
AFrame: Isolating Advertisements from Mobile
Applications in Android∗

Xiao Zhang, Amit Ahlawat, and Wenliang Du
Dept. of Electrical Engineering & Computer Science, Syracuse University

Syracuse, New York, USA

ABSTRACT
Android uses a permission-based security model to restrict
applications from accessing private data and privileged re-
sources. However, the permissions are assigned at the appli-
cation level, so even untrusted third-party libraries, such as
advertisement, once incorporated, can share the same priv-
ileges as the entire application, leading to over-privileged
problems.

We present AFrame, a developer friendly method to iso-
late untrusted third-party code from the host applications.
The isolation achieved by AFrame covers not only the pro-
cess/permission isolation, but also the display and input iso-
lation. Our AFrame framework is implemented through a
minimal change to the existing Android code base; our eval-
uation results demonstrate that it is effective in isolating
the privileges of untrusted third-party code from applica-
tions with reasonable performance overhead.

1. INTRODUCTION
Advertising in mobile systems is cooperation between mo-

bile advertising networks—such as Google’s AdMob—and
application developers. Typically, mobile advertising net-
works distribute a Software Development Kit (SDK) library,
and developers can simply incorporate one or several SDKs
into their applications. Once incorporated, the SDK code
will take care of the communication, advertisement refresh-
ing, and look-and-feel customization. The advertising com-
ponent is executed independently from the host application,
except that they are bound together visually. When an ap-
plication is installed, both the advertisement and the origi-
nal application will have the same privilege, as they are run-
ning in the same process, inseparable by the system. This
may cause problems.

In some situations, applications may need fewer permis-
sions than advertisements. To allow advertisements to run,
applications have to request more permissions than what

∗This work is supported in part by NSF grants No. 1017771,
No. 1318814, and by a Google research award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’13 Dec. 9-13, 2013, New Orleans, Louisiana USA
Copyright 2013 ACM 978-1-4503-2015-3/13/12 ...$15.00.

they actually need, leading to over-privileged applications.
In other situations, applications may need more permissions
than advertisements; when users grant the permissions to
the applications, they also grant the same permissions to the
advertising code, leading to over-privileged advertisements.
Several ideas, such as AdDroid [23] and AdSplit [24], have
been proposed to solve these problems.

The integration of advertisements and applications has
a special characteristic: most advertisements do not inter-
act with their hosting applications, i.e., advertisements and
applications essentially execute in mutual isolation [6, 15].
This special characteristic enables us to totally isolate them
from host applications, i.e., running each in a separate pro-
cess, and even with a different user ID. If such isolation can
be achieved, we can directly use the access control system in
Android and its underlying Linux to enforce privilege restric-
tion, by assigning different permissions to different UIDs.

The isolation approach was first attempted by AdSplit,
but it provides an emulated solution. In AdSplit, an adver-
tisement and its host application are split into two different
activities (and can thus be executed in two different pro-
cesses), with the advertisement activity being put beneath
the application activity. Using the transparency technique,
AdSplit allows users to see the advertisement through the
transparent region in the application activity. However, the
use of the transparency technique can be problematic. First,
transparency has been widely used by the ClickJacking at-
tack and its variations [20]. Using it for every application
(with advertisement) may make the attack detection and
countermeasures difficult. Second, transparency poses a sig-
nificant overhead in drawing, as it requires multiple layers of
drawing surfaces to be combined. On the other hand, Ad-
Split changes the current mobile advertising architecture by
requiring a stub library inside each application to package up
requests from advertisement activities and pass them onto
their newly introduced advertisement service [24]. Such a
stub library is responsible for supporting all the same APIs
from the original advertising SDK, but transferring them
into IPC function calls. Even though the stub library is
straightforward to implement, as they argued in the paper,
it is quite challenging, if not impossible, to cover all the ex-
isting APIs from the current advertising SDKs. Automated
tools mitigate the challenges to some extent, but their com-
mercial implementation will require significant testing effort
and introduce new corner cases [24], which lowers the possi-
bility of adopting AdSplit.

We would like to design a non-emulated solution without
using the transparency technique or changing the original

1

advertising architecture, where advertisements and applica-
tions are placed on the same drawing surface, but they are
executed in different processes. Our inspiration comes from
browser’s iframe, which allows a web page to embed another
web page, and these two pages are isolated if they come from
different origins. Iframe is widely adopted, because of its iso-
lation and easy-to-use properties. We would like to create
a similar “frame” in activity, allowing an activity to embed
another “activity”. From the user perspective, these two ac-
tivities look like one because they seamlessly appear on the
same window and behave like one unit. However, from the
system perspective, they actually run in two different pro-
cesses with different user IDs. We call such a frame AFrame
(“Activity Frame”).

AFrame achieves the process/permission isolation that is
also achieved by AdSplit, but it goes beyond that by provid-
ing display and input isolation. For display isolation, each
of those two activities occupies a part of the screen and one
cannot tamper with the display of the other. For input iso-
lation, the host application does not have any information
about the user interaction targeted at the AFrame region
and vice versa. No activity can inject an event to the other
activity either. Another important advantage of AFrame is
the fact that using AFrame, developers can use the advertis-
ing SDK like before, all they need to do is to tell Android to
load the advertising code in a special region. In AdSplit, de-
velopers need to replace the original advertising library with
their own stub library and override all the public methods.
They also need to construct a standard Android IPC mes-
sage in order for the stub library to communicate with the
AdSplit advertising service. Although this process can be
automated to some extent, such changes make it difficult to
extend the AdSplit to isolate other third-party components.
Using AFrame, developers can simply place advertisements
and any untrusted third-party component in an AFrame re-
gion with very minimal efforts.

In this paper, we present how AFrame is designed and im-
plemented. Although AFrame is motivated by the problems
with advertisement, our design is not dependent on adver-
tisement. AFrame is a generic solution that can be used to
restrict the privilege of third-party code. In our evaluation,
we demonstrate the applications of AFrame, as well as pre-
senting its performance on Android system and applications.

2. OVERVIEW OF AFRAME
The main objective of AFrame is to isolate untrusted third-

party code, such as advertising code, from its hosting appli-
cation. If the code does not have a user interface (UI), the
isolation can be easily achieved. What makes the problem
interesting is the UI.

In Android, an application’s window that interacts with
users is called an activity, and its corresponding Java class
must be a subclass of the Activity class. Our idea is to embed
another activity inside an activity. From the user perspec-
tive, these two activities look like one because they seam-
lessly appear on the same window and behave like one unit.
However, from the system perspective, these are two activ-
ities, running in two different processes with different user
IDs. Similar to iframe, we call such a frame AFrame (“Ac-
tivity Frame”), and the hosting application’s frame main
frame. We call the “activity” inside AFrame the AFrame
activity, and the one hosting the AFrame the main activ-
ity. AFrame is like a typical View component; it occupies

a rectangle area in the main activity. Inside this area runs
another process, the Aframe process. The process that runs
the main activity is called the main process. Figure 1 gives
an example of an activity with an embedded AFrame.

main activity

Display Advertisement

Display the application’s UI

AFrame process
UID: 5001
Permission: INTERNET

main process
UID: 5000
Permissions:
 INTERNET
 READ_CONTACTS

AFrame activity

A
Fr

am
e

m

ai
n

 f
ra

m
e

Figure 1: AFrame Example

Before discussing the design of AFrame, we would like to
discuss our design objectives from three perspectives: user,
developer, and system.

2.1 From the User Perspective
AFrame should be transparent to end users, who should

feel that they are interacting with one activity, not multiple
activities. This implies that the lifecycle states and the vis-
ibility of AFrame activities and the main activity should be
perfectly synchronized. When one goes to the background,
the other cannot stay on the foreground; when the main
process is killed by user navigation or system, AFrame pro-
cesses should be killed as well. It should be noted, when
AFrame is killed, we do not necessarily need to kill the main
activity, especially if AFrame is used to display advertise-
ment; therefore, even if the advertisement crashes due to a
bug or exception, only the AFrame process will terminate,
the main activity can continue without the advertisement.

2.2 From the Developer Perspective
AFrame should also be transparent to advertising SDK

developers, who may not even be aware of the existence of
AFrame. No additional modifications or components are
required by AFrame in the current or future SDK releases.
However, to use AFrame, application developers do need to
make minimal changes to their code. In this rest of this
subsection, we would like to focus on how developers can
use AFrame to reduce the risks caused by third-party code.
We use AdMob as an example of third-party code.

In Android, to include AdMob in an application, four
steps are typically involved (see Figure 2(a)). Step 1 de-
fines an activity; Step 2 configures the UI based on a layout
file specified by the developer. If there is no advertisement,
Steps 1 and 2 are sufficient. To include an advertisement,
two more steps are added: Step 3 finds the UI component
that will be used for displaying the advertisement, and Step
4 loads the advertisement.

To use AFrame, developers need to split the original ac-
tivity into two: one is the main activity, and the other is the
AFrame activity. Their code is depicted in Figure 2(b). For
the main activity, only the first two steps are needed, be-
cause there is no need to load the advertising code. For the
AFrame activity, in addition to the essential Steps 1 and 2,
it needs to load the advertisement using Steps 3 and 4. The
code for the AFrame activity is quite similar to the code for
the original main activity, except that the layout files used
are different.

The User Interface. The visual structure for user inter-

2

public class main_activity extends Activity {

 public void onCreate(Bundle bundle) {

 super.onCreate(bundle);

 setContentView(R.layout.main_layout);

 // Look up the AdView and load ads

 AdView adView

 = (AdView)findViewById(R.id.adView);

 adView.loadAd(new AdRequest());

 } }

Step 1:

Step 3:

Step 2:

Step 4:

(a) Without AFrame

public class aframe_activity extends Activity {

 public void onCreate(Bundle bundle) {

 super.onCreate(bundle);

 setContentView(R.layout.aframe_layout);

 // Look up the AdView and load ads

 AdView adView

 = (AdView)findViewById(R.id.adView);

 adView.loadAd(new AdRequest());

 } }

Step 1:

Step 3:

Step 2:

Step 4:

public class main_activity extends Activity {

 public void onCreate(Bundle bundle) {

 super.onCreate(bundle);

 setContentView(R.layout.main_layout);

 } }

Step 1:

Step 2:

(b) With AFrame

Figure 2: Activity Code Without AFrame and With AFrame

<LinearLayout>

 <!-- main_activity’s display region -->

 <LinearLayout

 android:height=“fill_parent"

 android:width=“fill_parent“>

 </LinearLayout>

 <!-- reserve region for AFrame -->

 <AframeReserve

 android:height=“50dip"

 android:width=“fill_parent“

 android:layout_alignParentBottom=“true“>

 </AframeReserve>

</LinearLayout>

 (a) main activity Layout

<LinearLayout>
 <!-- AdMob advertisement-->
 <com.google.ads.AdView

 android:id="@+id/adView“

 android:height=“fill_parent"

 android:width=“fill_parent“>

 </com.google.ads.AdView>

</LinearLayout>

(b) aframe activity Layout

<manifest … >

 <!-- application permission requests -->

 <uses-permission

 android:name="android.permission.INTERNET“ />

 <uses-permission

 android:name="android.permission.READ_CONTACTS“ />

 <application … >

 <!-- main_activity declaration-->

 <activity android:name=“.main_activity“ … />

 <!-- aframe_activity declaration & permission requests -->

 <aframe android:name=".aframe_activity" >

 <aframe-permission

 android:name="android.permission.INTERNET" />

 </aframe>

 </application>

</manifest>

(c) Application Manifest

Figure 3: Development Details of AFrame Example

face (UI) is called layout in Android. Layout elements can
be declared in two ways: (1) declare UI elements in XML,
and (2) instantiate layout elements at runtime. Our imple-
mentation supports both of them, i.e., defining the content
of AFrame region statically in the AFrame layout file or dy-
namically in its activity code. We use the static case as an
example in this section.

In Android, an activity has a layout file; in our design,
it has two layout files: one for the main activity, and the
other for the AFrame activity. In the main activity’s layout
file (Figure 3(a)), it reserves a place for AFrame using our
introduced tag called AframeReserve. In Figure 3(a), the
main activity reserves the bottom 50dip region for AFrame
to display the advertisement.

The main activity only specifies an empty container for
AFrame, without specifying any visual layout inside AFrame.
The AFrame’s layout is specified in a separate layout file (Fig-
ure 3(b)). Because we only put AdMob inside the AFrame,
the entire layout only consists of AdView, which is the visual
component used by AdMob.

The Permission Assignments. In Android, each ap-
plication is granted a set of permissions during its installa-
tion. In our AFrame design, the activity running inside an
AFrame has its own permission set, which can be different
from the one granted to its hosting application. Applica-
tion’s permissions are specified by the tag uses-permission

in the manifest file named AndroidManifest.xml. We intro-
duce a new tag called aframe, and in this tag, we specify
the configuration for an AFrame, including its associated
activity and the permissions granted to it. In the exam-
ple depicted in Figure 3(c), the AFrame is only granted the
INTERNET permission, while the application has the IN-
TERNET and READ CONTACTS permissions.

2.3 From the System Perspective

The main objective of our design is to isolate AFrame
activities from the main activity. The isolation objective
consists of four concrete goals: process isolation, privilege
isolation, display isolation, and input isolation.

The first goal is process isolation. The AFrame activity
and the main activity will run in two different processes
with different user IDs. This is a strong isolation, and if it
can be achieved, we can leverage the underlining operating
system (Android uses Linux) to protect each activity’s mem-
ory space, data, files, and other resources from one another.
Even if the untrusted third-party code has malicious native
code, the isolation will not be broken, unless the third-party
code can root the phone.

The second goal is permission isolation. Android’s per-
mission system is based on user ID, i.e., permissions are
assigned to individual user IDs, each representing an appli-
cation. Because AFrame runs as a separate process with a
different user ID, we can naturally use Android’s permis-
sion system to give the AFrame activity permissions that
are different from those given to the application.

The third goal is input isolation. When users interact
with an AFrame activity, the main activity should not be
able to observe this interaction, and vice versa. The inter-
action includes the inputs occurred in the AFrame or the
main frame regions, such as touch events and key strokes 1.
Moreover, AFrame activity and main activity should not be
able to forge an event to one another (they can still do that
to themselves).

The last goal is display (output) isolation. Although AFrame
activities and the main activity share the same screen, and
behave like one activity, they have their own display regions.

1Other types of inputs, such as voice, camera, or sensor
inputs, are not covered by AFrame if they are not directly
related to a particular region. Side channels are not covered
by AFrame either.

3

APK

Package Installation

Package
Parsing

Environment
Configuration

Application Info Storage

Activity Management

Process
Creation

Activity
Loading

Activity Info

Package Info

Window Management

Input Channel
Registration

Activity
Life Cycle St

ar
t

Graphic Buffer Management

Graphic Buffer
Allocation

Package Manager Activity Manager Activity UI Manager

Figure 4: Activity Creation and Execution

One cannot tamper with the contents displayed in another
activity’s region, i.e., their drawings should be restricted to
their own regions on the screen.

3. DESIGN AND IMPLEMENTATION
To achieve the above goals in Android, we need to under-

stand how exactly an activity is created, and how it interacts
with the rest of the system. Based on this understanding, we
identified several places where changes need to be made to
support AFrame. Figure 4 depicts the process of an activity
from application installation, activity launch, and finally to
its standard lifecycle and interaction with the system. The
gray boxes in Figure 4 are the major components that we
have modified to support AFrame. In this section, we drill
down to these components, and describe how AFrame is de-
signed and implemented to achieve the four isolation goals.

3.1 Process Isolation
The objective of process isolation is to run the AFrame

activity in a different process with a different user ID, so
the AFrame activity is physically separated from the appli-
cation’s main activity. Compared to the original Android
code, we need to create a new user, a new process and a
new activity for the AFrame region.

Application Installation and Setup. The information
about AFrame needs to be retrieved by Android when an
application is installed. During installation, Android parses
the application’s manifest file, and retrieves the application’s
component information, including activities, services, broad-
cast receivers, and content providers. Android also creates
a new user for this new application, as well as creating a
private data folder for its resource storage. This is done by
the Package Manager Service (PMS).

In our design, we add a new parsing module in PMS,
which parses the <aframe> tag defined in the manifest file
to retrieve AFrame information, including its activity class
name and the permissions assigned to the AFrame. Based on
the information, the modified PMS will create an additional
user for the AFrame, and set up the private data folder. The
procedure conducted for the AFrame is exactly the same as
that for the application.

Process Creation. When an application is launched, a
process needs to be created to run the application. In An-
droid, this process creation is initiated by the Activity Man-
ager Service (AMS). To start a process, AMS first requests
the process information from PMS, including the process’s
user ID (UID), group ID (GID), the groups that the UID

belongs to (GIDs), and the data folder (see the left part
of Figure 4). After getting the information, AMS sends a
process-creation request to the Zygote process, which forks
a new process, and configures the new process using the
process information.

To support AFrame, we slightly modified the above pro-
cedure. In addition to creating a new process for the appli-
cation, AMS also retrieves the AFrame process information
from PMS, if the application contains an AFrame. It then
sends an additional request to Zygote, requesting it to cre-
ate a new process for the AFrame. The main process and
AFrame process are started simultaneously.

Activity Loading. After the process is created, Android
needs to load the corresponding activity into the process,
and bootstrap the activity’s lifecycle, so the application can
interact with users and the system. In our design, in ad-
dition to loading the application’s activity to its process
(already done by Android), we need to load the AFrame
activity as well. Process record, activity record and runtime
context are three essential resources for activity loading and
for activities to run properly. After all these types of re-
sources are prepared, Android loads the activity under the
control of AMS, following the steps depicted in Figure 5.

5. Activity Launching Message

3. Request

4. Top Running
Activity Record

Activity
Manager

2. Process
Record

1: Process
ID

Activity Manager
Service

App/AFrame
Process

Process Record
Storage

Activity Stack

Running
Context

Figure 5: Android Activity Loading

We leverage the current activity implementation as much
as possible to construct the above process record, activity
record, and runtime context for the AFrame activity. Fol-
lowing this principle, we first copy all the values of the main
activity, and then manually identify all the necessary places
where the AFrame activity should have different values. For

4

example, in the AFrame process record, we need to change
the process name and ID. Since the AFrame component still
belongs to the application, we do not need to change its
application information. Similarly, for the AFrame activ-
ity record, we change the process name, data folder and
its hosting process record. However, for the state of the
current activity, we can keep the value since the AFrame
activity always shares the same state with the main activ-
ity. Moreover, we need to create and register new commu-
nication with system services. For example, AMS needs to
communicate with the AFrame activity to control the tran-
sition of its states; Window Manager Service (WMS) needs
to communicate with it to set the visibility of its display.

Once the activity record is constructed, AMS constructs
an activity launching message with the activity record as the
argument and delivers it to the hosting process using the ac-
tivity token. The UI thread in the hosting process responds
to the request by initializing the context of the current ac-
tivity, loading the activity class and triggering its lifecycle.
For AFrame, we construct another activity launching mes-
sage based on the AFrame activity record, and deliver it to
the AFrame process.

3.2 Permission Isolation
In Android, each application is assigned a unique user

ID (UID) at the installation time, and each UID is associ-
ated with a set of permissions. At the runtime, Android
uses the UID to find out the permissions of an application,
and conduct access control based on the permissions. Since
the AFrame activity’s UID is different from the main activ-
ity’s UID, their permissions are naturally isolated from each
other. There is no need to change the access control logic
of Android to support AFrame. We have only changed 10
lines of code for permission isolation, but none is on the ac-
cess control logic. At the time the application is installed,
a combination of the requested permissions from main pro-
cess and AFrame process will be prompted to the user for
consent.

3.3 Display Isolation
We describe how the AFrame activity and the main ac-

tivity can share the same screen, while not being able to
tamper with each other’s display region. Before that, it is
essential to explain how drawing works in Android.

(A) How Drawing Works in Android

Graphic Buffer Allocation. The drawing memory
required by applications is managed by a system process
called SurfaceFlinger. To be able to draw, an application
first needs to request a buffer from SurfaceFlinger that in-
teracts with the hardware abstraction layer (HAL).

Android has two types of HAL: gralloc is used for emu-
lator and framebuffer is used for real devices. For emula-
tor, it uses double buffering, so HAL allocates a screen-sized
graphic buffer. This acts as an off screen image and is called
back buffer. The back buffer is used for drawing. When
the drawing completes, this buffer is copied using block line
transfer to the screen surface, called primary surface. Dou-
ble buffering is used to eliminate visible draws.

On real devices, page flipping is used to eliminate tear-
ing. In this case, HAL uses twice the screen size to allocate
memory. The purpose is to use one as a back buffer and the

other as the primary surface. The drawing is done on the
back buffer, while the contents of the primary surface are
used to display current screen contents. When the drawing
is complete on the back buffer, page flip is conducted, so
the back buffer becomes the primary surface, and the old
primary surface is now used as the back buffer.

For both types of HAL, hardware graphics operations need
physical continuous memory to manipulate. SurfaceFlinger
pre-allocates a fix-sized (8M, by default) chunk of memory
using Process MEMory allocator (PMEM). PMEM is typ-
ically used to manage large (1-16+MB) physically contigu-
ous regions of memory shared between userspace and kernel
drivers. Upon graphic buffer requests from the application,
SurfaceFlinger chooses the next available block of memory
and sends the specification details back. The application
takes advantage of the file descriptor, base address, offset
and block size information inside the specification, and maps
the same block of memory to its own process. The appli-
cation process further packages the mapped buffer into a
Java object, called Canvas, and provides drawing APIs to
applications through this Java object.

Display Rendering. After the activity finishes its draw-
ing, it informs SurfaceFlinger to do the rendering. This time,
SurfaceFlinger functions like a window compositor and can
combine 2D/3D surfaces from multiple applications. In An-
droid, each activity window corresponds to a layer, and the
layers are sorted in Z-order. SurfaceFlinger renders the dis-
play in two phases:

• Visible Region Calculation: From top to bottom, each
layer takes its height and width as the initial visible
region, and then subtract the region covered by the
layers on top of itself.

• Layer Composition: From bottom to top, SurfaceFlinger
copies the data inside each layer’s visible region to the
main surface. Main surface is a frame buffer specific
for holding the layer composition result.

As Android commonly uses the standard Linux frame
buffer device, HAL uses the frame buffer to generate the
final image, which is sent to the frame buffer driver in the
Linux kernel for displaying.

(B) Display Isolation

The AFrame activity and the main activity must share the
same screen, and at the same time, their drawings should be
restricted to their own regions. The combination of sharing
and isolation makes the design for this part very challeng-
ing. We have considered two design choices: achieve sharing
in graphic buffer allocation but isolation in canvas drawing
(soft isolation), or achieve isolation in graphic buffer alloca-
tion but sharing in display rendering (hard isolation).

Soft Isolation. In this design, after SurfaceFlinger pre-
pares a graphic buffer, it maps the same buffer memory to
both the main process and the AFrame process. Essentially,
both activity processes share the same buffer, and can freely
draw anywhere on the screen. We need to restrict their
drawings to their own regions. There are two ways to ac-
cess the graphic buffer. One is through the direct memory
access using native code. If the activity inside AFrame does
not have its own native code or the native code brought by
it is blocked, this path is blocked. The other is through the

5

standard Canvas APIs to draw some objects in the buffer.
These APIs implement a clipping mechanism to ensure that
the drawing by each node on the view tree can only af-
fect the region assigned to that node, and nothing beyond.
Therefore, all we need to do is to set up the clipping region
correctly for the main activity and the AFrame activity, so
their drawings using the Canvas APIs are always restricted
to their own designated regions.

The lightweight soft isolation comes with a cost of security,
since it depends on the unlikely assumption that there is no
native code execution in android advertisements. To make
AFrame more secure, we choose the following hard isolation
option in our implementation.

Hard Isolation. In this design, the main process and the
AFrame process do not share a single drawing buffer any
more. Instead, each process gets a unique graphic buffer
from system, and maps that block of memory to its own
process space for drawing. As a result of that, the mem-
ory space of these two processes are totally isolated and
accessing the other process’s drawing memory will result in
a hardware exception.

After each activity finishes its drawing, two layers—main
layer and AFrame layer—are used by SurfaceFlinger for dis-
play rendering. In order for SurfaceFlinger to distinguish the
main layer from other layers, we explicitly send its AframeRe-
serve region information to SurfaceFlinger before the graphic
buffer allocation request. During the Visible Region Calcu-
lation phase, we identify a layer as the main layer if Surface-
Flinger contains its AframeReserve information. In such
case, we cut AframeReserve region from its visible region.
As a result of that, the AFrame layer below is able to keep
the AframeReserve region as its visible region following the
original Visible Region Calculation phase.

When SurfaceFlinger finishes the layer composition, the
final image will be a combination of the drawing from main
activity and AFrame activity, each activity only contributing
to its designated region. Since the composition happens in
SurfaceFlinger process, which is a privileged system process,
there is no way for applications to tamper the designated
logic, even with the native code considered.

3.4 Input Isolation
Events should be considered as application’s private re-

sources, because they affect application behavior. Normally,
events are generated by user interactions, such as clicking,
touching, and key strokes, but Android also allows appli-
cations to generate events programmatically. While events
injection to an application itself is always allowed, injecting
events to another application needs the INJECT EVENTS
permission, which is a system-level permission that is never
granted to normal applications.

How Event Dispatching Works in Android. When
a new activity is started, it sends a request to the Window-
Manager system service to register an input channel with
the system. This channel will be used by the system to send
events to the activity process. WindowManager forwards
the request to InputManager, which responds to the request
and establishes the input channel with the new activity.
WindowManager manages the z-order of activity windows,
and synchronizes this information with InputManager. This
way, they both know which activity is on the top and is
currently receiving focus from user interaction. When In-

putManager receives an event from the device driver or ap-
plications, after checking the INJECT EVENTS permission,
it delivers the event to the activity on the top through the
established input channel with the activity. Once the activ-
ity receives the event, it further dispatches the event down
its view tree until some view object consumes the event. The
event will be discarded if no one can handle it.

Input Isolation. The original Android system assumes
that only one activity is on the top and receives input focus.
With AFrame, this is not true anymore, so we need to make
corresponding changes to the system. We extend the origi-
nal input-channel registration process, so InputManager also
knows which display region belongs to the main activity or
the AFrame activity. We also add an additional Decision
Maker module to InputManager to enforce the isolation.

When InputManager receives an input event from the sys-
tem, it first decides which window is on the top, and then
decides which activity (main or AFrame) should get the in-
put. Because InputManager knows the region information
and the event location, it can choose the correct input chan-
nel and dispatch the event to the intended activity process.

The above change is not sufficient. In Android, an ac-
tivity can generate a user event; this event will be sent to
InputManager, which will identify the target input channel,
check the INJECT EVENTS permission and then dispatch
it. Our input channel re-choosing mechanism may change
the target channel, and therefore, violate the input isolation.
For example, the main activity can inject an event to itself
but target the AFrame activity region. This event injection
will be allowed since it targets at its own process. However,
the input channel re-choosing mechanism redirects the event
to another input channel, which is in the AFrame process,
resulting in a violation of input isolation.

To achieve input isolation, we add an additional access
control in InputManager. Before the events are actually
dispatched to the targeted input channel, we check again
whether the UID of the sender process is the same as the
UID of the target process. If these two UIDs are the same,
event dispatching is allowed; therefore, like the original An-
droid, an activity can generate an event for itself. However,
if the two UIDs are not the same, the event will not be
dispatched, unless the event generator has the system-level
INJECT EVENTS permission.

3.5 LifeCycle Synchronization
AFrame activity and main activity are running in differ-

ent processes, but they have to function like one activity;
namely, they have to “stick” together in terms of visibility,
behavior and existence.

The activity lifecycle begins with instantiation, ends with
destruction, and includes many states in between. All the
state transitions of activities within an application are man-
aged by AMS. When an activity changes its state, the appro-
priate lifecycle event method is called, notifying the activity
of the impending state change and allowing it to execute
developer’s code in order to adapt to that change. After the
activity finishes its transition, it notifies the AMS, so the
system can react to the activity’s new state.

Synchronization between an AFrame activity and its host
activity requires additional communication between AMS
and the application. Whenever AMS receives the notifica-
tion from the main activity, it also notifies the AFrame ac-

6

(a) With AFrame (b) Without AFrame

Figure 6: Sky Map with Advertisement

tivity of the same impending state change, so the AFrame
activity can go to the same state transition.

4. EVALUATION AND CASE STUDIES
To evaluate AFrame, we focus on two aspects: effective-

ness and performance. For effectiveness, we use advertise-
ment as a case study to demonstrate how AFrame can be
effectively used to isolate the privilege of untrusted compo-
nents from that of the main application. For performance,
we measure the system-level and application-level overheads
caused by AFrame.

4.1 Isolating Third-Party Advertisements
In this experiment, we show how AFrame can protect ap-

plications against untrusted third-party advertisements. Be-
cause of the need to modify the existing applications, we use
an open-source application, Sky Map [4], as the hosting ap-
plication. According to the statistics on Google Play, this
very popular app has been downloaded for more than 10
million times. Donated by Google, Sky Map does not in-
clude any advertisement. For our demonstration purpose,
we manually modified its source code and incorporated the
AdMob advertising SDK. Figure 6 shows what the applica-
tion looks like. From the figure, we can see that there is no
visual difference between the one using AFrame and the one
without AFrame, i.e., AFrame is transparent to users.

Privilege Isolation. Sky Map requires the following per-
missions: WRITE EXTERNAL STORAGE, INTERNET,
READ PHONE STATE, WRITE SETTING, WAKE LOCK,
ACCESS NETWORK STATE, ACCESS FINE LOCATION,
and READ EXTERNAL STORAGE. Several of these per-
missions are related to user’s private data. Once granted,
they can be used by any component of the application, in-
cluding the advertisement. Therefore, the third-party ad-
vertisement can collect the user’s location data, phone state,
and read the data stored on the SDCard.

With AFrame, we can easily limit the privilege of the ad-
vertising component, without affecting the original applica-
tion. To achieve that, in the Sky Map’s manifest file, we de-
clare the advertisement activity in an aframe tag. We assign
only two permissions—required by AdMob—to this AFrame
region, including ACCESS NETWORK STATE and INTER-
NET. The detailed specification is shown below:

<aframe android:name=".activities.AdsActivity">
<aframe-permission

android:name="android.permission.INTERNET"/>
<aframe-permission

android:name="android.permission.ACCESS_NETWORK_STATE"/>
</aframe>

As Figure 7 shows, when the advertisement activity is
started, it is loaded into a different process with a differ-
ent user ID (see Figure 7). Moreover, the AFrame activity
and the main activity have their own data folders, and the
permissions on these folders ensure that one activity cannot
access the other activity’s data.

To further demonstrate the privilege restriction on the
advertisement process, we intentionally add a piece of mali-
cious code in the advertisement activity and try to access the
user’s location. As Sky Map runs, we receive a security ex-
ception from the advertisement process (Figure 8), indicat-
ing that the developer has not declared the ACCESS FINE
LOCATION or ACCESS COARSE LOCATION permission.
Without using AFrame, this access will be successful, as the
Sky Map app has these permissions.

We have handled the above exception in the advertisement
activity code, so the Sky Map application does not crash
and can continue to run smoothly. If we remove the excep-
tion handling code, the AFrame process will crash. Because
AFrame runs in a different process, the main process does
not need to terminate when the AFrame process crashes.
Whether the application should be required to terminate or
not depends on our synchronization policy set by the devel-
oper. It should be noted that without using AFrame, if the
advertisement crashes, the entire application will crash.

Compatibility with various advertising libraries. We
repeat our above experiment with other advertising libraries.
Five popular advertising libraries are selected based on the
statistics provided by the third-party Android market App-
Brain [3]. They all work with AFrame, and the user experi-
ences are similar to that of AdMob. Due to page limitation,
we do not include screenshots for this evaluation. Table 1
summarizes our results.

% of apps % of installs Compatibility

AdMob 32.34 44.17 Yes

Millenial Media 3.73 16.67 Yes

TapJoy 1.24 11.85 Yes

InMobi 2.62 12.54 Yes

Greystripe 0.39 1.38 Yes

Mopub 0.71 5.15 Yes

Table 1: AFrame Compatibility with Ad Libraries

Other Applications. We further test AFrame with other
open-source applications, including Easy Random Numbers,
Easy Graphic Paper and Skillful Lines [11]. All of them were
released in 2012, with the AdMob library already added.
Each of the selected applications was modified to move the
AdMob code into AFrame. This involves adding a new ac-
tivity for AFrame, reserving space for AFrame in the original
activity layout file, moving the layout for advertisement to
the AFrame layout file, and specifying permissions for the
AFrame in the manifest file. This modification is quite sim-
ple, and takes about 10 minutes for each activity. All ap-
plications run successfully on Android, and the observations
are similar to those obtained from our Sky Map experiment.

4.2 Performance: System Overhead
To evaluate the performance of AFrame, we use the fol-

lowing environment setup: Our source code is based on Ice
Cream Sandwich(ics): android-4.0.3 r1.2, and we run our
modified Android on Samsung Galaxy Nexus I9250 with the
following specifications: CPU (Dual-core 1.2 GHz Cortex-
A9), RAM (1 GB), Display (4.65, 720*1280), GPU (Pow-

7

Process Isolation

Storage Isolation

Figure 7: Process and folder isolation between main activity and AFrame activity with different UIDs

Process ID: Exception Message

Figure 8: Security exception caused by not having the location permissions in the AFrame process

erVR SGX540), Internal Storage (16 GB), and no SDCard.
To measure the overhead imposed on the system, we use a

popular Android benchmarking tool: AnTuTu [2]. It runs a
series of tests and provides a score report on various metrics,
including performance on memory access, integer & floating-
point operations, graphics, database I/O, and SDCard ac-
cess (read/write). The higher the score is, the better. The
results (average scores of multiple runs) are provided in Ta-
ble 2. Since our testing phone does not have an SDCard and
AFrame does not have any modification that affects SDCard,
we remove the SDCard score from the final results.

AuTuTu Original SDK AFrame SDK Difference

Total Score 7302.90 7250.00 -0.71%

Memory Access 1413.15 1410.35 -0.20%

Integer Operation 1697.30 1689.90 -0.44%

Float Operation 1292.25 1286.80 -0.42%

2-D Graphic 460.20 451.80 -1.83%

3-D Graphic 1860.25 1833.15 -1.46%

Database Operation 312.00 311.75 -0.08%

Table 2: Benchmark Scores

From the AnTuTu benchmark, it can be observed that
AFrame imposes no significant overhead on memory accesses,
CPU, and database. It does impose a slight overhead on 2D
graphics (1.83%) and 3D graphics (1.46%). AFrame imposes
these overheads because it performs additional checks before
a canvas is created for drawing and AFrame also performs
checks for layer composition before the final image is sent to
the frame buffer driver in Linux kernel for displaying.

4.3 Performance: Application Overhead
We also need to evaluate the performance impact of AFrame

on applications. We measure the following: memory con-
sumption, time to start the application, and event dispatch-
ing. To conduct the tests, we wrote six testing applications,
which are divided into three groups. Each group has two ap-
plications with identical configuration, except that one uses
AFrame and the other does not. The detailed specifications
are shown in Table 3.

Memory Overhead. To measure the memory overhead
we use a tool called procrank [1]. This tool measures the
memory usage by an application in terms of PSS (Propor-
tional Set Size) and USS (Unique Set Size). PSS divides the
size of shared memory equally among all the processes that
share it, and count each process’s contribution to the overall
memory. The other measure, USS, only counts the amount
of memory used uniquely by a process. For applications con-
taining AFrame, the memory usage is the sum of the usage

Groups In-Group Difference AdMob WebView Webpage

A
No AFrame No Yes Blank

With AFrame No Yes Blank

B
No AFrame No Yes Google

With AFrame No Yes Google

C
No AFrame Yes No N/A

With AFrame Yes No N/A

Table 3: Sample Applications for Overhead Evalua-
tion

of the application process and the AFrame process. We first
run each application individually and our measurements are
depicted in Figure 9(a).

We do expect AFrame to increase the memory consump-
tion quite significantly, as it adds an additional process to
each activity. This is confirmed by our results in Table 4, as
AFrame adds about 59% and 49% memory overhead to PSS
and VSS, respectively. However, in real world, it is quite
common that multiple applications are alive at the same
time, with most of them running in the background. To
better emulate our daily smartphone usage, we simultane-
ously run the AFrame application from each group in back-
ground and the normal application from the same group in
front. Due to the memory sharing mechanism on android,
the memory overhead to PSS dramatically drops to 27%,
which is only less than half of the previous overhead. Even
though VSS does not count the shared memory, the corre-
sponding overhead still decreases slightly to 45%.

 Group Index Pss Overhead Uss Overhead

Individual

Run

A 60.00% 47.00%

B 53.00% 43.00%

C 63.00% 56.00%

Average 59.00% 49.00%

Group Run

A 27.00% 43.00%

B 25.00% 46.00%

C 30.00% 47.00%

Average 27.00% 45.00%

Table 4: Memory Overhead Comparison

It should be mentioned that we have not exploited any op-
timization in our current implementation. We believe that
the memory overhead can be further reduced using optimiza-
tion. For example, if an application has N activities, each
running an advertisement in its AFrame, instead of creating
N additional processes, we can host all these advertisements
in a single AFrame process. We can also reduce the heap

8

GROUP A GROUP B GROUP C

USS

0

10000

20000

30000

40000

50000

60000

GROUP A GROUP B GROUP C

M
em

o
ry

 U
sa

ge
 (

K
B

)

PSS

Without AFrame With AFrame

(a) Memory Overhead (Individual Run Case)

1.00
1.05

1.26 1.21 1.24
1.38

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

GROUP A GROUP B GROUP C

St
an

d
ar

d
iz

ed
 T

im
e

(b) Time-to-start Overhead

1.00 1.04
1.11

0

0.2

0.4

0.6

0.8

1

1.2

main frame
Region

AFrame
Region

Original SDK AFrame SDK

St
an

d
ar

d
iz

ed
 T

im
e

(c) Event Dispatching Overhead

Figure 9: Various Overhead Introduced by AFrame

size of the AFrame process, etc.

TTS Overhead. When an application uses AFrame, the
application startup procedure involves checking the presence
of AFrame component and starting an additional process.
We evaluate how much AFrame affects application’s startup
time (TTS stands for ”Time To Start”). We record the sys-
tem time when launching an application in ActivityMan-
agerService.java, before the process fork arguments are sent
to Zygote via Process.start(). We also record the startup
ending time in reportActivityLaunchedLocked() from Activ-
ityStack.java. The startup time for the six sample applica-
tions are shown in Figure 9(b). The results are standardized
based on the startup time of the application with WebView
loading a blank page. As it shows, if AFrame is used to
isolate AdMob library, the TTS overhead is only 9%. How-
ever, if we use AFrame for other purposes, such as isolating
WebView, the TTS overhead will be a little bit higher. In
the WebView case, the overhead will reach 20% (18% for
loading blank page and 21% for loading Google), but the
absolute time is still acceptable, because it is similar to the
time for loading an normal advertisement.

Event Dispatching Overhead. When an application
uses an AFrame component, when dispatching events to the
application, the system will conduct additional checks to en-
sure that events for the main frame are not sent to AFrame,
and vice versa. We measure the overhead of this checking by
calculating the difference in time taken to dispatch a single
event. We wrote two sample applications for this purpose.
The first application contains an activity with a single but-
ton, and it is executed in the unmodified Android system.
The second application contains an activity with two but-
tons, one in the main activity, and the other in AFrame.
This application is executed in our modified system. The
evaluation measures how long it takes a touch event to be
dispatched to its corresponding button. Figure 9(c) depicts
the evaluation results, which show that the overhead for the
main frame is quite small, and the overhead for the AFrame
is about 11%. If we use AFrame to display advertisement,
this overhead does not have much effect, as users do not
interact with the advertisement very often [6, 15].

5. RELATED WORK
Restricting advertisement. Two existing proposals
specifically focus on restricting the privilege of advertising
code. AdDroid [23] encapsulates the advertising libraries
into the Android framework to lift their trust level. To sep-
arate privileged advertisement functionality from host ap-

plications, AdDroid introduces a new advertising API and
corresponding advertising permissions, allowing applications
to show advertisements without requesting privacy-sensitive
permissions. AdDroid changes the way developers use the
advertising SDK. This kind of changes is not necessary if
developers use AFrame. Another proposal is AdSplit [24],
which puts the advertisement into a separate activity, with
the advertisement activity being put beneath the application
activity. We have compared with AdSplit in the Introduc-
tion section, and will not repeat the comparison here.

Privilege Restriction. Another line of research is the
work on restricting application’s privilege. Apex [21] allows
a user to selectively grant permissions to applications during
the installation. Saint [22] governs install-time permission
assignment and their runtime use as dictated by applica-
tion provider policy. Stowaway [16] determines the set of
API calls that an application uses, maps those API calls
to permissions, and determines whether the application is
over-privileged.

Privilege escalation is an important problem in mobile sys-
tems. Several ideas have been proposed to defeat privilege-
escalation attacks, including XMandDroid [7], PScount [5],
DroidChecker [8], WoodPecker [18], and the work developed
by Felt et al. [17].

Security Extensions. Several security extensions have
been proposed to improve the Android security architecture.
Kirin [14] performs lightweight app certification to prevent
malware at the installation time. DroidRanger [27] applies
both static and dynamic analysis to build a permission-
based behavioral footprinting scheme to detect new samples
of known Android malware families. It also uses a heuristics-
based filtering scheme to identify certain inherent behaviors
of unknown malicious families. While ComDroid [9] detects
application communication vulnerabilities, DroidMOSS [26]
tries to detect the app-repackaging behavior in third-party
Android markets. QUIRE [12] tracks the call chain of IPCs
and enforces security policies. CRePE [10] enforces fine-
grained policies based on the context of the smartphone.

Privacy Protection. Another line of research on smart-
phone security is devoted to protecting users’ private in-
formation. Several systems have been developed, including
TaintDroid [13], AppFence [19], Aurasium [25], etc. This
work is orthogonal to our work on AFrame, and they can be
applied together with AFrame to further restrict the privi-
lege of third-party libraries.

6. CONCLUSIONS

9

To totally isolate untrusted third-party libraries, such as
advertisement, from their hosting applications, we propose
AFrame, a developer friendly framework to achieve the nec-
essary process isolation, permission isolation, and input/out-
put isolation. With AFrame, untrusted third-party libraries
can be isolated into a different process with a different UID.
Moreover, developers still have the capability to configure
the permissions they request. AFrame also ensures the in-
tegrity of each other’s display and input resources. We have
conducted case studies on advertising libraries and WebView
component to demonstrate AFrame’s effectiveness. We also
measure its performance to show that the overhead is accept-
able. The results indicate that AFrame is a viable solution
to solve the over-privileged problem associated with third-
party libraries. In our future work, we will further optimize
the performance, as well as exploiting various security so-
lutions, such as AppArmor and SELinux to further restrict
the behavior of the AFrame process.

7. REFERENCES
[1] Android memory usage.

http://elinux.org/Android Memory Usage.
[2] Antutu benchmark. https://play.google.com/store/

apps/details?id=com.antutu.ABenchMark.
[3] Appbrain. http://www.appbrain.com/.
[4] Skymap. https://play.google.com/store/apps/details?

id=com.google.android.stardroid&hl=en.
[5] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie.

Pscout: analyzing the android permission
specification. In Proceedings of the 2012 ACM
conference on Computer and communications security,
2012.

[6] D. BELIC. Three things to know about mobile
advertising in 2011.
http://www.intomobile.com/2012/02/28/
3-things-know-mobile-advertising-2011-infographic/.

[7] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and
A.-R. Sadeghi. Xmandroid: A new android evolution
to mitigate privilege escalation attacks. Technical

report, Technische UniversitÃČÂd’t Darmstadt, 2011.
[8] P. P. Chan, L. C. Hui, and S. M. Yiu. Droidchecker:

analyzing android applications for capability. In
Proceedings of the fifth ACM conference on Security
and Privacy in Wireless and Mobile Networks, 2012.

[9] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in android.
In Proceedings of the 9th international conference on
Mobile systems, applications, and services, 2011.

[10] M. Conti, V. T. N. Nguyen, and B. Crispo. Crepe:
context-related policy enforcement for android. In
Proceedings of the 13th international conference on
Information security, 2011.

[11] H. Davis. Open source android applications.
http://www.hunterdavis.com/android-apps/.

[12] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S.
Wallach. Quire: lightweight provenance for smart
phone operating systems. In Proceedings of the 20th
USENIX conference on Security symposium, 2011.

[13] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and
implementation, 2010.

[14] W. Enck, M. Ongtang, and P. McDaniel. On
lightweight mobile phone application certification. In
Proceedings of the 16th ACM conference on Computer
and communications security, 2009.

[15] A. Farahat and M. C. Bailey. How effective is targeted
advertising? In Proceedings of the 21st international
conference on World Wide Web, WWW ’10, 2012.

[16] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified. In
Proceedings of the 18th ACM conference on Computer
and communications security, 2011.

[17] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission re-delegation: attacks and
defenses. In Proceedings of the 20th USENIX
conference on Security symposium, 2011.

[18] M. Grace, Y. Zhou, Z. Wang, and X. Jiang.
Systematic detection of capability leaks in stock
android smartphones. In Proceedings of the 19th
Annual Network & Distributed System Security
Symposium, 2012.

[19] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. These aren’t the droids you’re looking
for: retrofitting android to protect data from
imperious applications. In Proceedings of the 18th
ACM conference on Computer and communications
security, 2011.

[20] T. Luo, X. Jin, A. Ananthanarayanan, and W. Du.
Touchjacking Attacks on Web in Android, iOS, and
Windows Phone. In Proceedings of the 5th
International Symposium on Foundations & Practice
of Security, October 25–26 2012.

[21] M. Nauman, S. Khan, and X. Zhang. Apex: extending
android permission model and enforcement with
user-defined runtime constraints. In Proceedings of the
5th ACM Symposium on Information, Computer and
Communications Security, 2010.

[22] M. Ongtang, S. McLaughlin, W. Enck, and
P. McDaniel. Semantically rich application-centric
security in android. In Proceedings of the 2009 Annual
Computer Security Applications Conference, 2009.

[23] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner.
AdDroid: Privilege Separation for Applications and
Advertisers in Android. In Proceedings of the 7th
ACM Symposium on Information, Computer and
Communications Security, 2012.

[24] S. Shekhar, M. Dietz, and D. S. Wallach. AdSplit:
Separating Smartphone Advertising from
Applications. In Proceedings of the 21st USENIX
conference on Security symposium, 2012.

[25] R. Xu, H. Säıdi, and R. Anderson. Aurasium:
practical policy enforcement for android applications.
In Proceedings of the 21st USENIX conference on
Security symposium, 2012.

[26] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang.
Droidmoss: Detecting repackaged smartphone
applications in third-party android marketplaces. In
Proceedings of the 2nd ACM Conference on Data and
Application Security and Privacy, 2012.

[27] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You,
Get off of My Market: Detecting Malicious Apps in
Official and Alternative Android Markets. In
Proceedings of 19th Annual Network & Distributed
System Security Symposium, 2012.

10

