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ABSTRACT
Bytecode rewriting on Android applications has been widely
adopted to implement fine-grained access control. It endows
more flexibility and convenience without modifying the An-
droid platform. Bytecode rewriting uses static analysis to
identify the usage of security-sensitive API methods, before
it instruments the bytecode to control the access to these
API calls. Due to the significance of this technique, the
effectiveness of its performance in providing fine-grained ac-
cess control is crucial. We have provided a systematic eval-
uation to assess the effectiveness of API-level access control
using bytecode rewriting on Android Operating System. In
our evaluation, we have identified a number of potential at-
tacks targeted at incomplete implementations of bytecode
rewriting on Android OS, which can be applied to bypass
access control imposed by bytecode rewriter. These attacks
can either bypass the API-level access control or make such
access control difficult to implement, exposing weak links in
the bytecode rewriting process. Recommendations on engi-
neering secure bytecode rewriting tools are presented based
on the identified attacks. This work is the first systematic
study on the effectiveness of using bytecode rewriting for
API-level access control.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords
Android, Access Control, Bytecode Rewriting

1. INTRODUCTION
In the Android Operating System, application is the main

unit that interacts with users. Android applications are
implemented in Java, which is then converted into Dalvik
bytecode that resides within DEX (Dalvik Executable) files
after compilation. During execution, Dalvik bytecode is in-
terpreted by register-based Dalvik Virtual Machine (DVM)
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Figure 1: Android API Usage

before it is executed. Android provides rich Java API meth-
ods for applications to access privileged resources as shown
in Figure 1. In addition to application isolation enforced by
Linux Operating System, Android also supplies a permission
system [17] to restrict operations, which an application can
perform, on privileged resources. Permissions required by
applications are declared in the AndroidManifest.xml
files. During application installation, users are notified of
permissions that are required by the applications. The users
have the option to grant these permissions if they are satis-
fied; otherwise, they could choose to cancel the installation.

The current Android permission system is coarse-grained,
which causes the applications to be over-privileged. For ex-
ample, when an application uses the loadUrl method of
class android.webkit.WebView to load www.facebook.
com, INTERNET permission is required. However, because
INTERNET permission is coarse-grained which does not re-
strict which domain the application can access, the applica-
tion is provided with more privilege than it truly needs.

Several methods have been proposed to provide fine-grain-
ed access control for Android. The first method is the byte-
code rewriting technique [11, 14, 19, 22]. By instrumenting
applications’ bytecode, security policies could be enforced
upon security-sensitive Android API methods. Bytecode
rewriting can be done on both Java bytecode and Dalvik
bytecode. Some tools actually convert Dalvik bytecode to
Java bytecode, and rewrite on Java bytecode, because of the
maturity of Java bytecode rewriting tools. Our evaluation
could be applied to both Java and Dalvik bytecode rewrit-
ing. The second method is native library rewriting, which
imposes fine-grained access control by intercepting the na-
tive calls to Bionic library [26]. A third way to implement
fine-grained access control can be achieved by modifying the
Android Operating System [15, 18, 20, 28]. Each of these
methods has its own advantages as well as disadvantages.
The purpose of this paper is not to compare these methods;
instead, we would like to focus on one of the methods, the
bytecode rewriting technique. Compared to the other meth-
ods, the bytecode rewriting endows more flexibility and con-
venience, and has been used in a number of existing works.

The existing work point out several places where byte-
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code rewriting can be attacked if it is not implemented cor-
rectly [14], but no work has systematically studied the po-
tential attacks on the implementation of bytecode rewriting.
It is unclear whether there are other attacks beyond what
are described in the existing work. Because of the ever-
increasing importance of such a technique, having a full un-
derstanding of its effectiveness in providing access control is
crucial. This paper is the first to conduct such a study.

The purpose of this paper is three-fold: (1) We would like
to study all possible attacks against bytecode rewriting, be-
yond what have been mentioned by the existing work. In
fact, we did find some interesting attacks that were not doc-
umented in the literature. Without the awareness of these
new attacks, the rewritten applications can be compromised
by adversary. (2) For all the attacks, we would like to un-
derstand why such attacks work, and the fundamental cause
for these attacks. Some attacks may appear to be different,
but we found them to be quite similar upon close exam-
ination. Such observations are described in the paper to
give readers a deeper insight into the attacks. (3) Based
on our understanding of the attacks, we make recommen-
dations on how the bytecode rewriting can defend against
these attacks. These recommendations could help better the
design of bytecode rewriting tools.

2. API-LEVEL ACCESS CONTROL USING
BYTECODE REWRITING

The key idea with the API-level access control using byte-
code rewriting is to provide modified behaviors, which al-
low fine-grained access control at the Java API level. The
modified behaviors are introduced by secure wrappers which
function as replacements of sensitive Android APIs. Thus,
before invocations of those APIs, specified security policies
are enforced. Figure 2 illustrates the approach.

Figure 2: API-Level Access Control

The process of API-level access control using bytecode
rewriting involves three steps. After the bytecode file is ex-
tracted from the APK 1 and decompiled [2, 8], static anal-
ysis is performed to identify the occurrences of the security-
sensitive APIs in the code. These occurrences are modified,
so customized access control logic is added before these APIs
are invoked during the runtime. Finally, the bytecode file
and all the other resources are repackaged into a single APK
file, with a new digital signature generated for the file.

2.1 Dalvik Bytecode Analysis
To identify usages of Android APIs, method-invocation

instructions need to be identified in the DEX file. The in-
structions are listed below [4]:

1Android Applications are distributed as a single archive file
called APK (Android Application Package) , which holds
a DEX bytecode file, AndroidManifest.xml, XML re-
sources, and any other resources the applications need.

• invoke-virtual (invoke-virtual/range): used
to invoke a normal virtual method.

• invoke-direct (invoke-direct/range): used to
invoke either a private instance method or a construc-
tor.

• invoke-static (invoke-static/range): used to
invoke a static method.

• invoke-interface (invoke-interface/range):
used to invoke an interface method on an object whose
concrete class is not known.

• invoke-super (invoke-super/range): used to in-
voke the closest superclass’ virtual method.

All of the aforementioned instructions have an argument
called method index, which represents the method to be in-
voked. From this index, the fully-qualified method signature
can be resolved, including parameters types, return type, as
well as package, class, and method name. From this method
signature, simple pattern matching can be used to identify
the usages of the API methods that need to be restricted.

2.2 Dalvik Bytecode Rewrite
The existing work includes several rewriting mechanisms

to enforce more fine-grained access control policies, e.g.,
placing the reference monitor in another service or within
the application. Both of these techniques revise Dalvik byte-
code to inject dynamic data checking, based on the policies
specified by users. For the first approach [19], i.e., encapsu-
lating sensitive APIs in a separate service, the application’s
AndroidManifest.xml file is modified so that permissions
are removed and replaced with new permissions to access the
secure service. Within the secure service, more fine-grained
access control to the privileged resources are provided. Dur-
ing the process of bytecode rewriting, the calls to sensitive
API methods are substituted with a completely new set of
calls to the secure service. Because of its fail-safe default
property, we did not evaluate this type of code rewriting,
but our evaluation may be useful for this technique.

Instead, we focused on the second approach, i.e., the ref-
erence monitor on API methods is directly added to the
application. After recognizing the utilization of API calls,
the rewriting tool places the reference monitor, which uses
secure wrappers, on sensitive APIs within the application.
Access control policies can be placed on any public inter-
faces. Therefore, all the Java methods on the call chains
would be restricted by the policies. The API method on
which to interpose policy could be a method either in a class
that can be extended, or in a class that is final and cannot
be extended. We are going to discuss these two scenarios
in more details below. Note that all the modifications are
performed on the bytecode, but for a clearer presentation,
we used Java code and not the bytecode in our examples.

Bytecode rewriting for a non-final class. Let us use
an example to illustrate bytecode rewriting in this scenario.
In Android, WebView is a non-final class. Assume that
we want to put some restrictions on its loadUrl method,
so we only allow the application to load certain URLs. To
achieve this goal, we can define a wrapper class for WebView,
and it is named SecureWebView. In this wrapper class, we
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perform some access control on the URL string before pass-
ing it to WebView’s loadUrl. See the following code:�

1 public class SecureWebview extends WebView {
2 public void loadUrl(String str) {
3 //access control implementation
4 ...
5 super.loadUrl(str); }} 
� �

Once we have this wrapper, we replace all the occurrences
of WebView in the bytecode with SecureWebView. See the
following examples:�

1 "WebView wv;" is replaced by
2 "SecureWebView wv;"
3

4 "public class MyWebView extends WebView"
5 is replaced by
6 "public class MyWebView extends SecureWebview" 
� �

Bytecode rewriting for a final class. Unlike in the
previous method, there are cases in which the API methods
belong to a final class. In these cases, we cannot define a
subclass or use it as the wrapper. Another way to write the
wrapper is thus needed. For the purpose of illustration, let
us assume that WebView is a final class, and the following
code shows how its loadUrl API is used.�

1 class UserClass {
2 public void navigatePage(String url) {
3 WebView w = new Webview();
4 w.loadUrl(url); }} 
� �

We would like to put a restriction on the URL string
when WebView’s loadUrl API is called. To achieve this
goal, we can create another class SecureWebView with a
static method loadUrl. In this static method, instances
of WebView are passed as a parameter. All the invocations
of WebView.loadUrl are replaced with SecureWebView.
loadUrl, which implements access control. See the follow-
ing code:�

1 public class SecureWebView {
2 public static void loadUrl(WebView w, String s){
3 //access control implementation
4 ...
5 w.loadUrl(s); }}
6

7 public class userClass {
8 public void navigatePage(String url) {
9 WebView w = new Webview();

10 /* w.loadUrl(url); is replaced by the
following */

11 SecureWebView.loadUrl(w, url); }} 
� �
2.3 Bytecode Rewrite Assumption

Android application can introduce its own native code
mainly for performance reasons. With the existence of na-
tive code, the applications can directly invoke any native
library functions of Android framework. Because app in-
troduced native code is running in the same process space
as DVM. The applications also have the ability to tamper
the integrity of DVM state making method signature infor-
mation unreliable. Hence, bytecode rewriting can be easily

circumvented. Current bytecode rewriter assumes that ap-
plications either do not have native code or their native code
is blocked from being executed [14]. This assumption is rea-
sonable. From previous work [27], only 4.52% apps have
native code. Hence, in our study we evaluated bytecode
rewriting technique without considering app introduced na-
tive code.

3. EFFECTIVENESS OF API LEVEL
ACCESS CONTROL

To measure the effectiveness of the API-level access con-
trol using the methods described above, we need to under-
stand what it is trying to protect and how these protected
resources are accessed under the hood. As depicted in Fig-
ure 3, resources that are out of process boundaries require
privileged operations for access. These resources could be
hardware devices, kernel data, or data in another process
space. Hardware accesses are performed through instruc-
tions only executable in the kernel. Data from another
process space is retrieved through inter-process communica-
tion, which is implemented by the binder driver in the kernel
[3, 10, 13]. Access to kernel data and privileged instructions
within the kernel are achieved through system calls.

To initiate system calls into the kernel, Android provides
standard native C libraries called Bionic libc. These na-
tive libraries are bridged to Android Java APIs, so that
they can be invoked directly from Java via the Java Native
Interface (JNI). For example, loadUrl is a Java API in
android.webkit.WebView. It invokes the native method
nativeLoadUrl of the shared library libwebcore.so via
JNI, and the shared library communicates with the kernel
via socket system calls in order to access internet resources.

To acquire privileged resources protected by system ser-
vices, such as locations, the LocationManager API in-
teracts with the service called LocationManagerService
using inter-process communications. The service obtains the
location from the GPS device and then returns the result.

As discussed in the previous section, the Android install-
time permission system protects these privileged resources,
but at a level that is quite coarse-grained. The API-level ac-
cess control using bytecode rewriting can intercept the calls
from applications’ own Java code to APIs, and place fine-
grained access control before the invocation of those APIs.
However, the way in which applications access privileged re-
sources are quite complicated; therefore, it is very natural to
question whether the bytecode rewriting is complete enough
to prevent applications from directly accessing privileged re-
sources, bypassing the secure wrapper. More specifically, we
have the following questions: (1) Can applications directly
talk to kernel? (2) Can applications directly invoke native
libraries? (3) Can applications directly talk to system ser-
vices? (4) Can applications hide the usage of APIs to deceive
the bytecode rewriting?

These four questions represent four potential paths, as
indicated by the numbers in Figure 3, to access privileged
resources. If an application takes advantage of any of these
paths, it would lead to an attack on API-level access control
using bytecode rewriting.

Access Kernel from Application Directly. The first
attack depicted in Figure 3 is not possible, because for ap-
plications to interact with the kernel, they must be able to
invoke system calls. To be specific, they have to be able
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Figure 3: Potential Vulnerabilities of API-Level Ac-
cess Control

to execute special instructions provided by the CPU, such
as the SWI instruction in ARM processors or the SYSEN-
TER, SYSEXIT instructions in Intel processors [9]. DVM
does not provide opcode to directly execute these instruc-
tions. In other words, Java code must invoke the native
code, such as the Bionic libraries, to communicate with the
kernel. Therefore, the path marked with 1 in Figure 3 is not
a feasible attacking path.

Disguise Usage of APIs. Because of Java language
flexibility, the fourth attack which is concealing APIs us-
age is feasible. The most well-known case is Java reflec-
tion, whose troublesome aspect to bytecode rewriting has
been documented by the existing work [14]. Using APIs
java.lang.reflect package, any fields or methods of
classes can be accessed or modified despite public or private
at runtime. Thus, besides normal method invocation, reflec-
tion provides another way to invoke methods or change the
behavior of methods. Reflection even can be used recursively
(self-reflection). Hacker may make use of these powerful ca-
pabilities to disguise APIs usage. However, current bytecode
rewriter [14] proposed defense mechanism against these at-
tacks by detecting and preventing methods invocation of
java.lang.reflect package. Other than Java reflection,
other techniques such as polymorphism may also result in
incomplete detection of APIs usages. Dynamic binding [21]
enables methods to be bound during runtime but compila-
tion. Any methods that adopts dynamic binding cannot be
determined at compile time, and hence can escape from de-
tection. However, researchers have discussed how to perform
type inference on Dalvik bytecode effectively [23].

Invoke Native Methods & System Services Directly.
Because the first attack path is infeasible and the fourth
attack path has been actively discussed, our main focus is
second and third attack path. In the following sections, we
present our successful attacks with structure of attack mech-
anism, attack evaluation and recommendation on counter-
measure. Attack mechanism illustrates techniques required
to make attack successful. Attack evaluation demonstrates
how applications can bypass current bytecode rewriter using
our attacks. Our evaluation is performed based on Android

4.0.3 [1] SDK. All case studies are tested on a Android 4.0.3
ARM emulator. To help readers understand our attacks,
we first present some background materials on Java Native
Interface (JNI).

3.1 JNI Native Methods Resolution
To let Java code invoke native code and vice verse, there

needs to be an interface. This interface is called Java Native
Interface (JNI) [6]. In Android, JNI is the only interface
that enables the two-way communication. Native code writ-
ten in C/C++ and assembly is made available via shared
objects (.so files) or shared library. For Java code to make a
call into native code in a shared library, first, DVM needs to
identify that the Java code tries to invoke native code. This
is done through the definition of native method in Java,
and native methods are the entries to native code. Second,
DVM needs to identify which functions in the loaded shared
library should be invoked, and then execute them. We call
these functions native library functions to distinguish with
the native Java methods. The following code snippet demon-
strates the usage of native code in Java.�

1 package edu.com;
2 public class MyClass {
3 native public long myFunc();
4 static {
5 System.loadLibrary("myLib"); }} 
� �

In the code above, the MyClass class from the package
edu.com declares the myFunc method using the native
modifier, which indicates that this method is actually an
entry point to native library function. At line 6, the shared
library myLib which contains the native functions is loaded
into the DVM. Once the library is loaded, DVM will attempt
to link the native Java method myFunc() to its correspond-
ing native library function. The linking can be conducted in
two different ways.

Dynamic Name Resolution. When the first invoca-
tion of the myFunc method happens, DVM searches in the
loaded native libraries to find the corresponding native li-
brary function. The searching is performed based on names.
DVM deduces the name of the corresponding native library
function using the following convention:

1. The name uses Java/ as the prefix.

2. The package name and class name are appended to the
prefix. Since the package name is edu.com and the
class name is MyClass, the resulting string is Java/
edu/com/MyClass.

3. The name of the native Java method is appended to
the above string. Since the method is myFunc, the re-
sulting string is Java/edu/com/MyClass/myFunc.

4. Any "/" in the above string is replaced with "_". This
results in the final string Java_edu_com_MyClass_
myFunc.

The DVM will then search the loaded native libraries for
a function called Java_edu_com_MyClass_myFunc. If it
is found, the DVM will set up the internal data structure to
direct all future invocations of myFunc to this native library
function. In the native library, the function corresponding
to myFunc must be defined in the following way:
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�
1 JNIEXPORT jlong Java_edu_com_MyClass_myFunc(

JNIEnv* env, jobject thiz); 
� �
Static Methods Association In the method mentioned
above, linking to native functions is decided by DVM and
conducted when the first invocation occurs. There is another
approach, in which the linking is decided by the native li-
brary through registration, not DVM. This registration typ-
ically happens when the native library is loaded, at which
time a JNI function called JNI_onLoad in the native library
is invoked. This function registers native functions to Java
methods using the RegisterNatives. The following code
snippet from a native library illustrates the process.�

1 static JNINativeMethod method_table [] = {{
2 "myFunc", "(J)J",
3 (void *) myFunc_Implementation }};
4

5 extern "C" jint JNI_OnLoad(JavaVM* vm, ... ) {
6 jclass c = env->FindClass("edu/com/MyClass");
7 env->RegisterNatives(c, method_table, 1); } 
� �

In the above example, within the JNI_OnLoad function,
the myFunc_Implementation native library function is
registered to the myFunc native Java method in the edu/
com/MyClass class. Note that in this case, native func-
tion myFunc_Implementation does not need to follow
the JNI naming convention as that in the previous dynamic
name resolution case. When a shared library is loaded using
the JNI method System.loadLibrary, DVM searches for
JNI_OnLoad in the shared library. If the function is found,
it will be invoked, so DVM can link the future invocation of
myFunc to myFunc_Implementation.

Another technique for static association is to delegate
this responsibility to another native function within the li-
brary and invoke this function after the library is success-
fully loaded. This is commonly used in Android framework.
The following code snippet from android_runtime library
demonstrates this technique:�

1 static JNINativeMethod camMethods[] = {
2 { "native_takePicture", "(I)V",
3 (void*)android_hardware_Camera_takePicture},
4 ... };
5 int register_android_hardware_Camera(JNIEnv* env)
6 { return AndroidRuntime::registerNativeMethods
7 (env, "andriod/hardware/Camera", camMethods,
8 ...);}
9 extern "C" jint

10 Java_com_android_internal_util_WithFramework_
11 registerNatives(JNIEnv* env, ...) {
12 return register_android_hardware_Camera(env); } 
� �

In the above example, Java_com_android_internal_
util_WithFramework_registerNatives native library
function can be invoked by registerNatives in com.
android.internal.util.WithFramework class throu-
gh the dynamic JNI naming resolution. This function reg-
isters other native functions to Java methods of Camera
class.

4. INVOKE NATIVE METHOD DIRECTLY
From the discussions above, it is clear that to access priv-

ileged resources at the kernel, applications have to utilize

shared libraries. Apparently, the shared libraries could be
either provided by the Android platform or introduced by
applications. As we have stated earlier, in this paper, we
follow current bytecode rewriter assumption that app intro-
duced native code is not considered.

Bytecode rewriting enforces access control at the API-
level in Java bytecode, not in native code. Therefore, if an
application can directly invoke the native code without going
through those restricted APIs, the API-level access control
can be bypassed. This path is illustrated in Figure 3 as path
2 and Figure 4. In this section, we analyzed whether it is
possible for application’s Java code to directly invoke the
native code in the shared libraries provided by the Android
platform. We did identify two possible ways. Attack 1 is
presented in this section, and attack 2 is presented in the
section 5.

Figure 4: Invoke Native Library Directly

4.1 Exploit JNI Naming Convention
The way how native library functions are bound to native

Java methods, either through the JNI naming convention or
through registration, ensures that a native library function
is only bound to a particular Java API, i.e., that API is the
only path leading to the native library function. Therefore,
if the bytecode rewriting puts a secure wrapper on that Java
API, all the invocation of the corresponding native library
function has to go through the wrapper, hence going through
the intended access control. If we can find a way to invoke
a native library function without going through its corre-
sponding Java API, we can evade the restriction enforced
by the wrapper.

Objective and Approach. The objective of our study is
to evaluate whether there is a way to invoke native library
functions through an unintended Java method, instead of
from the one under the protection. In this subsection, we
focus on the JNI naming convention, i.e., the dynamic nam-
ing resolution. This naming resolution attempts to link a
native library function to a unique Java method, achieving
a one-to-one mapping. Our approach is to study whether
there is a loophole in the naming resolution that allows us
to invoke the same native library function from two differ-
ent Java methods, breaking the one-to-one mapping. Our
attack strategy is illustrated in Figure 5.

Attempt 1 (Failed): As demonstrated in the last exam-
ple, when DVM deduces the name of a native library func-
tion, "/" is replaced with "_". One hypothesis is whether
using "_" in the package, class, or method name can cause
ambiguity in the naming convention, and thus break the one-
to-one mapping. Let us look the following two classes:�

1 //Example 1:
2 package edu.com;
3 public class MyClass {
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Figure 5: Exploit JNI Naming Convention

4 native public long my_Func(); }
5

6 //Example 2:
7 package edu.com.MyClass;
8 public class my {
9 native public long Func(); } 
� �

It appears that both native Java methods will map to
Java_edu_com__MyClass_my_Func. Unfortunately (to
attackers), Android has already thought about such a poten-
tial ambiguity, and its naming resolution replaces any "_"
in the name with "_1". Therefore, the first method maps
to Java_edu_com_MyClass_my_1Func, while the second
maps to Java_edu_com_MyClass_my_Func. Other uni-
code characters, such as "&", ";", "[", etc., are also re-
placed in the same fashion. Our attempt failed.

Attempt 2 (Succeeded) Our failed attempt does lead
to another hypothesis: what if we put the number "1" in
front of a package, class, or method name, can we cause
ambiguity?

The reason why the JNI naming convention can use "_1"
to avoid the ambiguity caused by "_" is that in Java, no
package, class, or method name can start with a digit [7].
Any attempts to do so will encounter compile-time errors.
After digging into this, we realize that this naming violation
is only detected at the compile time, not during the run time.
Therefore, an attacker can add the digit to the beginning
of a name at the bytecode level, i.e., through his/her own
bytecode rewriting. We tried this, and have successfully
invoked a native library function from an unintended Java
API. We will show an example in the following.

Based on the JNI naming convention, the native library
function Java_edu_com_MyClass_my_1Func is supposed
to be mapped only to the my_Func function defined in the
first example in our previous attempt. However, we can
successful call this same native library function through a
different Java method, i.e., the 1Func method. It should be
noted that in our Java code, we used Func() to pass the
compiler, and then changed Func() to 1Func() directly
on the bytecode. Here is what the program looks like if we
convert the modified bytecode back to Java code:�

1 package edu.com.MyClass;
2 public class my {
3 native long 1Func();
4 static { System.loadLibrary(’myLib’); }}


� �
Because now two methods can invoke the same native li-

brary function, if the API-level access control only block
the intended API, i.e., my_Func, in order to prevent ap-
plications from accessing privileged operations through the
corresponding native library function, the attacker can by-
pass this blocking and invoke the native library function
through another API.

4.2 Case Study
Our attack works on the native functions that have "_1"

in their names. We searched in the shared libraries pro-
vided by Android, and found some cases. For example,
the sqlite_jni library contains a function called Java_
SQLite_Database_error_1string, with the "_1" pat-
tern in the name. This function maps to the error_string
method in the Database class of the SQLite package. We
evaluated our attack based on this case. The attack ob-
jective is to invoke native library function Java_SQLite_
Database_error_1string of sqlite_jni library from
a different Java method 1string of class SQLite.Database.
error.�

1 package SQLite.Database;
2 public class error {
3 public static native String 1string(...);
4 static { System.loadLibrary(’sqlite_jni’); }} 
� �

We had to rename Java method string to 1string di-
rectly on bytecode after compilation to deceive compiler.
Figure 6 taken from logcat output demonstrates that by
invoking SQLite.Database.error.1string we success-
fully invoked Java_SQLite_Database_error_1string.
Because of different method signatures, any access control
policies placed on the SQLite.Database.error_string
method by current bytecode rewriter would not affect in-
vocation of method SQLite.Database.error.1string.
Restrictions on the application become ineffective.

Figure 6: Successful Attack on SQLite app

Actually, if "_" appears in the name of a package, class, or
native Java method, then the corresponding native library
function must have "_1" in its name, creating an opportu-
nity for our attacks. Having "_" in these names is not a
common practice but at the same time is not totally absent.
Although today, luckily, there are not many native library
functions with this pattern, the existence of this loophole
can cause many problems when more native libraries are
added to Android. To ensure the security of the API-level
access control, this loophole needs to be fixed.

4.3 Recommendations
To circumvent exploiting JNI name convention, bytecode

rewriter can perform checking on naming convention of type
descriptor and method. If any of them starts with numbers,
bytecode rewriter should remove the digit as it is illegal.
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5. EXPLOIT JAVA CLASS RELOADING
Another way to defeat the secure wrapper is to somehow

modify the implementation of the APIs that the wrapper is
trying to protect. If we can do this, the unauthorized access
can be launched from the modified implementation, which
is ”behind the defense line” protected by the wrapper.

Objective and Approach. To achieve the above goal,
we need to find ways to replace an existing trusted Java
class (provided by Android) with another Java class pro-
vided by the application (untrusted). The application’s Java
class (and its methods) will have the same name as the ex-
isting Java class (and its methods). This way, the appli-
cation’s class can invoke all the native functions that the
existing Java class can invoke. These invocations cannot
be restricted by the API-level access control placed in the
secure wrapper. We would like to exploit problems with
the class loading mechanism in Android to achieve our goal.
Figure 7 depicts our strategy.

Figure 7: Exploit Reload Java Classes

In this study, we use android.hardware.Camera class
as an example. This class is provided by Android, and is
considered as trusted. A malicious application wants to re-
define this class, so when this name is used, the redefined
class is used, not the one provided by Android. Here is the
code snippet of the redefined class:�

1 package android.hardware;
2 public class Camera{
3 final public void someFunc() {
4 // Calling the privileged function
5 privilegedFunc(); }
6 native void privilegedFunc(); } 
� �

In the above code, the native function privilegedFunc
is one of the APIs protected by the secure wrapper in the
bytecode rewriting technique, but someFunc is not restricted
(the name of this method can be arbitrary). If we use the
original android.hardware.Camera class, our access to
the privilegedFunc is restricted because of the wrapper
placed on this class. However, if we can get DVM to load
our redefined class, instead of the original Android class, and
invoke privilegedFunc through someFunc, the access of
the privileged function becomes unrestricted.

Attempt 1 (Failed): We attempt to load our redefined
class (stored in the Camera.apk file) in DVM. Android pro-
vides dalvik.system.DexClassLoader to allow appli-
cations to dynamically load classes. We did the following:

�
1 DexClassLoader classLoader = new DexClassLoader(
2 "Camera.apk", ..., getClassLoader());
3 Class mClass = classLoader.loadClass("android.

hardware.Camera");
4 android.hardware.Camera c = (android.hardware.

Camera)mClass.newInstance();
5 //Access the privileged native code through

someFunc()
6 c.someFunc(); 
� �

Unfortunately, the above attack does not work. Appar-
ently, our redefined class was not loaded. We looked into
the code and find out where the problem is. In the class
DexClassLoader, we found that using DexClassLoader,
a Java class cannot be loaded again if it has already been
loaded by this class loader or by its parent class loaders 2.
This loading policy is implemented in DexClassLoader.

Attempt 2 (Succeeded): To make our previous attempt
successful, we need to change the loading policy, which means
we need to change DexClassLoader. This is impossible
without modifying the Android operating system. Fortu-
nately, DVM allows us to write our own customized class
loader. Our idea is to use this customized class loader to
load our redefined android.hardware.Camera class, and
then somehow use this class in the application, instead of the
one provided by Android. DVM does allow two classes with
the same name to coexist, as long as they are in separate
class loaders.

In DVM, the DexClassLoader class is a subclass of
BaseDexClassLoader, and the loading policy is imple-
mented in the loadClass method. We can write another
subclass of BaseDexClassLoader, override its loadClass
method, but we skip the loading policy enforcement logic in
this method, i.e., we load the class without checking whether
it is already loaded by itself or by its parent class loaders.
Here is the implementation of our class loader:�

1 public class MyDexLoader extends
2 BaseDexClassLoader {
3 // Constructor omitted
4 @Override
5 public Class<?> loadClass(String s) {
6 Class c;
7 try { c = super.findClass(s);
8 return c;
9 } catch (ClassNotFoundException e) {

10 // handling the exceptions
11 } return null; } } 
� �

In our customized class loader, we use super.findClass
to load the class. Unlike the implementation in the class
DexClassLoader, we do not check whether the class is al-
ready loaded by its parent class loaders. Now, we can use
MyDexLoader to load our redefined android.hardware.
Camera class without any problem.

There is another challenge. The privilegedFunc native
function in our redefined Camera class needs to be linked
to its corresponding native library function. Here is the
problem: In Android, a Java method can only be linked to a
native library function if they are both associated with the
same class loader. In our case, the redefined Camera class
is associated with our class loader MyDexLoader, but the

2Each class loader needs to have a parent class loader, unless
it is the first one.
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native library will be associated with another class loader if
it loaded the library 3.

We tried to resolve the challenge from association of native
library and class loader, but without much success, mostly
because the association policy is enforced by DVM, which
cannot be overwritten by Java code. However, we investi-
gated that if a class loader is not updated with the list of
libraries that loaded in DVM, then it is possible to reload
those libraries.

Our investigation revealed that the default class loader
(bootstrap) of DVM is not aware of android_runtime li-
brary being loaded. Hence making Java classes associated
with this library a candidate for attack. registerNatives
native function in this library would link plenty of internal
native functions with Android Java classes.

5.1 Case Study

Attack Background. We performed our attack on a
camera application [5]. Its main functionalities are taking
pictures and then save the taken photos under the external
SD card directory.�

1 public boolean onOptionsItemSelected(MenuItem
item) {

2 /* normal method invocation */
3 camera.takePicture(...);
4

5 /* equivalent method invocation using reflection
*/

6 Class c=Class.forName("android.hardware.Camera");
7 Method m=c.getDeclaredMethod("takePicture", ...);
8 m.invoke(camera,...); */ } 
� �

Suppose current bytecode rewriter enforced finer access
control on method Camera.takePicture which specifies
that pictures can only be taken at daytime between 8am to
6pm.�

1 public class SecureCamera{
2 public static void takePicture(Camera camera,

...){
3 Time now = new Time();
4 now.setToNow();
5 if(now.hour > 8 && now.hour < 18) {
6 camera.takePicture(...); }}} 
� �

Current bytecode rewriter would also put some restric-
tions on reflection method java.lang.reflect.Method.
invoke to prevent method android.hardware.Camera.
takePicture from being invoked through invoke, as dis-
cussed in section 3.�

1 public class SecureMethod{
2 public static void invoke(Method m, ...){
3 String name = m.getDeclaringClass().getName()

+ "." + m.getName());
4 if(!"android.hardware.Camera.takePicture".

equals(name)) { m.invoke(); }} 
� �
Attack Detail. By exploiting Java class reloading, mali-
cious developer can still take photos despite the access con-
trol policy. The attack mainly involves three steps.

3A native library is associated with the class loader who
loads it.

First reload redefined android.hardware.Camera class
into a new class loader. Without the needs of registration
to native functions through name mapping, non native Java
method can be renamed in the user-defined class. Method
takePicture is a non native Java method so that we can
rename it to takeMyPicture.�

1 package android.hardware;
2 public class Camera {
3 public void takeMyPicture(...) {...}} 
� �

However, takePicture invokes native_takePicture
native Java methods which contains actual implementation
of taking pictures. Hence, we need to associate native Java
methods of Camera class with corresponding native library
functions. Refer to the code snippet in section 3.1, Java
method com.android.internal.util.WithFramework.
registerNatives in android_runtime library registers
native library functions to Camera native Java methods. By
reloading android_runtime library and invoking method
registerNatives, native library functions are linked to
redefined Camera class.

Then takeMyPicture can be invoked using reflection.�
1 // Create a customized class loader
2 MyDexLoader ld = new MyDexLoader(...);
3

4 // Load redefined Camera class
5 Class c = l.loadClass("android.hardware.Camera");
6 Class util = l.loadClass("com.android.internal.

util.WithFramework");
7 Method m = util.getDeclaredMethod("

registerNatives", ...);
8 m.invoke(...);
9

10 // Invoke takeMyPicture method using reflection
11 m = c.getDeclaredMethod("takeMyPicture", ...);
12 m.invoke(...); ... } 
� �

Because the method name android.hardware.Camera.
takePicture has changed to android.hardware.Camera.
takeMyPicture, invocation of takeMyPicture cannot be
restricted. Figure 8 demonstrates the application can still
take photos even though current bytecode rewriter enforced
access control policy that pictures cannot be taken during
nighttime.

To estimate the potential impact of this attack, we have
identified all the native libraries that are not associated
with default class loader in Android. The full list can be
found in Appendix A. The functions in these native li-
braries are mapped to the Java methods in various Java
classes. In the Appendix B, we present all Android Java
classes that can be registered to internal native functions
in android_runtime library. Several Java classes on this
list seem security sensitive. Some examples are shutdown
method of class android.os.Power and getWifiState
method of class androd.net.wifi.WifiManager. If the
API-level access control wants to restrict the access to the
APIs in this class, it needs to prevent our attacks; otherwise,
its access control can be circumvented.

5.2 Recommendations
To cope with the problems caused by the class reload-

ing, one possible way is to stop application’s Java code from
reloading preloaded Android core classes in any class loader
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Figure 8: Successful Attack on Camera App

instance. Digging deep into the call chain of the findClass
method, which is used to perform class loading, we found
that eventually defineClass native method in DexFile
is invoked, and its corresponding native library function does
the actual class loading task. Therefore, if API-level access
control using bytecode rewriting is applied to prevent load-
ing of Android classes, restriction on BaseDexClassLoader.
loadClass alone is not enough. All the invocations of
methods within the call chain from findClass in the class
BaseDexClassLoader to loadClass in DexFile should
be restricted.

6. ACCESS SYSTEM SERVICE DIRECTLY
In Android, some of the implementation of the APIs are

performed through the system process via inter-process com-
munication. APIs invoke RPC stubs which initiates inter-
process requests to ask system services to perform actual
actions [17]. If applications can directly communicate with
the system services without going through those APIs, the
access control put on those APIs can be bypassed. The ob-
jective of this study is to find ways to achieve this. Figure
9 illustrates our strategy.

6.1 Exploit Customized RPC Stubs

Figure 9: Access System Services Directly

Let us use location service as an example. Android pro-
vides an API getLastKnownLocation in the android.

location.LocationManager class, and this API returns
the last known location. The call to this API will be directed
to ILocationMangaer$Stub$Proxy, which is the RPC
stub to the system service LocationManagerService. If
bytecode rewriting wants to put some fine-grained access
control on the location access, it usually adds a layer of
access control to this API. Unfortunately, there is a way
to directly send a request to LocationManagerService,
without going through the getLastKnownLocation API.
To achieve this, the application can write its own RPC stub
to communicate with LocationManagerService. We did
a case study on geolocation app to demonstrate how exploit
customized RPC stubs can bypass current bytecode rewriter.

6.2 Case Study
We evaluated our attack on a geolocation application whi-

ch get last known location and display on the map.�
1 import android.location.Location;
2 import android.location.LocationManger;
3

4 /* Return a handler to geolocation service */
5 LocationManager ser = (LocationManager)

getSystemService(LOCATION_SERVICE);
6 /* Retrieve last know location */
7 Location loc = ser.getLastKnowLocation(...); 
� �

Suppose current bytecode rewriter enforced finer access
control policy that the application can only retrieve location
information when the location is within Alaska.�

1 class SecureLocationManager extends
LocationManager{

2 public Location getLastKnownLocation(...) {
3 Location loc = super.getLastKnownLocation(...);
4 if(loc.getLatitude()>60&&loc.getLatitude()<70&&
5 loc.getLongtitude()>140&&loc.getLongtitude()

<160) {
6 return loc; }} 
� �

However, malicious app could introduce customized RPC
with different method signature.�

1 package my.location;
2 /* User-defined RPC stub class */
3 public interface LocMgr extends android.os.

IInterface {
4 public static abstract class Stub extends

android.os.Binder implements
5 my.location.LocMgr {...}} 
� ��
1 import my.location.LocMgr;
2

3 IBinder b = android.os.ServiceManager.getService(
LOCATION_SERVICE);

4 LocMgr sLocationManger = LocMgr.Stub.asInterface(
b);

5 Location loc = sLocationManger
6 .getLastKnownLocation(...);
7 } 
� �

The above code snippet illustrates how customized RPC
stub is used. Line 1 returns an IBinder instance, which is
the gateway to the RPC interface. Line 2 establishes local
clients by converting the IBinder instance to an instance of
LocMgr, so that any invocation of inter-process calls are
thereafter acted as regular method calls on LocMgr.
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Figure 10: Successful Attack on Geolocation App

Note that android.os.ServiceManager is hidden in
Android framework, which means the compiler would throw
an error when an application tries to invoke any methods of
it. At runtime android.os.ServiceManager is already
loaded by DVM when application is started. However, one
can cheat the compiler by writing a dummy android.os.
ServiceManager to overcome compile time error.
my.location.LocMgr.getLastKnownLocation has

different method signature compared to that of android.
location.LocationManager.getLastKnownLocation.
Malicious application can escape access control check of cur-
rent bytecode rewritier. Figure 10 demonstrates last known
location is successfully retrieved by the application despite
the location is at New York City.

6.3 Recommendations
The above problem is not difficult to fix; the easiest fix

is to apply the API-level access control on android.os.
ServiceManager’s getServiceAPI, so application’s Java
code cannot use this API to get system services. It is very
rare that generic application would need to create custom
client for system services, since rich android APIs are already
provided to handle communications with system services. If
we do not want to block this API, we can apply the bytecode
rewriting technique to android.os.Binder.

7. RELATED WORK

Fine-grained access control using bytecode rewrit-
ing. Several researchers have proposed to implement fine-
grained access control using bytecode rewriting on Android
platform [11,14,19,22]. I-ARM embedded In-App Reference
Monitors into Android application [14]. Via instrumenting
the bytecode, security policies are interposed on all secure-
sensitive API calls. Several other work [11,19,22] placed Ref-
erence Monitors in other Android services and substituted
the calls to API methods with calls to other services. The
work in [19, 22] removes all the assigned permissions from
the applications, and reassigns the applications with fine-
grained permissions. The executions of all secure-sensitive
APIs will be delegated to the services. In-vivo uses another
approach, it only uses the services to checks whether the
application can invoke sensitive API calls or not [11], if it is
approved, executions of APIs still take place inside the ap-
plications. Some researchers have proposed similar work on
fine-grained access control using bytecode rewriting for Java
platform [12, 16, 24]. Ajay et. al insert runtime checks into

Java application code using rewriting [12]. Rudy and Wal-
lach built three bytecode rewriting frameworks to add secu-
rity semantics to the Java Virtual Machine [24]. Erlingsson
has discussed practical applications of Java bytecode rewrit-
ing [16].

I-ARM pointed out some potential attacks on bytecode
rewriting, i.e., usage of Java reflection and ClassLoader [14].
However, the main focus of the paper is on the implementa-
tion of a bytecode rewriting framework, analysis on potential
attacks is quite brief. Our study is the first one presenting
a systematical evaluation on API-level access control using
bytecode rewriting. We did a comprehensive study on the
attacking surfaces of the API-level access control using byte-
code rewriting.

Fine-grained access control through library interpo-
sition. Instead of using bytecode rewriting, Aurasium
accomplishes fine-grained access control via instrumenting
Android Bionic libraries [26]. It encapsulates the original
Bionic libraries functions inside its interposition routines, so
fine-grained security policies can be enforced. These new
routines will be invoked when applications invoke the rou-
tines in the Bionic libraries. This is achieved through the dy-
namic linking mechanism used by the native libraries. Com-
pared to bytecode rewriting, this technique is more secure,
as it does not worry about whether applications can directly
jump to native library functions. However, by conducting
access control at the lower level, it loses the rich context
information that is available to bytecode rewriting. Such
context is beneficial for enforcing more fine-grained security
policies.

Fine-grained access control through OS modifica-
tion. Other researches have modified the Android OS
to monitor the data flow, detect data leakage and permis-
sion exploits [15, 18, 20, 28]. TISSA modified the Android
OS to provide fine-grained protection on personal informa-
tion [28]. TaintDroid performs taint analysis on applications
and checks for privacy leakage [15]. Hornyack et al. mod-
ified the Android OS to replace private data with dummy
data when the data are offered to applications [18]. It also
blocks network transmissions if they contain data that are
not supposed to be sent out. The main drawbacks of the
OS-modification approach is the lack of flexibility and the
need to update the phones.

Bytecode rewriting for other purposes. Several
works use bytecode rewriting to instrument Android appli-
cations [23, 25], although not for enforcing API-level access
control. Adsplit used bytecode rewriting to remove adver-
tisement components to another advertisement service [25].
The work in [23] used bytecode rewriting to bind applica-
tions to fake Market app instead of the genuine one, so at-
tacks can be launched in Google In-App Billing.

8. CONCLUSION AND FUTURE WORK
API-level access control using bytecode rewriting is a com-

mon technique used by existing work to provide fine-grained
access control in Android. To fully understand how secure
this technique is, we have conducted a systematic study on
the effectiveness of the implementation of this technique.
We have identified several new attacks. Although all the
problems are fixable, our work manifests the need to per-
form more static analysis and dynamic checking should be
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performed to fulfill an effective API-level access control us-
ing bytecode rewriting. Our work can be beneficial to those
who make use of bytecode rewriting or those who develop
bytecode rewriting tools.
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APPENDIX
A. LIBRARIES NOT PRELOADED

The following are shared native libraries provided by the
Android platform. These libraries are stored under the di-
rectory /system/lib, and default class loader is not aware
of their existence. Applications can reload them during run-
time. If bytecode rewriting puts any access control on Java
native APIs in order to restrict applications’ access to the
native library functions in these libraries, the access control
can be bypassed using our attacks.

libEGL.so, libETC1.so, libFFTEm.so
libGLESv1_CM.so, libGLESv1_enc.so
libGLESv2.so, libGLESv2_dbg.so
libOpenSLES.so, libOpenglSystemCommon.so
libRS.so, libSR_AudioIn.so
libWnnEngDic.so, libWnnJpnDic.so
lib_renderControl_enc.so, libandroid.so
libandroid_runtime.so, libandroid_servers.so
libaudioeffect_jni.so, libaudioflinger.so
libbcc.so, libbcc.so.sha1
libbcinfo.so, libbinder.so
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libc.so, libc_malloc_debug_leak.so
libc_malloc_debug_qemu.so, libcamera_client.so
libcameraservice.so, libclcore.bc
libcrypto.so, libctest.so
libcutils.so, libdefcontainer_jni.so
libdiskconfig.so, libdl.so
libdrm1.so, libdrm1_jni.so
libdrmframework.so, libdvm.so
libeffects.so, libemoji.so
libexif.so, libexpat.so
libext4_utils.so, libfilterfw.so
libfilterpack_imageproc.so
libgabi++.so, libgui.so
libhardware.so, libhardware_legacy.so
libharfbuzz.so, libhwui.so
libicui18n.so, libicuuc.so
libinput.so, libjni_latinime.so
libjni_mosaic.so, libjnigraphics.so
libjpeg.so, liblog.so
libm.so, libmedia.so
libmediaplayerservice.so
libmtp.so, libnativehelper.so
libnetutils.so, libnfc_ndef.so
libpagemap.so, libpixelflinger.so
libpower.so, libpowermanager.so
libreference-ril.so, libril.so
libsensorservice.so, libskia.so
libsonivox.so, libspeexresampler.so
libsqlite.so, libsqlite_jni.so
libsrec_jni.so, libssl.so
libstagefright.so
libstagefright_amrnb_common.so
libstagefright_foundation.so
libstagefright_omx.so
libstagefright_soft_aacdec.so
libstagefright_soft_amrdec.so
libstagefright_soft_g711dec.so
libstagefright_yuv.so
libstdc++.so, libstlport.so
libsurfaceflinger.so
libsurfaceflinger_client.so
libsystem_server.so
libsysutils.so, libthread_db.so
libttscompat.so, libttspico.so
libui.so, libusbhost.so
libutils.so, libvariablespeed.so
libvorbisidec.so
libwebrtc_audio_preprocessing.so
libwilhelm.so, libwnndict.so
libwpa_client.so, libz.so

B. CLASSES LINKED TO ANDROID_RUNTIME

The following are Android framework Java classes that
link to the native library functions in the android_runtime
library. If an API-level access control is put upon these
classes to restrict the applications’ access of their linked na-
tive library functions, our attacks can bypass this access
control by directly invoking those native library functions.

/android/debug/JNITest
/com/android/internal/os/RuntimeInit
/android/os/SystemClock
/android/util/EventLog
/android/util/Log
/android/util/FloatMath
/android/text/format/Time
/android/pim/EventRecurrence
/android/content/AssetManager
/android/security/Md5MessageDigest
/android/text/AndroidCharacter
/android/text/AndroidBidi
/android/text/KeyCharacterMap

/android/os/Process
/android/os/Binder
/android/view/Display
/android/nio/utils
/android/graphics/PixelFormat
/android/graphics/Graphics
/android/view/Surface
/android/view/ViewRoot
/com/google/android/gles/jni/EGLImpl
/com/google/android/gles/jni/GLImpl
/android/opengl/jni/GLES10
/android/opengl/jni/GLES20
/android/graphics/Bitmap
/android/graphics/BitmapFactory
/android/graphics/BitmapRegionDecoder
/android/graphics/Camera
/android/graphics/Canvas
/android/graphics/ColorFilter
/android/graphics/DrawFilter
/android/graphics/Interpolator
/android/graphics/LayerRasterizer
/android/graphics/MaskFilter
/android/graphics/Matrix
/android/graphics/Movie
/android/graphics/NinePatch
/android/graphics/Paint
/android/graphics/PorterDuff
/android/graphics/Rasterizer
/android/graphics/Region
/android/graphics/Shader
/android/graphics/Typeface
/android/graphics/Xfermode
/android/graphics/YuvImage
/com/android/internal/graphics/NativeUtils
/android/database/CursorWindow
/android/database/SQLiteCompiledSql
/android/database/SQLiteDatabase
/android/database/SQLiteDebug
/android/database/SQLiteProgram
/android/database/SQLiteQuery
/android/database/SQLiteStatement
/android/os/Debug
/android/os/FileObserver
/android/os/FileUtils
/android/os/MessageQueue
/android/os/ParcelFileDescriptor
/android/os/Power
/android/os/StatFs
/android/os/SystemProperties
/android/os/UEventObserver
/android/net/LocalSocketImpl
/android/net/NetworkUtils
/android/net/TrafficStats
/android/net/wifi/WifiManager
/android/nfc/NdefMessage
/android/nfc/NdefRecord
/android/os/MemoryFile
/com/android/internal/os/ZygoteInit
/android/hardware/Camera
/android/hardware/SensorManager
/android/media/AudioRecord
/android/media/AudioSystem
/android/media/AudioTrack
/android/media/ToneGenerator
/android/opengl/classes
/android/bluetooth/HeadsetBase
/android/bluetooth/BluetoothAudioGateway
/android/bluetooth/BluetoothSocket
/android/bluetooth/ScoSocket
/android/server/BluetoothService
/android/server/BluetoothEventLoop
/android/server/BluetoothA2dpService
/android/server/Watchdog
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/android/message/digest/sha1
/android/ddm/DdmHandleNativeHeap
/android/backup/BackupDataOutput
/android/backup/FileBackupHelperBase
/android/backup/BackupHelperDispatcher
/android/content/res/ObbScanner
/android/content/res/Configuration

13


