester”. This observation shapes the goal of our design: we want students
to implement a project within two to four weeks using our proposed instructional environment;
without which they can only implement one or two projects of during the whole semester.

When we teach teach CSE 785 again this semester (Spring 2003), we are more prepared. We
provide students with sufficient information about how Minix works, and we even add a lecture
to talk about Minix. As results, students have gotten familiar with Minix within the first three
weeks, and are ready for the projects we have designed for them. The same degree of familiarity
took my previous students half of a semester due to the lack of information. Moreover, we were
able to assign four projects in one semester, including a complicated one, the encrypted file system
project. Here are some of lessons we have learned during the last two years:

1. Preparation: The preparation part (Lab 1) is extremely important. If students fails this part,
they will spend enormously more time on the subsequent projects. This is very clear when
we compare the performance of the students in this year’s class with that of the students in
2002. We plan to integrate the materials related to Lab 1 into the lecture, so students can
be prepared better.

8



2. Background Knowledge: We also realized that some students in the class does not know the
basic of unix operating system because they have been using Windows most of the time. This
brings some challenge because these students do not know how to set up the PATH environment
variable, how to search for a file, etc. We plan to develop materials to help students get over
this first obstacle.

3. Different Level of Difficulties: Because students come from a variety of background, some of
them found the last project, the encrypted file system (EFS), extremely difficult, and some
cannot finish it. In the future, we plan to design a multi-level requirement for projects that are
complicated, such that students with different backgrounds can find a level of requirement
that they can achieve. For example, for the EFS project, after realizing this problem, we
told some of the students that they can implement their projects without satisfying the
“user transparency” requirement; of course, they will receive lower grades than those whose
implementations satisfy the requirement.

4. Grading: grading is a challenge if the size of the class is large. The best way for the grading
is to ask students to perform a demonstration. However, this is not feasible for a big class.
Currently, we ask students to submit their report for each lab, and we selected a few of them
for the demonstration if their reports are not convincing. We plan to develop some script to
automate the grading.

5 Conclusion and Future Work

We have described the design of SMinix, an Minix based instructional operating system for teaching
computer security courses. We have also described a series of lab assignments based on SMinix.
Although SMinix is not full implemented yet, the experience we obtained by using a prototype is
very encouraging, and students in our class have shown great interests in the course.

Currently, we are conducting the full implementation of SMinix. The first version will be
ready for testing by this September. We will try various means to disseminate our results so other
universities can benefit from this NSF funded project. We will also conduct a full evaluation of the
effectiveness of using SMinix in computer security courses.

References

[1] M. Bishop. Computer security in introductory programming classes. In Workshop on Education in
Computer Security, pages 1–2, Monterey, CA, USA, January 1997.

[2] M. Bishop. Computer Security: Art and Science. Addison-Wesley, 2002.

[3] W. A. Christopher, S. J. Procter, and T. E. Anderson. The nachos instructional operating system. In
Proceedings of the Winter 1993 USENIX Conference, pages 481–489, San Diego, CA, USA, January,
25-29 1993. Available at http://http.cs.berkeley.edu/∼tea/nachos.

[4] D. D. Clark. Computers at risk: Safe computing in the informatin age. Washington, DC: National
Academy Press, 1991.

[5] D. Comer. Operating System Design: the XINU Approach. Prentice Hall, 1984.

[6] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A secure environment for untrusted helper appli-
cations: Confining the wily hacker. In Proceedings of the 6th USENIX Security Symposium, pages 1–13,
1996.

[7] J. M. D. Hill, C. A. Carver, Jr., J. W. Humphries, and U. W. Pooch. Using an isolated network
laboratory to teach advanced networks and security. In Proceedings of the 32nd SIGCSE Technical
Symposium on Computer Science Education, pages 36–40, Charlotte, NC, USA, February 2001.

9



[8] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi. A taxonomy of computer program
security flaws. ACM Computing Surveys, 26(3):211–254, September 1994.

[9] R. R. Linde. Operating system penetration. In AFIPS National Computer Conference, pages pp.
361–368, 1975.

[10] J. Mayo and P. Kearns. A secure unrestricted advanced systems laboratory. In Proceedings of the 30th
SIGCSE Technical Symposium on Computer Science Education, pages 165–169, New Orleans, USA,
March 24-28 1999.

[11] C. Meyers and T. B. Jones. Promoting Active Learning: Strategies for the College Classroom. Jossey-
Bass, San Francisco, CA, 1993.

[12] W. G. Mitchener and A. Vahdat. A chat room assignment for teaching network security. In Proceedings
of the 32nd SIGCSE Technical Symposium on Computer Science Education, pages 31–35, Charlotte,
NC, USA, February 2001.

[13] C. Pfleeger, S. Pfleeger, and M. Theofanos. A methodology for penetration testing. Computers and
Security, 8(7):613–620, 1989.

[14] E. H. Spafford. February 1997 testimony before the united states house of representatives’ subcommittee
on technology, computer and network security. Available at http://www.house.gov/science/hearing.htm,
2000.

[15] A. Tanenbaum. Operating Systems: Design and Implementation. Prentice Hall, 2nd edition, 1996.

10


