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ABSTRACT
Privacy-Preserving Data Publishing (PPDP) deals with the
publication of microdata while preserving people’ private
information in the data. To measure how much private in-
formation can be preserved, privacy metrics is needed. An
essential element for privacy metrics is the measure of how
much adversaries can know about an individual’s sensitive
attributes (SA) if they know the individual’s quasi-identifiers
(QI), i.e., we need to measure P (SA | QI). Such a measure
is hard to derive when adversaries’ background knowledge
has to be considered.

We propose a systematic approach, Privacy-MaxEnt, to
integrate background knowledge in privacy quantification.
Our approach is based on the maximum entropy principle.
We treat all the conditional probabilities P (SA | QI) as un-
known variables; we treat the background knowledge as the
constraints of these variables; in addition, we also formu-
late constraints from the published data. Our goal becomes
finding a solution to those variables (the probabilities) that
satisfy all these constraints. Although many solutions may
exist, the most unbiased estimate of P (SA | QI) is the one
that achieves the maximum entropy.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—Security, integrity, and protection

General Terms
Security

Keywords
Privacy quantification, data publishing

1. INTRODUCTION
Privacy-Preserving Data Publishing (PPDP) achieves mi-

crodata publishing while preserving individuals’ private in-
formation. In PPDP, the original data D usually consists of
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three types of attributes: identifiers (ID), quasi-identifiers
(QI), and sensitive attributes (SA). The ID attributes con-
sist of people’s identity information, such as names and so-
cial security numbers. This information will definitely be
removed from the published data for privacy reasons. The
QI attributes usually include people’s demography informa-
tion, such as gender, zip code, age, etc. QI is not considered
as sensitive information, because it can also be obtained
from other sources [22]. The SA attributes include sensitive
information about individuals. For example, in a medical
data set, patients’ diseases and diagnoses belong to SA.

Although SA contains sensitive information, it does not
disclose any individual’s private information if it cannot be
linked to an individual. However, publishing QI along with
SA (without any disguising) can make the linking possible.
This is because the QI can help adversaries re-identify indi-
viduals, even though the actual identifiers are removed [22];
after re-identification, linkings between SA and individuals
can be established. This is the primary risk faced by data
publishing. This type of attack is called linking attacks. The
objective of PPDP is to publish a transformed microdata
D′ in a way that minimizes the risk of linking attacks, while
maximizing the usefulness of the original data D.

A number of PPDP methods have been proposed, includ-
ing generalization [13, 14, 4, 10, 22], randomization [3, 1,
21, 9], and bucketization [25, 19]. In this paper, we focus on
the bucketization method.

The Bucketization method is proposed by Xiao and Tao [25]
and further studied by Martin et al [19]. In this method, the
records of the dataset are partitioned into buckets. Within
each bucket, the SA attributes of all the records are mixed
together to break the bindings between QI and SA; there-
fore each QI can be potentially binded to multiple SA values.
Figures 1(a) and 1(b) list an example of original data set and
its bucketization result. We will use these sample data sets
throughout this paper.

Privacy Quantification and Background Knowledge.
To understand how much privacy is preserved in data pub-
lishing, we need to quantify privacy. Since linking attacks
are the primary risks in PPDP, we need to quantify how
much information adversaries can know in linking attacks.
This is essentially to derive the conditional probability P (SA |
QI), for any instance of SA and QI. This probability is es-
sential for various privacy quantification metrics, such as
L-diversity [17].

Most of the existing metrics assumes that adversaries do
not have any background knowledge. In reality, this might
not be a valid assumption. For example, common medical
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Name Gender Degree Disease

Allen male college Flu

Brian male college Pneumonia

Cathy female college Breast Cancer

David male high school Flu

Ethan male college HIV

Frank male high school Pneumonia

Grace female junior Breast Cancer

Helen female college HIV

Iris female graduate Lung Cancer

James male graduate Flu

(a) The original data set D

Gender Degree Disease Bucket

male college

male college {Breast cancer, Flu 1

female college Flu, Pneumonia}
male high school

male college

male high school {Breast cancer, HIV 2

female junior Pneumonia}

female college

female graduate {Flu, HIV, 3

male graduate Lung cancer}

(b) The bucketized data set D′

Quasi-Identifier Sensitive Attribute Bucket

q1

q1 {s1, s2, s2, s3} 1

q2

q3

q1

q3 {s1, s3, s4} 2

q4

q2

q5 {s2, s4, s5} 3

q6

(c) D′ in abstract form

Figure 1: The data example used throughout this paper

knowledge tells us that it is rare for male to have Breast

Cancer. With this knowledge, for the bucketized data D′

listed in Figure 1(b), we immediately know that both females
in Bucket 1 and Bucket 2 have Breast Cancer, because they
are the only females in their respective buckets.

Background knowledge can come with different forms, for
example, it might be a rule like the previous Breast Cancer

example; it might be a probability, such as P (s | q) = 0.2 for
certain s ∈ SA and q ∈ QI; it might even be an inequality,
such as 0.3 ≤ P (s | q) ≤ 0.5. To make things even more
complicated, it can be about individuals. For example, ad-
versaries might know that “Frank has Pneumonia”, or “either
Iris or Brian has Lung Cancer”.

With these kinds of background knowledge, computing
P (SA | QI) is extremely difficult. Only a few studies have
been conducted in integrating background knowledge in pri-
vacy quantification [19, 7]. However, the existing work is not
generic enough to deal with the large variety of background
knowledge.

Our Approach. We propose a generic and systematic
method to integrate background knowledge in privacy quan-
tification, which can deal with many different types of back-
ground knowledge described above. We call our method
Privacy-MaxEnt. In this method, we formulate the deriva-
tion of P (SA | QI) as a non-linear programming problem.
We treat P (S | Q) as a variable for each combination of
S ∈ SA and Q ∈ QI. Our goal is to assign probability val-
ues to these variables. We treat background knowledge as
constraints, i.e., the assignment of the variables must be con-
sistent with the background knowledge. We also formulate
the published data set D′ as constraints for those variables.
Therefore, the derivation of P (S | Q) becomes finding an
assignment for these variables that satisfy the constraints.

Because the number of variables in PPDP often outnum-
bers the number of constraints, many solutions are possible.
However, since the meaning of each variable is actually our
inference on P (S | Q), we want such an inference as unbi-
ased as possible. The principle of Maximum Entropy states
that when the entropy of these variables is maximized, the
inference is the most unbiased. Therefore, applying the Max-
imum Entropy principle, our problem becomes finding the
maximum-entropy assignment for those variables that sat-
isfy the constraints. MaxEnt in the name of our scheme,
Privacy-MaxEnt, stands for Maximum Entropy.

We face two challenges in applying the Maximum Entropy
principle to solve the privacy quantification problem. First,

we need to be able to formulate the background knowledge
as linear constraints; such formulation should be generic
enough to accommodate various types of background knowl-
edge. Second, being another source of constraints, the pub-
lished data set D′ also needs to be formulated as linear con-
straints. For this type of constraints, we have to ensure that
not only the constraints are correct (i.e, sound), they also
need to be complete, i.e., all the knowledge from D′ has to
be formulated as constraints.

There is a third challenge that we have to face. It is not
specific to our approach; it is a challenge that all the work
on integrating background knowledge has to face. That is,
when quantifying privacy, how to determine what and how
much background knowledge that adversaries might have.
This is a difficult task, because we cannot predict what ad-
versaries might know. Instead of predicting, we propose a
mechanism to specify the bound of background knowledge,
and quantify privacy under the assumption of the bound.
Therefore, the outcome of privacy quantification should be
a tuple consisting of bound and privacy score. It is up to the
users (those who want to publish their data) to decide what
bound is acceptable to them. Our goal is to provide a mech-
anism for users to specify their assumptions (i.e. acceptable
bounds), and then tell them how much private information
will be preserved in their published data, when adversaries’
amount of background knowledge is within those bounds.

Organization. In Section 2, we discuss the work related
to this paper. In Section 3, we give a brief introduction
of the Maximum Entropy Principle, and how we formulate
our problem as an Maximum Entropy modeling problem.
In Section 4, we present how background knowledge can be
modeled as linear constraints, and how to specify the bound
of background knowledge. In Section 5, we formulate linear
constraints from the published data set, and prove that the
constraints are sound and complete. In Section 6, we de-
scribe how our approach can be extended to model a variety
of knowledge types. In Section 7, we conduct experiments
to evaluate our approach. Finally, in Section 8, we conclude
and discuss future work.

2. RELATED WORK
In the early studies of the privacy in privacy-preserving

data publishing, background knowledge is not considered.
A number of privacy quantification methods have been pro-
posed, including K-anonymity [22], L-diversity [17], (α, k)-
anonymity [24], t-Closeness [15], etc.
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Martin et al. [19] proposed the first formal study of the
effect of background knowledge on privacy-preserving data
publishing. In this work, background knowledge is formu-
lated as conjunctions of k basic implicators. Each basic
implication is a rule specifying the implication relationship
between two atoms, and each atom is a predicate about a
person and his/her sensitive values. The authors then use
k to bound the background knowledge, and compute the
maximum disclosure of a bucket data set with respect to
the background knowledge.

The work in [19] is further improved by Chen et al. in a
scheme called privacy skyline [7]. Realizing the limitation
of using a single number k to bound background knowledge,
the authors in [7] use a triple (ℓ, k, m) to specify the bound of
the background knowledge about a particular person (called
target). Namely, the bound specifies that (1) adversaries
know ℓ other people’s sensitive value; (2) adversaries know k
sensitive values that the target does not have; (3) adversaries
know a group of m− 1 people who share the same sensitive
value with the target. Based on this triple, the authors
propose a method to incorporate background knowledge in
privacy quantification.

Both works in [19] and [7] are significant in the sense they
pioneer the treatment of background knowledge in PPDP.
However the major shortcomings of these two papers is the
lack of power in expressing background knowledge. The
language used in these papers can express the background
knowledge using deterministic rules; as the authors in [19]
point out, probabilistic background knowledge cannot be ex-
pressed using the current language. Even if the language
can be extended to probabilistic knowledge, the algorithms
to quantify privacy will have to be modified significantly.

Our work specifically targets the probabilistic background
knowledge. Our language is much more generic than the
existing work; as long as background knowledge can be ex-
pressed as linear equations or linear inequalities of probabil-
ities, it can be integrated in privacy quantification. More-
over, our proposed method is systematic; namely, regardless
of how complicated those linear equations and inequalities
are and how many they are, they are just the inputs; the
algorithm used to quantify privacy is always the same.

3. MAXIMUM ENTROPY MODELING

3.1 The Privacy Quantification Problem
To facilitate the explanation, we use the data set depicted

in Figure 1(c) throughout this paper. This is the same buck-
etized data set as the one depicted in Figure 1(b), but in an
abstract form (to simplify presentation). In this data set,
each qi represents a unique instance (or value) of the QI
attributes, and each si represents a unique instance of sensi-
tive attributes. If two people have the same QI value, their
QI values will be denoted by the same symbol. For example,
q1 represents {male, college}, and it appears three times
in the data.

To be able to quantify the privacy of a bucketized data
when certain background knowledge is present, it is impor-
tant to calculate P (S | Q) for all the combinations of Q and
S, where Q represents the QI attributes, and S represents
the SA attributes. Assume that there are m buckets, and
let B represent the bucket index. We can use the following

formula to calculate P (S | Q):

P (S | Q) =
P (Q, S)

P (Q)
=

1

P (Q)
·

m
X

B=1

P (Q, S, B)

=
1

P (Q)
·

m
X

B=1

P (S | Q, B) · P (Q, B),

where P (Q) is the distribution of the QI attributes; since
in bucketized data, the QI attributes are not disguised, we
can directly get P (Q) and P (Q, B) from the bucketized data
set. Therefore, P (S | Q, B) is the only thing that needs to
be derived. Without background knowledge, P (S | Q, B)
can be computed quite easily:

P (S | Q, B) = Portion of S in bucket B. (1)

The key assumption made in the above equation is the
following: given Q in a bucket B, the probability that this
Q corresponds to a sensitive value is uniform across all the
possible sensitive values within the bucket B. This is a rea-
sonable assumption if D′ is the only available knowledge
about D. However, when other types of knowledge are avail-
able, this assumption can become invalid. For example, in
the example from Figure 1(c), if the adversaries know that
P (s1 | q2) = 0 and P (s1 or s2 | q3) = 0, we immediately
know that in the first bucket, q3 can only be mapped to s3,
q2 can only be mapped to s2, and one of the q1 maps to s1

and the other maps to s2.
Directly computing P (S | Q, B) can become quite difficult

when the background knowledge becomes complicated. For
example, if P (s1 | q3) = 0.2, instead of 0, computing P (S |
Q, B = 1) has to consider all the buckets that contain both
q3 and s1. Similarly, if we know that P (s1 | q3) + P (s2 |
q3) = 0.4, we have to consider all the buckets that contain
s1, s2, and q3.

To summarize the above discussions, the fundamental ques-
tion that we are trying to solve is to assign values to P (S |
Q, B) for each combination of Q, S, and B, such that they
are consistent with the background knowledge and the in-
formation contained in the bucketized data.

3.2 Maximum Entropy Modeling
It is possible that many assignments of P (S | Q, B) are

consistent with the given knowledge and data, with some
being biased toward certain particular S values. Being bi-
ased means assuming some extra information that we do not
posses; therefore, the least biased assignment is the most
desirable. It is widely believed that the least biased distri-
bution that encodes certain given information is that which
maximizes the information entropy [6]. This is the principle
of the Maximum Entropy (ME), which was first expounded
by Jaynes in 1957.

Applying the ME principle, our problem becomes com-
puting P (S | Q, B) for all possible values of Q, S, and B,
such that the following conditional entropy H(S | Q, B) is
maximized:

H(S | Q, B)

= −
X

Q,S,B

P (Q, B)P (S | Q, B) log P (S | Q, B). (2)

Because H(S | Q, B) = H(Q, S, B)−H(Q, B) and also be-
cause H(Q, B) is a constant given the published data, maxi-
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mizing H(S | Q, B) is equivalent to maximizing H(Q, S, B):

H(Q, S, B) = −
X

Q,S,B

P (Q, S, B) log P (Q, S, B). (3)

Namely, our goal becomes computing P (Q, S, B) for all pos-
sible values of Q, B, and S, such that H(Q, S, B) is maxi-
mized. 1

Without any constraint, H(Q, S, B) is maximized when
P (Q, S, B) has a uniform distribution. However, we do have
two different sources of constraints. One is the published
data D′, i.e, the distribution of P (Q, S, B) should be con-
sistent with the published data D′. For example, if in D′,
bucket i does not contain s, the value of P (Q, s, i) must
be zero for all Q’s in bucket i. The other source of con-
straints is the background knowledge, i.e., the distribution
of P (Q, S, B) should also be consistent with the background
knowledge. For instance, if the background knowledge tells
us that the binding of q and s is impossible, P (q, s, B) should
be zero for all buckets.

To apply the ME principle, we need to formulate all the
constraints as linear equations based on P (Q, S, B). Let
these constraints be h1, . . ., hw. Our problem can be for-
mally defined as the following:

Definition 3.1. (Maximum Entropy Modeling) Finding
an assignment for P (Q, S, B) for each combination of Q, S,
and B, such that the entropy H(Q, S, B) is maximized, while
all the linear equations h1, . . ., hw are satisfied.

3.3 Solving the ME Problem
The maximum entropy problem is a non-linear program-

ming problem with equality constraints. It is a special case
of the following general form:

minimize f(~x),

subject to hi(~x) = 0, i = 1, . . . , w,

where f : ℜn 7→ ℜ and hi : ℜn 7→ ℜ, i = 1, . . . , w, are
continuously differentiable functions. Function f is called
the objective function, while functions hi’s are called the
constraint functions.

In the Maximum Entropy problem, the P (Q, S, B) for
each instance of (Q, S, B) is considered as one dimension of
the variable x. For example, if we have 1000 different com-
binations of (Q, S, B), x will be a vector of 1000 dimensions.
Similarly, each function hi, which is a linear function of x,
is actually a linear function of various P (Q, S, B) instances.

There are existing methods to solve this kind of optimiza-
tion problem. We refer readers to [5, 6] for details. The most
common solution is to apply the method of Lagrange mul-
tipliers to convert this constrained optimization problem to
an unconstrained optimization problem, which can then be
solved using various numerical methods, such as steepest as-
cent, Newton’s method, and LBFGS (limited-memory quasi-
Newton packages for large scale optimization) [16]. There
are also several numerical methods specifically tailored to
the maximum entropy problem, including the generalized [8]
and the improved [20] iterative scaling algorithms. A com-
parison of various methods for solving the maximum entropy
problem is given by Malouf [18].

1We compute P (Q, S, B), instead of P (S | Q, B), because it
is easier to formulate constraints using P (Q, S, B). Deriving
P (S | Q, B) from P (Q, S, B) is trivial because P (Q, B) can
be directly obtained from the published data.

3.4 Sources of ME Constraints
To apply the ME principle to solve our problem, we need

to convert all the available knowledge into constraints. These
constraints, due to the intrinsic property of maximum en-
tropy modeling, must be in the form of linear equations. In
PPDP, constraints come from two different sources. One is
the published data set itself; namely, although disguised, the
published data still reveal some information about the orig-
inal data. We need to abstract that information from the
published data, and formulate it as constraints. The other
source of constrains include everything other than the pub-
lished data set; we call this source the background knowl-
edge. We describe how to derive constraints from these two
different sources in the next three sections.

4. BACKGROUND KNOWLEDGE
As we mentioned in the previous section, as long as we

can represent background knowledge using linear equations
based on P (Q, S, B), we can use the ME method to integrate
background knowledge in the calculation of P (S | Q), which
can then be further used to quantify privacy. We call these
linear equations ME constraints.

Background knowledge can have many different forms.
They can be classified into two categories: knowledge about
data and knowledge about individuals. Knowledge about
data consists of knowledge about the data distribution. An
example of this type of knowledge is the following: “it is rare
for male to have breast cancer”. Knowledge about individu-
als consists of knowledge about individual people. Here are
a few examples: “Bob does not have HIV”, “one of Alice or
Bob must have Cancer”, “Charlie either has Cancer or HIV”.
This paper mainly focuses on knowledge about data distri-
butions. However, in Section 6, we extend our work to the
knowledge about individuals.

4.1 Knowledge About Data Distribution
Most of this type of knowledge can be expressed using

conditional probability P (S | Qv), where Qv is a subset
of the QI attributes. The previous example about breast
cancer can be written as P(Breast Cancer | Male) = 0. Be-
cause ME constraints only contain joint distribution of QI
attributes (Q), SA attributes (S), and Bucket index (B), we
need to convert P (S | Qv) to P (Q, S, B). We first convert
it to P (Qv, S) as the following:

P (Qv, S) = P (S | Qv) · P (Qv),

where P (Qv) is the probability of people who have Qv. This
knowledge is about the people in the entire population. It
is difficult to get P (Qv), but we can use the sample distri-
bution in the published data set to approximate this distri-
bution. Therefore, in this paper, we use P (Qv) to represent
the probability of Qv in the sample data set.

We do need the entire QI attributes in our ME constraints,
not a subset of it. For example, if the data set has 3 quasi-
identifier attributes, Gender, Degree, and Age, then all these
three QI attributes must appear in our ME constraints, in
particular, in the probability expressions used in those con-
straints. For instance, we cannot have a constraint like the
following: P (Flu | Gender = male) = 0.3. We have to con-
vert such a probability expression into one that includes all
three attributes.

Let Q represent the set of entire QI attributes, and let
Q− = Q−Qv be the difference between Q and Qv. Therefore
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P (Q, S) can be written as P (Qv, Q−, S). By summing up
the this probability over all possible Q− values, we have the
following:

X

Q
−

P (Qv, Q−, S) = P (Qv, S).

We also need to include the bucket index B in ME con-
straints, although background knowledge does not depend
on any bucketization schemes. Namely, the constraints should
be the same regardless how the published data are bucke-
tized. We have the following:

m
X

B=1

X

Q
−

P (Qv, Q−, S, B) = P (Qv, S) = P (S | Qv) · P (Qv).

This is the final ME constraint for the background knowl-
edge of P (S | Qv). As long as any background knowledge
can be presented as conditional probability, it can be formu-
lated as an ME constraint.

Let us see an example. Assume that the knowledge says
P (Flu | male) = 0.3 (this is fictitious). Based on the data
set in Figure 1, we can construct the following constraint
for this knowledge: P ({male, college}, F lu, 1)+ P ({male,
highschool}, F lu, 1) +P ({male, college}, F lu, 3) +P ({male,
graduate}, F lu, 3) = 0.3 ∗ P (male) = 0.3 ∗ 6/10 = 0.18.

4.2 Where to get Background Knowledge
An inevitable problem we face is where to get background

knowledge. The common knowledge about male and breast
cancer comes from our knowledge about medical field. Are
we supposed to know every common knowledge in order to
represent background knowledge? The answer is no.

The best source of knowledge about data distribution is
actually contained in the original data D itself; any knowl-
edge that is inconsistent with D is incorrect, regardless of
whether it is true in general or not. For example, although
it is rare for male to get breast cancer, it is still possible, and
the data D might contain the records of such a rare case.
Therefore, in this case, although the common knowledge is
true in general, it is actually incorrect for this specific data
set; adversaries can be misled by such incorrect knowledge.

Therefore, there is no need for us to learn all the knowl-
edge about the world, people, medicine, health, finance, etc.
All we need is to derive the background knowledge from the
original data. After all, the goal of adversaries is to derive
the links between QI and SA in the original data from a
disguised published data. The more background knowledge
they know about the original data, the more accurately they
can derive the relationship between QI and SA.

4.3 What Background Knowledge to Use
Finding what background knowledge to use in privacy

quantification is a very challenging problem, because it re-
quires us to predict what and how much background knowl-
edge the adversaries might know. This is an infeasible task.
Let us take a step back, and think about why we analyze
the impact of background knowledge while having no idea
what adversaries might know. The reason is that we want to
understand the privacy of a disguised data set under various
assumptions. For the most of the existing privacy quantifi-
cation schemes, the implicit assumption made by them is
that the adversaries have no background knowledge at all.

Understanding the assumption is important for users to
understand the privacy of their published data. Therefore,
the outcome of privacy quantification should be a tuple con-
sisting of the assumptions about background knowledge and
the privacy score. Users can understand the risk of their data
publishing under various assumptions. They will be able to
judge whether the assumptions are too strong or not; if not,
whether the privacy score under the assumptions are accept-
able. Therefore, our task is not to predict what adversaries
might know; instead, we should be presenting to the users
a more complete understanding of the privacy of their data
that they plan to publish.

The challenge becomes finding a way to specify assump-
tions about background knowledge. One approach is to
enumerate the knowledge as sets of different size. There
will be many assumptions, because of the combinations of
knowledge are too many. Another approach is to present
a bound of knowledge. The bound specifies the amount of
background knowledge that we assume that adversaries can
have. Therefore, our privacy quantification is tied with the
bound. Various bound can be used. In this paper, we pro-
pose a bound called Top-(K+, K−) strongest associations.

4.4 Top-(K+, K−) Strongest Associations
As we described earlier, the knowledge about data distri-

bution can be modeled as a set of conditional probabilities
between QI attributes and SA attributes, i.e., P (S | Q), for
S ∈ SA and Q ∈ QI. However, not all conditional probabil-
ities can be considered as knowledge. A conditional prob-
ability P (S | Q) becomes knowledge if this probability is
sufficiently high. This is similar to the association rule con-
cept. According to association rule mining [2], if P (S | Q)
is sufficiently high (called confidence), and P (Q, S) is also
large enough (called support), we say that Q ⇒ S is an as-
sociation rule. Therefore, we can use the association rules
between Q and S as our knowledge.

The above association rules are called positive associa-
tion rules; another type of association rules has the form of
Q ⇒ ¬S, meaning that when a person has Q as its Quasi-
Identifier, he/she is unlikely to have S. The Breast Cancer

example we use is actually this type of association. This
is called negative association rule [23]. Several other types
of rules are also called negative association rule, such as
¬Q ⇒ S and ¬Q ⇒ ¬S.

We use the number of association rules as the bound
of background knowledge. We call this bound the Top-
(K+, K−), where K+ represents the top K+ positive associ-
ation rules and K− represents the top K− negative associ-
ation rules. Namely, we derive all the possible positive and
negative associations between Q and S. For each type of
association, we sort them based on their confidence levels;
we then pick the top K+ positive association rules and the
top K− negative association rules. We use these two sets of
association rules as the background knowledge. These two
sets include the most useful background knowledge about
the data distribution (not individuals); if available for link-
ing attacks, they can be quite helpful.

4.5 Inequality Background Knowledge
Equation allows us to express accurate background knowl-

edge; in reality, background knowledge can be vague, and
equations are not good for expressing vagueness. For in-
stance, equations cannot express the fact that P (s1 | q1)
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Bucketized Data Assignment 1 Assignment 2

QI SA QI SA QI SA

q1 q1 s1 q1 s3

q1 {s1, s2, s2, s3} q1 s2 q1 s2

q2 q2 s2 q2 s1

q3 q3 s3 q3 s2

Figure 2: Assignments: bucketized data and differ-
ent ways to assign (or associate) SAs to QIs.

is about (not exactly) 0.3. Inequalities can help expressing
vague knowledge. In the previous example, we can state
0.3 − ǫ ≤ P (s1 | q1) ≤ 0.3 + ǫ, where ǫ represents the de-
gree of vagueness. In addition to expressing vague knowl-
edge, inequalities can also express inequality relationship.
For example, the background knowledge might state that a
person with q1 attribute is more likely to have s1 diseases
than to have s2 diseases. We can express this knowledge as
P (s2 | q1) < P (s1 | q1).

Kazama and Tsujii has extended the Maximum Entropy
Modeling to deal with inequality constraints [11]. Using this
extension, in addition to equation constraints, we can now
include the background knowledge that can only be modeled
as inequalities. This makes the ME model more powerful in
modeling background knowledge. Moreover, using inequali-
ties, we can add the degree of vagueness (ǫ) to the bound of
background knowledge (equations assume ǫ = 0). We will
further study the extended ME model in our future work.
In this paper, we only focus on equality constraints.

5. CONSTRAINTS FROM THE DATA

5.1 Definitions

Definition 5.1. (Probability Term and Expression) As-
sume that there are m buckets in a bucketized data set D′.
A probability P (q, s, b) is called a probability term if q is
an instance of the QI attributes, s is an instance of the SA
attribute, and b is a bucket index (i.e. b ∈ [1, m]). We call
the linear combination of probability terms the probability
expression.

For example, for D′ in Figure 1(c), P (q1, s1, 1) is a prob-
ability term, and P (q1, s1, 1) + P (q1, s2, 1) + P (q1, s3, 1) is a
probability expression.

Definition 5.2. (Assignment for a bucket) Assignment
for the bucket b is a set of tuples: Λ(b) = {(q, s) | q ∈
QI(b), s ∈ SA(b)}, where each instance of q and s appears
once and only once in Λ(b). It should be noted that certain
QI values (or SA values) might appear multiple times in a
bucket; they are treated as multiple instances.

Figure 2 gives two different assignments for the bucke-
tized data list in the leftmost table (this bucketized data set
is taken from the Bucket 1 of Figure 1(c), and we omit the
bucket index column). In the first assignment, Λ(b = 1) =
{(q1, s1), (q1, s2), (q2, s2), (q3, s3)}. In the second assign-
ment, Λ(b = 1) = {(q1, s3), (q1, s2), (q2, s1), (q3, s2)}. Be-
cause both q1 and s2 appear twice in the bucket, they also
appear twice in the assignment.

Definition 5.3. (Assignment for the bucketized data) As-
signment (Λ) for the entire bucketized data is the following:

Λ =

m
[

b=1

Λ(b).

For a probability expression F , we use F (Λ) to represent the
value of F under the assignment Λ.

Definition 5.4. (Invariant) A probability expression F
is an invariant if F (Λ) is a constant for any Λ of D′.

We use examples to explain the above definition. Assume
that the entire disguised data set D′ used in Figure 2 only
contains one bucket, i.e., the total number of records is 4.
It is not difficult to see that F = P (q1, s1, 1) is not an
invariant: it equals 0.25 in the first assignment, and 0 in
the second assignment. On the other hand, we know that
F = P (q1, s1, 1)+ P (q2, s1, 1)+ P (q3, s1, 1) is an invariant,
because it does not matter how QI and SA are assigned to
each other, F is always equal to the portion of s1 among all
the SA values in the Bucket 1, which is 0.25 (1 out of 4).
Based on invariants, we can define invariant equations.

Definition 5.5. (Invariant Equation) An invariant equa-
tion has the form of F = C, where F is an invariant, C is
a constant, and F = C always holds true for all the assign-
ments for D′. We also call invariant equations ME con-
straints, because they are used as constraints by ME.

Since the invariant equations are always true among all
the assignments, and the original data D can be consid-
ered as one of these assignments, invariant equations are
the only things that we can say about the original data
D with absolute certainty; everything else is an inference.
For example, past work on privacy analysis often says that
P (q1, s1, 1) = 0.25. This is only an inference; if there is
no background knowledge, this inference is unbiased, and is
acceptable to privacy analysis. However, with background
knowledge, inferences like this may become biased and un-
acceptable.

To apply ME, we can only formulate invariant equations,
not inferences, as constraints. The objective of the maxi-
mum entropy estimate is to derive the maximum entropy
inferences that satisfy all the constraints; using an inference
as a constraint requires ME to preserve this pre-determined
inference during the computation. Unless such an inference
already achieves the maximum entropy, preserving it can fail
to achieve the maximum entropy.

Furthermore, to apply ME, not only do we need to identify
the invariant equations from the disguised data D′, we need
to identify all of them. These equations are the knowledge
that we need in ME; if one invariant equation is missing, we
are not using all the knowledge from D′. Formally speaking,
the set of invariant equations must be complete.

In the rest of this section, we will derive invariant equa-
tions from D′, and then we will prove several interesting
properties of these invariants, including soundness, concise-
ness, consistency, and most importantly, completeness.

5.2 Finding Invariants
We will only focus on finding within-bucket invariants.

A within-bucket invariant consist of the probability terms
from the same bucket. Using the following lemma, we will
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show that any invariant can be written as the sum of within-
bucket invariants. Therefore, it is sufficient to just identify
the within-bucket invariants.

Lemma 1. Let F represent a linear combination of prob-
ability terms of the published data D′. We write F as F1 +
... + Fm, where Fi contains the probability terms only from
bucket i. F is an invariant for D′, if and only if F1, . . . , Fm

are also invariants for D′.

Proof. We only prove that if F is an invariant for D′,
then each Fi is also an invariant; the other direction is triv-
ial. Assume at least one of Fi’s is not an invariant, we will
prove that F is not an invariant either. Without the loss of
generality, we assume that F1 is not an invariant; therefore,
there exists two different assignments that cause the values
of F1 to be different. Let Λ(1) and Λ′(1) be these two as-
signments in the Bucket 1, so we have F1(Λ(1)) 6= F1(Λ

′(1)).
We then construct the following two assignments:

Λa = {Λ(1), Λ(2), . . . , Λ(m)}

Λb = {Λ′(1), Λ(2), . . . , Λ(m)},

where the only difference between Λa and Λb is the assign-
ments in Bucket 1, i.e., Λ(1) 6= Λ′(1).

Since Λ(1) and Λ′(1) do not affect the probability terms in
the other buckets, we have Fi(Λa) = Fi(Λb) for i = 2, . . . , m.
At the same time, we know that F1(Λa) 6= F1(Λb). Since
F (Λ) is the sum of Fi(Λ), for i = 1, . . . , m, we can conclude
that F (Λa) 6= F (Λb); in other words, F is not an invariant.
This is contradictory to the fact in the lemma. Therefore,
F1, . . . , Fm all need to be invariants.

Because of the above lemma, we will only focus on the
within-bucket invariants in the rest of this paper. Suppose
there are m buckets in total, and we focus on the Bucket
b, where b = 1, . . . , m. We use QI(b) = {q1, · · · , qg} to
represent the set of distinct QI values in Bucket b, where g
is the size of QI(b). Similarly, we use SA(b) = {s1, · · · , sh}
to represent the set of distinct SA values in Bucket b, where
h is the size of SA(b). We have identified three types of
invariant equations: QI-invariant, SA-invariant, and Zero-
invariant equations.

QI-invariant Equation. The following equation is called
QI-invariant equation. There are g such equations for bucket
b (one for each q ∈ QI(b)):

h
X

j=1

P (q, sj , b) = P (q, b), for q ∈ QI(b). (4)

The probability P (q, b) is the joint probability of QI value
q and bucket index value b in the dataset D′. Since D′ is
given, this value is a constant, and can be directly obtained
from D′. Therefore, the right side of the above equation
is a constant, and the left side of the equation is called
QI-invariant. An example of QI-invariant for the data in
Figure 1(c) is the following:

P (q1, s1, 1) + P (q1, s2, 1) + P (q1, s3, 1) = P (q1, 1) =
2

10
.

SA-invariant Equation The following equation is called
SA-invariant equation. There are h such equations for bucket
b (one for each s ∈ SA(b)):

g
X

i=1

P (qi, s, b) = P (s, b), for s ∈ SA(b). (5)

Similar to the QI-invariant, the probability P (s, b) at the
right side of the equation is also a constant, and can be
directly obtained from D′. The left side of the equation is
called SA-invariant. Both the QI-invariant and SA-invariant
equations capture the fact that although we cannot tell how
each QI’s value match with SA’s value in a bucket for dif-
ferent assignments, we are sure that the total probability of
matching for one value of the QI or SA is fixed. These values
can be directly counted from the disguised data set. Here is
an example of SA-invariant for the data in Figure 1(c):

P (q1, s4, 2) + P (q3, s4, 2) + P (q4, s4, 2) = P (s4, 2) =
1

10
.

Zero-invariant Equation. For any q ∈ QI and s ∈ SA,
the following equation is called Zero-invariant equation (its
left side is called Zero-invariant):

P (q, s, b) = 0,

if either q ∈ QI(b) or s ∈ SA(b) is false. (6)

For example, in Figure 1(c), q1 does not appear in the
3rd bucket, so we know P (q1, s, 3) = 0 for any s ∈ SA.
Similarly, s1 does not appear in the 3rd bucket either, so we
have P (q, s1, 3) = 0 for any q ∈ QI.

Soundness. In the following theorem, we prove that all
the above equations are indeed invariant equations; namely,
they hold true for all the assignments in Bucket b.

Theorem 1. (Soundness) The above QI-invariant, SA-
invariant, and Zero-invariant equations are sound.

Proof. Because of the following relationship,

1 =
h

X

j=1

P (sj | q, b) =
h

X

j=1

P (q, sj , b)

P (q, b)
,

we can immediately derive the QI-invariant equation in Eq. (4).
The SA-invariant can be similarly derived.

For the Zero-invariant equations, if either q or s does not
appear in Bucket b, the combination of (q, s, b) will never
appear in any assignment. Therefore, P (q, s, b) = 0 is always
true for all assignments in Bucket b.

5.3 Completeness
Being able to find invariants is not enough, we must find

all of them from the published data D′. Recall that in-
variants are the “absolute truth” about the original data;
the more “truth” we collect from D′, the more knowledge
we will have on the original data, and the more accurately
we can measure privacy. Therefore, to ensure the accuracy
of privacy measure, we cannot miss any invariant from D′.
This is the completeness property.

We call the QI-, SA-, and Zero- invariants the base invari-
ants. Let U be the union of all these invariants. We call U
the invariant set. We have the following theorem:

Theorem 2. (Completeness) The invariant set U is com-
plete. Namely, for any probability expression F , F is an in-
variant, if and only if it can be constructed using the linear
combination of the base invariants in U .

Proof. The “if” part of the theorem is trivial to prove,
because a linear combination of invariants is still an invari-
ant. We only prove the“only if”part. That is, we prove that
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if F is an invariant, it can be constructed using the linear
combination of the base invariants in U .

Before we prove the theorem, we make two simplifica-
tions. First, we replace F ’s probability terms that are Zero-
invariants with zeros; this way, we only need to prove the
theorem for a reduced U that only consists of QI-invariants
and SA-invariants. Second, according to Lemma 1, we only
need to prove this theorem for a single bucket (say Bucket
b). Namely, we assume that F is a probability expression
consisting of the probability terms from Bucket b, and that
U consists of the invariants from the bucket b. Using the
same notations from the last subsection, we let QI(b) =
{q1, · · · , qg} and SA(b) = {s1, · · · , sh} to represent the sets
of distinct QI values and SA values in Bucket b, respectively.

We use the contradiction approach by assuming that F
is an invariant and F is not a linear combination of the
base invariants. Our proof consists of two steps. First, we
remove all the occurrences of q1 and s1 from F by using the
linear transformation based on the base invariants. We use
F ∗ to represent the resultant expression. Because F is an
invariant, F ∗ is also an invariant. Second, we construct two
assignments ΛA and ΛB ; we show that F ∗(ΛA) 6= F ∗(ΛB),
which disproves that F ∗ is an invariant.

Step 1: Removing q1 and s1 from F . By rewriting the
QI- and SA- invariants from Equations (4) and (5), we have

P (q, s1, b) = P (q, b) −

h
X

j=2

P (q, sj , b), for q ∈ QI(b), (7)

P (q1, s, b) = P (s, b) −

g
X

i=2

P (qi, s, b), for s ∈ SA(b). (8)

After we remove the zero-invariants from F , the probabil-
ity terms in F that contain q1 or s1 must be either P (q, s1, b)
for q ∈ QI(b), or P (q1, s, b), for s ∈ SA(b). Therefore, we
can get rid of q1 and s1 from F by replacing the occurrences
of q1 and s1 using Equations (7) and (8). We call the resul-
tant expression F ∗.

To help readers understand this step, we use a matrix to
represent our SA- and QI- invariants. We call this matrix
the constraint matrix. Each row of the constraint matrix
represents an invariant, and each entry represents the coef-
ficient of its corresponding probability term. Figure 3 turns
the QI-invariants and SA-invariants of the Bucket 1 in Fig-
ure 1(c) into an invariant matrix. We take the QI-invariant
C1 = P (q1, s1)+P (q1, s2)+P (q1, s3) as an example; we can
see it has three non-zero entry, each representing one of its
probability terms.

We also list F and F ∗ in Figure 3, where F ∗ is obtained by
a linear transformation on F , i.e., F ∗ = F − a1C1 − a2C2 −
a3C3 − (a4 − a1)C5 − (a7 − a1)C6. We can see that F ∗ does
not contain q1 or s1.

Step 2: Proving that F ∗ is not an invariant. All the
operations in Step 1 are linear transformations, so, if F is not
a linear combination of the QI-invariants and SA-invariants,
F ∗ is not a linear combination of those invariants either.
Therefore, there must be at least one non-zero probability
term in F ∗. Without the loss of generality, we let this non-
zero probability term be P (qi, sj), where i 6= 1 and j 6= 1.

s1 s2 s3

q1 q2 q3 q1 q2 q3 q1 q2 q3

C1 1 0 0 1 0 0 1 0 0

QI- C2 0 1 0 0 1 0 0 1 0

invariant C3 0 0 1 0 0 1 0 0 1

C4 1 1 1 0 0 0 0 0 0

SA- C5 0 0 0 1 1 1 0 0 0

invariant C6 0 0 0 0 0 0 1 1 1

F a1 a2 a3 a4 a5 a6 a7 a8 a9

F ∗ 0 0 0 0 a′

5
a′

6
0 a′

8
a′

9

Figure 3: An example of invariant matrix

We construct the following two assignments:

ΛA = {(q1, s1), (qi, sj)} ∪ Λrest,

ΛB = {(q1, sj), (qi, s1)} ∪ Λrest,

where Λrest represent the rest of the assignment. Both as-
signments have the same Λrest. We let PA(q, s) and PB(q, s)
represent the joint probabilities of q and s under these two
different assignments (we omit the bucket index b).

Because of the similarity between the two assignments,
we know that except for four scenarios, PA(q, s) = PB(q, s),
for q ∈ QI(b) and s ∈ SA(b); these four scenarios include
PA(qi, sj) 6= PB(qi, sj), PA(q1, s1) 6= PB(q1, s1), PA(q1, sj) 6=
PB(q1, sj) and PA(qi, s1) 6= PB(qi, s1). However, P (q1, sj),
P (qi, s1), and P (s1, q1) do not appear in F ∗ at all, because
they contain either q1 or s1. On the other hand, P (qi, sj)
does appear in F ∗ (that is why we picked P (qi, sj) at the first
place). Therefore P (qi, sj) is the only probability term that
decides whether F ∗(ΛA) equals F ∗(ΛB) or not. Because
PA(qi, sj) 6= PB(qi, sj), we know that F ∗(ΛA) 6= F ∗(ΛB),
which means F ∗ is not an invariant, so F is not an invariant
either. This conclusion is contradictory to our assumption
at the beginning of the proof.

5.4 Conciseness
Having proved that the invariants we have identified are

complete, we would also like to know whether those invari-
ants are minimal, i.e., whether there are redundant invari-
ants. Although redundant invariants will not cause any
problem in maximum entropy estimation, too much redun-
dancy can incur unnecessary computation overhead. The
following theorem eases our concerns over redundancy.

Theorem 3. (Conciseness) Let U be the invariant set
for a bucket. If we remove any one invariant from U , the
resulting set U ′ is minimal, i.e., if one more invariant is
removed from U ′, the resulting set becomes incomplete.

The proof of this theorem is given in Appendix A. Readers
can easily verify this theorem using the invariant matrix in
Figure 3. First, we can see that the vectors in the invariant
matrix are not linearly independent. We can verify this by
calculating (C1+C2+C3)−(C4+C5+C6); the result is zero,
indicating at least one vector is redundant. Let us remove
one of the invariant (say C4), we can verify that the resultant
invariant matrix becomes linearly independent; so there is no
more redundant vectors. The conciseness property indicates
that the invariants we have identified are minimal except for
one redundant invariant (in each bucket).
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5.5 Optimization
For a large data set, the ME computation can be quite ex-

pensive, because of the number of constraints for both data
and background knowledge can be large. In this subsection,
we investigate how we can take advantage of the relation-
ship between data and background knowledge to optimize
our ME estimation. We will first study how ME can be
optimized when there is no background knowledge.

Lemma 2. (Independence without background knowledge)
When there is no background knowledge, the distribution of
P (Q, S, B) in Bucket B is independent from the distribu-
tion of P (Q, S, B′) in Bucket B′ 6= B. In other words, if
we change the distribution of P (Q, S, B), the distribution of
P (Q, S, B′) does not need to be changed.

Proof. This lemma is obvious because when there is no
background knowledge, there is no additional constraint be-
tween P (Q, S, B) and P (Q, S, B′), for B′ 6= B.

This independence property only holds when there is no
background knowledge. When there is background knowl-
edge, if we change the distribution in one bucket, the dis-
tributions in other buckets might have to be changed. For
example, in Figure 1(c), assuming that we have the follow-
ing background knowledge (note that there are two records
with q3 among the 10 records, so P (q3) = 2/10):

P (s3 | q3) = 0.5, so

P (q3, s3) = 0.5 ∗ P (q3) = 0.5 ∗ 2/10 = 0.1.

By formulating the above knowledge as an ME constraint,
we have the following:

P (q3, s3) = P (q3, s3, 1) + P (q3, s3, 2) = 0.1.

We can see that the if we change the value of P (q3, s3, 1), the
value of P (q3, s3, 2) has to be changed accordingly, because
of the constants caused by the background knowledge.

Based on Lemma 2, we have the following theorem:

Theorem 4. When there is no background knowledge, the
maximum entropy of the entire data set can be achieved by
achieving the maximum entropy in each bucket.

Proof. Based on Lemma 2, the distribution of P (Q, S, B)
is independent from bucket to bucket. Therefore, for each
bucket B = b, we can find the distribution of P (Q, S, b) to
achieve the maximum entropy in b. We put those distribu-
tions together, we will get a distribution of P (Q, S, B) that
maximizes the entropy in all the buckets. Because of the
entropy of the entire data set is the sum of the entropies of
all the buckets, the sum is also maximized when each of its
independent elements is maximized.

Theorem 4 indicates that, when there is no background
knowledge, to achieve the global maximum entropy (i.e., on
the entire data), we only need to achieve the local maximum
entropy (i.e., for each bucket). Lemma 2 guarantees that all
the local maximums can be achieved simultaneously. There-
fore, when there is no background knowledge, we can just
focus on each bucket one at a time to find its ME distri-
bution. This will significantly reduce the computation cost
than if we apply ME on the entire data set.

Unfortunately, Theorem 4 will not be true when there
is background knowledge. As we have shown before, back-
ground knowledge actually serves as the constraints among

the buckets. Because of these constraints, distributions of
different buckets are not independent anymore; therefore, we
might not be able to achieve the local maximum entropies
in all the buckets simultaneously. This means, we cannot
apply ME on the buckets separately anymore.

However, we show that even if there is background knowl-
edge, using Lemma 2, we can still reduce the computation
cost of ME. The reason why Lemma 2 does not hold anymore
is that background knowledge introduces extra constraints
among the buckets. However, these constraints might not
affect all the buckets; for those that are not affected, their
in-bucket distribution of P (Q, S, b) is still independent from
the others. We call these buckets irrelevant buckets.

Definition 5.6. (Irrelevant bucket) A bucket b is irrel-
evant to background knowledge if b does not appear in any
non-zero probability term of background-knowledge constraints.

Proposition 1. If a bucket is irrelevant to the background
knowledge, the maximum entropy of the entire data is achieved
only if the maximum entropy of this bucket is also achieved.

Based on Proposition 1, we can first identify those irrele-
vant buckets, apply ME to those buckets one at a time to get
their local maximum. Then we apply ME to all the buckets
that are relevant to the background knowledge. If there are
many irrelevant buckets, the overall computation cost of ME
can be significantly reduced.

Directly Compute ME. When a bucket b is irrelevant
to the background knowledge, the maximum entropy within
this bucket can be achieved by letting P (S | Q, b) to be a
uniform distribution for each occurrence of S in b, i.e.,

P (S | Q, b) =
# of S in Bucket b

Nb
, for Q ∈ QI(b), (9)

where Nb is the number of records in Bucket b. This is
how most of the existing work computes P (S | Q, b). This
formula offers a direct way to compute P (S | Q) for buck-
ets that are irrelevant to the background knowledge. We
formally specify this property as the following consistency
theorem:

Theorem 5. (Consistency) When Bucket b is irrele-
vant to the background knowledge, the joint distribution of
P (Q, S, b), for Q ∈ QI and S ∈ SA, derived from Eq. (9)
maximizes the entropy defined in Eq. (2).

The proof of this theorem is given in Appendix B. “Con-
sistency”indicates that this calculation is consistent with the
ways how P (S | Q, b) is computed in the existing work when
background knowledge is not considered. In other words, al-
though the existing work does not explicitly try to achieve
the maximum entropy, the underlying uniform-distribution
assumption does lead to the maximum entropy when back-
ground knowledge is not considered.

6. KNOWLEDGE ABOUT INDIVIDUALS
As we have mentioned before, background knowledge can

be classified into two major categories: knowledge about
data distributions and knowledge about individuals. The
previous two sections demonstrate how to integrate the knowl-
edge about data distributions in privacy quantification. Our
method is not limited to that type of knowledge; it can be
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ID QI SA Bucket

{i1, i2, i3} q1

{i1, i2, i3} q1 {s1, s2, s2, s3} 1

{i4, i5} q2

{i6, i7} q3

{i1, i2, i3} q1

{i6, i7} q3 {s1, s3, s4} 2

{i8} q4

{i4, i5} q2

{i9} q5 {s2, s4, s5} 3

{i10} q6

Figure 4: A bucketized data set with expanded
anonymous ID field.

extended to knowledge about individuals. A complete study
of this type of knowledge will be pursued in our future work.
In this paper, we show how the knowledge about individuals
can be modeled as ME constraints.

Since this type of knowledge involves individuals, in our
ME constraints, some kind of identity information need to
included. For example, for the background knowledge, such
as “Alice does not have Cancer”, we need to be able to in-
clude the identity “Alice” somehow in the constraints. If
Alice’s QI value Q is unique in the published data set, we
can simply use Q to represent Alice’s identity. This way, we
can still formulate our constraints using P (Q, S, B). Unfor-
tunately, Q might not be unique, and several people might
have the same QI value. Therefore, Q cannot be used as
identity. If we still use P (Q, S, B) in our constraints, we are
not representing the knowledge about a specific individual.

To model the knowledge about individuals, we introduce
an identifier field to the bucketized data set. Since this field
has already been removed during anonymization, the identi-
fiers we add back to the disguised data are not real IDs; they
are just pseudonyms. We expand the example in Figure 1(c),
and generate a new table with pseudonyms in Figure 4.

For a QI value that is unique in the data set, there is only
one pseudonym associated with it. For example, q4, q5 and
q6 are unique quasi-identifiers, so they each have a unique
pseudonym. During the linking attacks, if we know that
Alice (whose QI value is q4) is in the data set, we replace
the pseudonym i8 with Alice’s real name.

For a QI value that is not unique in the data set (e.g.
q1), we associate multiple pseudonyms to such a QI value,
i.e., one distinct pseudonym for each occurrence (we assume
that each person has only one record in the data set). For
example, in Figure 4, we associate {i1, i2, i3} to each of the
three occurrences of q1. If we know that Bob (with q1) is in
the data set, we can assign any one of the i1, i2, and i3 to
Bob, reflecting the fact that we know nothing about which
of the occurrences belong to Bob.

There are many types of background knowledge about in-
dividuals. We provide a list of background knowledge that
can be modeled using linear constraints. We only list lin-
ear equations, but as we discussed before, if we replace the
equality symbol with inequality symbol, we can use the ex-
tended maximum entropy model to handle those inequality
constraints. Our list is not meant to be exhaustive; more
studies are needed to understand what types of knowledge of
individuals can or cannot be expressed as linear constraints.

(1) Probabilistic knowledge about an individual and
single SA value. For example, we might know that “The

probability that Alice (whose QI is q1) has Breast Cancer (s1)
is 0.2”. To model the knowledge stated in this example, we
first assign the pseudonym i1 to Alice. From the knowledge,
we know that P (s1 | i1, q1) = 0.2. Because P (i1, q1, s1) =
P (s1 | i1, q1) ∗ P (i1, q1) and P (i1, q1) = 1

N
(because each

person appears only once in the data, and N is the total
number of records), we have the following constraint (the 4th
element in the probability terms represents bucket index):

P (i1, q1, s1, 1) + P (i1, q1, s1, 2) = 0.2 ∗ P (i1, q1) = 0.2 ∗
1

N
.

(2) Probabilistic knowledge about an individual and
multiple SA values. For example we might know that
“Alice (with q1) has either Breast Cancer (s1) or HIV (s4)”.
Assigning i1 to Alice. We have the following constraints:

P (i1, q1, s1, 1) + P (i1, q1, s1, 2) + P (i1, q1, s4, 2)

= P (i1, q1) =
1

N
.

(3) Probabilistic knowledge about multiple individ-
uals. For example, we might know that “Two people among
Alice (with q1), Bob (with q2), and Charlie (with q5) have
HIV (s4)”. Let us assign i1 to Alice, i4 to Bob, and i9 to
Charlie. We have the following constraints:

P (i1, q1, s4, 2) + P (i4, q2, s4, 3) + P (i9, q5, s4, 3) =
2

N
.

In this type of knowledge, if the knowledge statement is
changed from “two people” to “at least two people”, we can
change the equality sign to inequality. As we mentioned
before, the extended maximum entropy modeling can deal
with inequality constraints [11].

Deriving Invariants from Data. Because of the addition
of the pseudonyms, the invariants derived from the published
data set need to be modified accordingly. The derivation
process is similar to what we have discussed in Section 5.
We omit the details in this paper.

7. EVALUATION
We have implemented the described ME method using

C++. In our implementation, we apply the method of La-
grange multipliers to convert the constrained optimization
problem to an unconstrained optimization problem, which is
then solved using LBFGS. We use Nocedal’s LBFGS soft-
ware [16]. According to Malouf’s comparison [18], LBFGS
is one of the most efficient methods in solving ME prob-
lems. The computer used in our evaluation is a Pentium M
(3.0Ghz, dual core) with 4GB memory.

We use the Adult dataset from UCI Machine Learning
Repository 2 in our evaluations. We use the education at-
tribute among those 14 attributes as our SA attribute. This
SA attribute has 16 different categorical values. We use
eight quasi-identifier attributes in our experiments. The
whole dataset contains 14210 records that are bucketized
into 2842 buckets with five records in each bucket to satisfy
5-diversity. 3

2ftp://ftp.ics.uci.edu/pub/machine-learning-databases
3To be able to achieve 5-diversity for this specific dataset, we
use a similar approach as that in [17], i.e., the most frequent
values of SA is not considered as sensitive, and is excluded
when checking whether the dataset is 5-diversified.
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7.1 Background Knowledge vs. Privacy
This paper is not intended to give a specific privacy quan-

tification metrics; instead our goal is to provide the most es-
sential building block to privacy quantification. This build-
ing block is to derive the linking between SA and QI at-
tributes, i.e., P (SA | QI). The accuracy of this derivation
decides the accuracy of privacy quantification. Therefore, to
evaluate the effectiveness of our method, we measure how
accurate our estimation is.

Let P ∗(SA | QI) be the conditional probability between
QI and SA attributes; this is the probability that we derive
from the published dataset using the proposed ME method.
Let P (SA | QI) be the original probability, i.e., the proba-
bility directly computed using the original data set. The dif-
ference between P ∗(SA | QI) and P (SA | QI) indicates how
accurate our estimation is. We use a variation of Kullback-
Leibler distance [12] to quantify this difference. We call this
measure Estimation Accuracy. Although this measure is not
a measure for privacy, its value is a major indicator of pri-
vacy.

Estimation Accuracy =
X

q∈QI

P (q) ·
X

s∈SA

P (s|q)log
P (s|q)

P ∗(s|q)
,

where the sum over SA is the KL distance between P (s|q)
and P ∗(s|q) for a given q. We take the weighted average of
the KL distance for all different q values (the weight is the
probability of q in the data set).
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Figure 5: Positive and negative association rules
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Amount of Background Knowledge. In this experi-
ment, we measure how the amount of background knowl-
edge affects privacy. We plot three curves. The K− curve
uses K negative association rules; the K+ curve uses K pos-
itive association rules; the (K+, K−) curve uses K/2 pos-

itive association rules and K/2 negative association rules.
The minimal support for these association rules is set to
3/14210, i.e., each association rule must be supported by at
least three records. We plot the results in Figure 5.

From the figure, we clearly see that privacy becomes worse
when more background knowledge is available. Privacy drops
dramatically especially when K is small, and its dropping
rate slows down when more and more background knowledge
constraints are available. This is reasonable since the intro-
duction of background knowledge brings extra information
that does not exist in the published dataset, so the privacy
becomes worse quickly when more background knowledge is
available. However, when the amount of background knowl-
edge becomes larger and larger, redundancy exists among
the knowledge, so the effect on privacy also decreases.

Types of Background Knowledge. From Figure 5, we
can also see the different change rates of privacy for the
three types of background knowledge. Clearly, the curve for
(K+, K−) drops the fastest; this indicates that even for the
same amount of association rules, the mix of positive and
negative association rules contains more information than
positive or negative association rules alone. This is mainly
because less redundancy exists in the mixture. The result
reinforces our decision to use both types of association rules
as the bound of background knowledge.

To understand how the number of QI attributes in the
background knowledge affects privacy, we have conducted
another experiment. We plot a curve for the background
knowledge (association rules) that contains T QI attributes,
where T = 1, . . . , 8. The results are depicted in Figure 6.
We have observed an interesting phenomena: the effect of
background knowledge decreases when T changes from 1 to
4; then it swings back from 4 to 8. The decreases from
T = 1 to 4 is intuitive, because the support of association
rules for smaller T is usually larger; namely, a single rule can
provide the background knowledge that affects more records.
The increases from T = 4 to T = 8 is less intuitive. It is
mainly because that after certain point, another effect begin
to dominate: when T gets closer to 8, it provides more and
more accurate information for the estimation of P (SA | QI),
where QI contains 8 attributes.

7.2 Performance
To understand how scalable our method is, we have con-

ducted experiments to study how well our method works
when the problem size increases. Since the ME method is
an iterative method, we quantify performance in terms of
both running time and number of iterations in the search
process. In these experiments, we have not applied the op-
timization techniques discussed in Section 5.5.

We differentiate two types of knowledge and consider their
influence on performance separately; they are the knowledge
from the published dataset and the background knowledge.
The nature of these two types of knowledge is different - a
constraint derived from dataset only consists of the proba-
bility terms from the same bucket, while a constraint from
background knowledge might involve the probability terms
from multiple buckets. It is interesting to see how these
two types of knowledge affect the performance of the ME
estimation process.

Influence of the size of background knowledge. We
fix the size of the dataset, so the number of constraints from
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Figure 7: Performance versus Knowledge Size and Data Size

the dataset is fixed; we investigate the performance when
the number of constraints from the background knowledge
changes. The results are plotted in Figures 7(a), which
shows that the running time and the number of iterations
both increase when the number of constraints from back-
ground knowledge increases; however, the increase is quite
slow, and only log-linear to the x-axis. There are some fluc-
tuations in the curves. This is mainly because ME search
processes are influenced by the constraints, and adding or re-
moving some constraints may result in different search paths
with different convergence speeds.

Influence of size of dataset. In this experiment, we fix
the size of background knowledge and change the size of
dataset, i.e., the number of buckets. The results are shown
in Figures 7(b) and 7(c). In Figure 7(b), the legend indicates
the number of constraints from the background knowledge.

Figure 7(b) shows that the running time increases almost
linearly to the increment of bucket number. On the other
hand, Figure 7(c) shows that the number of iterations is
almost constant in most parts of the region. However, be-
cause each iteration now takes more time to compute when
the bucket number increases, the running time actually in-
creases. Both observations are consistent with the inherent
characteristic of these two different types of knowledge that
we have explained earlier.

8. CONCLUSION AND FUTURE WORK
We propose a systematic method to incorporate back-

ground knowledge in privacy quantification. Our method
is based on the maximum entropy principle. In our method,
we model the background knowledge as linear constraints;
we also derive all the invariants from the published data,
and represent the invariants as linear constraints. We then
feed these constraints to an optimization procedure, which
outputs the maximum entropy results that satisfy those con-
straints. These results are used for privacy quantification.
We also propose a way to bound the amount of background
knowledge, and have studied the privacy property of pub-
lished data under various bounds.

The work presented in this paper opens up several direc-
tions for future work. One direction is to apply the similar
method to other data disguising methods, such as general-
ization and randomization. The second direction is to study

how the background knowledge about individuals can affect
privacy. The third direction is to address other types of
background knowledge, such as the knowledge that is repre-
sented as inequalities.
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APPENDIX

A. PROOF OF CONCISENESS

Proof. Suppose there are g and h distinctive QI and SA
values respectively within one bucket, we need to prove that
g + h− 1 out of the total g + h constraints for the disguised
dataset are linearly independent. We use the contradiction
approach by assuming that they are not linearly indepen-
dent, i.e., we can find a linear combination of them to obtain
value of zero. Without loss of generality, let’s remove one
constraint, the QI-invariant constraint related to Q1. If the
rest of the constraints are not linearly independent, we can
find the following linear combination:

g
X

i=2

Ai

"

h
X

j=1

P (Qi, Sj , b)

#

+

h
X

j=1

Bj

"

g
X

i=1

P (Qi, Sj , b)

#

= 0.

Each probability P (Qi, Sj , b) shows up once in the first
summation and once in the second summation. Consider
P (Q1, Sj , b): it only shows up in the second summation once,
so its corresponding coefficient must be zero, i.e., Bj = 0.
Consider P (Qi, Sj , b), for i > 1: it only shows up once in the
first summation (the only remaining term), so its coefficient
must be zero too, i.e., Ai = 0. Therefore, these constraints
are linearly independent from each other.

On the other hand, if we do not remove any constraint,
we can get the following:

g
X

i=1

"

h
X

j=1

P (Qi, Sj , b)

#

−
h

X

j=1

"

g
X

i=1

P (Qi, Sj , b)

#

= 0.

Therefore, these constraints are not linearly independent.

B. PROOF OF CONSISTENCY

Proof. Maximum entropy can be achieved if each bucket
achieves its own maximum entropy, when conditional proba-
bilities of one bucket cannot affect conditional probabilities
in other buckets. This is true in our case when we have
no background knowledge. Therefore, our proof is narrowed
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down to prove that the solution we get in each bucket is
actually the maximum entropy result.

We focus on bucket b. Suppose this bucket has Nb records,
and there are g and h distinctive QI and SA values respec-
tively. The proof is mathematically straightforward, i.e., we
simply solve the optimization problem using Lagrange mul-
tipliers analytically.

The unconditional optimization problem aims to maxi-
mize the following expression:

Lb = −
X

Q,S

P (Q, S, b)logP (Q, S, b)

+

g
X

i=1

Ai[

h
X

j=1

P (Qi, Sj , b) − P (Qi, b)]

+
h

X

j=1

Bj [

g
X

i=1

P (Qi, Sj , b) − P (Sj , b)],

where Ai and Bj are Lagrange multipliers.
For all values of Qi and Sj that show up in the bucket, the

joint probability P (Qi, Sj , b) also show up once in each of
the three terms in Equation (10). Taking partial derivative
over P (Qi, Sj , b), we have

−logP (Qi, Sj , b) − 1/ln2 + Ai + Bj = 0

So

P (Qi, Sj , b) = 2Ai+Bj−1/ln2 (10)

Plugging Equation (10) back into QI-invariant with La-
grange multiplier Ai, we have

2Ai−1/ln2

h
X

j=1

2Bj = P (Qi, b) (11)

Plugging Equation (10) back into SA-invariant with La-
grange multiplier Bj , we have

2Bj−1/ln2

g
X

i=1

2Ai = P (Sj , b) (12)

For any two values i1, i2 assigned to i in Equation (11),
we have

2Ai1

2Ai2

=
P (Qi1 , b)

P (Qi2 , b)
(13)

For any two values j1, j2 assigned to j in Equation (12),
we have

2Bj1

2Bj2

=
P (Sj1 , b)

P (Sj2 , b)
(14)

Plugging Equations (13) and (14) back into Equation (10),
we have

P (Qi1 , Sj1 , b)

P (Qi2 , Sj2 , b)
=

P (Qi1 , b)P (Sj1 , b)

P (Qi2 , b)P (Sj2 , b)

Letting i1 = i2, we have

P (Qi, Sj1 , b)

P (Qi, Sj2 , b)
=

P (Sj1 , b)

P (Sj2 , b)

So,

P (Qi, Sj1 , b) = P (Qi, Sj2 , b)
P (Sj1 , b)

P (Sj2 , b)
(15)

We also know

X

j1

P (Qi, Sj1 , b) = P (Qi, b) (16)

Plugging Equation (15) into Equation (16), we have

P (Qi, Sj , b) =
P (Qi, b)P (Sj , b)

P (b)

If there is indeed only one bucket, we know P (b) = 1, so

P (Qi, Sj , b) = P (Qi, b)P (Sj , b) (17)

The Equation (17) essentially says that QIs and SAs are
independent, as a result of the broken linkage between QI
and SA values.
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