
Security RelevancyAnalysison the Registry of
WindowsNT 4.0

WenliangDu
CERIAS

�
ComputerSciencesDepartment

PurdueUniversity
WestLafayette,IN 47907

duw@cs.purdue.edu

Praerit Garg
Microsoft Corporation
Redmond,WA 98052

praeritg@microsoft.com

Aditya P. Mathur
ComputerSciencesDepartment

PurdueUniversity,
WestLafayette,IN 47907

apm@cs.purdue.edu

Abstract

Many securitybreachesare causedby inappropriate in-
putscraftedby peoplewith maliciousintents.To enhance
thesystemsecurity, weneedeitherto ensure that inappro-
priate inputsare filteredout by theprogram,or to ensure
thatonlytrustedpeoplecanaccessthoseinputs.In thesec-
ondapproach, wesure do not want to put such constraint
on everyinput, instead,weonly wantto restricttheaccess
to the securityrelevant inputs. Thegoal of this paper is
to investigatehowto identifywhich inputsare relevant to
systemsecurity. We formulatethe problemas an security
relevancyproblem,anddeploystaticanalysistechniqueto
identify securityrelevant inputs. Our approach is based
on dependencyanalysistechnique; it identifiesif the be-
havior of any securitycritical action dependson certain
input. If such a dependencyrelationshipexists,wesaythat
the input is securityrelevant, otherwise, we saythe input
is securitynon-relevant. This techniqueis appliedto a se-
curity analysisproject initiated by MicrosoftWindowsNT
securitygroup. Theproject is intendedto identifysecurity
relevant registry keys in the WindowsNT operating sys-
tem.Theresultsfromthis approach is provedusefulto en-
hancingWindowsNTsecurity. Our experiencesandresults
fromthis projectarepresentedin thepaper.

1 Intr oduction

To build asecuresystem,it is importantto understandsys-
tem behaviors, especiallythosebehaviors that respondto
inputs; to understandthosebehaviors, knowing whether
an input is security relevant is important. The security
relevancyof an input is definedbasedon the definition
of a securitycritical action. A securitycritical action is�

Centerfor EducationandResearchin InformationAssuranceandSe-
curity (CERIAS)

an action,which, if conductedin a uncontrolledmanner,
cancompromisesystemsecurity. For example,in UNIX,
system() is a securitycritical actionsinceit invokesa
command,which could be any commandif the argument
passedonto system() is not appropriatelycontrolled.
Generallyspeaking,aninput is securityrelevantif thedata
from this inputwill affect thebehavior of at leastonesecu-
rity critical action.A formaldefinitionis givenin section2.

Therearemany differentkindsof inputsto a program.
Themostobviousonesaretheinputfrom users.Lessobvi-
ousonesareinputsfrom files,from network, from environ-
mentvariables,from otherprocesses,or from theWindows
NT Registry. Someof thesearecritical to systemsecurity,
somearenot. By saying“critical to systemsecurity”,we
meanthat if the input datais validatedincorrectlyor the
validation is missing,the systemsecuritycould be com-
promisedby themanipulationof theinput in certainway.

Let ustake WindowsNT Registry asanexample.Win-
dows NT Registry is essentiallyan organizedstoragefor
operatingsystemandapplicationdata. This datais glob-
ally sharedby differentapplicationsanddifferentcompo-
nentsof theoperatingsystem.Pleaseseesection3.1for the
definitionof Registryandregistrykey terminology. Whena
programgetsdatafrom theRegistry, thedatanow becomes
aninput,andsomeof this inputarebenignwhile someare
not. Forexample,in onescenariotheprogramgetsaninput
from aregistrykey andtreatsthis inputasafile name,then
displaysto theuserthis input in a messagewindow. Even
if somebodycanarbitrarily manipulatethe data,no harm
will bedoneto systemsecurityitself (thoughthemessage
canbe changedin sucha way that the useris tricked to
do somethingharmful). In anotherscenario,the datare-
trievedfrom theregistry key is still treatedasa file name,
but the programproceedsto executethe file represented
by this name,This input now becomesa dangerousinput,
which meansleaving the sourceof the input (the registry

1

key in this case)unprotectedor usingtheinput without an
appropriatevalidationmightnow leadto asecuritybreach.

Consequently, knowing which inputsarecritical to sys-
tem securityis essentialto enhancingsystemsecurity. In
thepreviousWindowsNT Registryexample,knowing that
aregistrykey is critical to systemsecuritywill enableusto
put a protectionon thatkey to preventunauthorizedmodi-
fication. However, thereis no easyway to know that. Fur-
thermore,oneprotectionconfigurationmight becomein-
valid in the new versionof the operatingsystembecause
changesto thecodecouldmakeasecuritynon-criticalreg-
istry key becomesecuritycritical, andvice versa.It is not
alwaysobviousto identify which partof theconfiguration
is not valid any more sincepeoplewho madethe deci-
sion that certainkeys aresecuritycritical might have left
thecompany without leaving thecorrespondingdocumen-
tation on why that protectiondecisionwas made. From
discussionswith NT developers,we have learnedthatthey
areconstantlylooking for the reasonswhy they have put
someregistry keys into protectionmode.Their customers,
afterall, wantto know whetherthey themselvesshouldre-
ally put certainkeys underprotectionor not. Sometimes,
they maydecideto put lessrestrictionon certainkeys,but
they want to know how muchrisk thatwould bring to the
system. Moreover, every time developersmadea major
revision on theoperationsystemprogram,peoplewant to
know whetherthosereasonsstill stand.

Knowing whetheraninput is critical to systemsecurity
is alsoimportantto securitytesting.It canhelptestersallo-
catetheir resourceswisely. Thekey differencebetweense-
curesoftwareandotherhighqualitysoftwareis thatsecure
systemshave to beableto withstandactive attacksby po-
tential penetrators.Whendevelopinga securesystemthe
developersmust assurethat intentionalabnormalactions
cannot compromisethesystem.In anotherwords,secure
systemsmustbe able to avoid problemscausedby mali-
cious userswith unlimited resources[9]. Knowing that
an input is not critical to systemsecurity, testersdo not
needto spendtime in designingattacksagainstthat spe-
cific input; instead,they canfocuson thoseinputsthatare
critical to systemsecurity. Furthermore,knowing that an
securitycritical action dependson the value of an input
provides testerswith more information for security test-
ing cases.If they know, for instance,that the valueof an
input is treatedasa file nameandis subjectto execution,
their testcaseswouldthusinvolveusingfileswith different
properties,permissions,ownersetc.Wehavedevelopedan
environmentperturbationtechniquebasedon this knowl-
edgein [4].

Knowing whetheraninput is critical to systemsecurity
is not trivial. It is not sufficient to just look at thecontent
of an input. In the exampleusedbefore, the input data

in both caseare exactly the same(file names),but they
areusedfor differentpurposes,thusimplicating different
consequences.How canwe identify their purposes?

This problemcanbeformulatedasa dependency prob-
lem [7]. An examplecanhelp illustratethis point. As is
known, in UNIX, system actionis a securitycritical ac-
tion, the consequenceof which dependson the value of
the actualargumentpassedto this action. If the action
takes the form of system("rm /etc/passwd"), it
will erase/etc/passwd file, which will causea severe
securityproblem.But, if theactiontakestheform of sys-
tem ("ls"), it will not do asmuchharmastheformer
action.Fromthis perspective,thevalueof theactualargu-
mentpassedinto thesystem actionactuallydecidesthe
securityconsequence.The value in the actualargument
canbe affectedby varioussources.If an input is oneof
thesesources,we saythatthissystem actiondependson
theinputandthustheinput is consideredsecurityrelevant.
Dependency relationshipexactly modelsthe correlations
amongvariousvariables.If variable � affectsvariable

�
’s

value,we say
�

dependson � . Therefore,to find out if an
input is securityrelevant to systemsecurityis equivalent
to finding out thedependency relationshipamongthepro-
gram’s variables,especiallydependency relationshipsbe-
tweenargumentssentto a securitycritical actionandvari-
ablesthatrepresentinputs.

Dependency analysistechniquehasalreadybeenused
in detectinga varietyof anomaliesin program,in testing,
andin programslicing [7]. The work presentedhereap-
pearsto bethefirst attemptto detectsecurityrelevancy of
inputsusingdependency analysis. Also presentedis our
experiencewith the applicationof this techniqueto Win-
dowsNT 4.0sourcecode.

In addition to staticanalysis,anotherpossibleway of
identifying this kind of dependency relationshipis to de-
rive it from designspecification.By analyzingspecifica-
tion, onecanunderstandhow theprogramwill usethe in-
put data. This, to someextent,cangeneratemoreprecise
informationaboutthedependency. However, this is notal-
waysfeasible.In reality, many inputsarehiddenfrom the
designspecificationbecauseit belongsto implementation
details.For example,inputsfrom filesor from theRegistry
arefrequentlyhiddenfrom designspecification,andthus
learningthe securityrelevancy of thesehidden inputs is
impossiblefrom specificationanalysis.Anotherdrawback
via this approachis thedifficulty of automationunlessthe
specificationis written in a strictly formal language.

The remainderof this paperis organizedas follows.
Section2 describesthedependency andsecurity-relevancy
analysis.Section3 presentstheapplicationof thesecurity-
relevancy analysison windows NT 4.0 sourcecode. Sec-
tion 4 briefly reviews relatedworks in this researcharea.

2

Finally, section5 draws conclusionsandpointsout future
work.

2 Analysis

This sectiondescribesdependency analysistechniqueand
baseduponwhich,wewill discusssecurityrelevancy anal-
ysis.

2.1 Dependencyanalysis

Dependency analysishasbeendiscussedin severalworks
[18], [8], [7], [13], [16]. However, mostof thoseworks
focusonfindingdataandcontroldependency relationships
amongstatements.We, however, discussa similar tech-
niqueto identifydependency relationshipsamongvariables.

A programP hasa dependencerelation D amongits
variables �����
	��� ����� ���
wherea pair

��������	��������
	
meansthat the valueof the

variable
�
, after executionof

�
, dependson the valueof�

beforeexecutionof
�

. Eachof suchpair representsa
dependency relationshipin theprogram

�
.

Tospecifythedependency relationshipformally, webor-
row the notationfrom [7]: Representingthe behavior of
program

�
asa function � over somesetof programvari-

ableslike � � � ��� , etc.

� ��� � � � � �!�#"$"%"&	(')� � � � ���*�#"$"%"&	
we say that variable

�
dependson variable

�
whenthere

aretwo prestates+ and +-, that aredistinguishableonly in
their

�
componentsand lead, under

�
, to corresponding

post-stateshaving different
�

components:�.�/�0�1	��2�����
	
if f 3�+ , +-, . 465278 �

.+:9 5 8 +-,;9 5=<
� � + 	 9 � 78 � � +-, 	 9 � .

(Here +:9 5 meansthevalueof variable5 in state+ .) In other
words,

�
dependson

�
if thecomputationof

�
uses

�
.

A direct dependency relationshipis a dependency re-
lationshipderivedfrom aprimitivestatement,whichcould
beassignmentorprocedurecall. A DataDependency Graph
(DDG) couldbebuilt basedon thedirectdependency rela-
tionshipsamongvariables.

A DDG is actuallya directedgraph,thenodeof which
representsa variable,andthe edgeof which representsa
directdependency relationship.If thereexistsa directde-
pendency betweenvariables> and ? , say ? directly de-
pendson > , thenin theDDG therelationshipis shown asa
directededgefrom A’snodeto B’s node.Sincethedepen-
dency relationshipis transitive,with DDG thedependency
relationshipbetweentwo variablescanberephrasedasthe

following: a variable
�

dependson anothervariable
�

if
andonly if thereexists a path from

�
’s nodeto

�
’s node

in theDataDependency Graph.Therefore,for thepurpose
of capturingdependency relationshipsamongvariables,all
oneneedsto do is to build a DDG. We will use

�@�����
	
to representdirect dependency relationshipsderived from
program

�
.

During theanalysis,we will assumethateachvariable,
whethera local variable,globalvariableor formal param-
eter, hasa differentidentifier. This caneasilybeachieved
by renaming.

Simpledependenceanalysis

If two or morevariablesdenotethesamememoryaddress,
we saythat the variablesarealiasesof oneanother. The
presenceof pointersmakesdata-flow analysismorecom-
plex becausethey causeuncertaintyregardingwhat is de-
fined andused[18]. In this part of the analysis,we tem-
porarily supposethatno aliasexists in the program;thus,
eachvariablerepresentadistinguishedmemorylocation.

Theprimitivestatementthatgeneratesdirectdependency
relationshipsis anassignmentstatement:�@����� 8 �1	 8 �.�/�0�1	

A compositestatementgeneratesdirectdependency re-
lationshipsin thefollowing way:�A�

(if B then C elseD) =
�@��� B 	FE��@��� C 	GE��@��� D 	�@�

(while B do C) =
�@�H� B 	FE��@��� C 	�@�H� C�I�D 	

=
�@��� C 	FE��@��� D 	

Now letusanalyzedependency relationshipsamongvari-
ablesacrossdifferentprocedures.As we know, this kind
of relationshipis causedby inter-procedurecall. So,let us
usea generalform of procedureinvocation C : J 8LK ���NM*��6O*�#"$"$" �6P=	

. To simplify thediscussion,supposetheidenti-
fier for thereturnvalueof K is � , andtheformalarguments
of K is 5 M � 5 O �#"$"%" 5 P .

Sincewe have supposedthat thereis no aliastype, the
dataof actualargumentsarepassedontoformalarguments
via pass-by-value,i.e. duringtheinvocation,it actuallyhas
a setof assignmentstatements:5*Q 8 � Q , where R 8TS "%"$" U .
Therefore,theresultantdependency relationshipis:�@�H� C 	

= V � 5*Q �0� Q 	 , whereR 8WS "%"$" UHXYE V � J � � 	ZX

With alias

If two variablesdenotethesamememoryaddress,namely,
they arealiasesof oneanother, theanalysisbecomesmore
complicatedbecausethepresenceof pointerscausesuncer-
tainty regardingwhat is definedandused.An assignment

3

of *x = *y couldcausethe dependency of [and 5 if
�

and
�

arethealiasesof [and 5 respectively.
Thesafestassumptionis thatapointer� canpointto any

variablein theprogram.Thus,asingleassignmentlike*p
= *q causesa dependency relationshipbetweenany two
variables.Althougha knowledgeof variablescopecancut
down the numberof dependency pairs, the assumptionis
still too strongfor dependency analysisto derive anaccu-
raterelationship.

Several methodsof alias analysisand point-to analy-
sishave beenproposed[12, 6, 19, 2, 20]. By usingthese
methods,one can computea points-toset for eachvari-
able.Thepoints-toanalysisis beyondthescopeof thispa-
per, andwe assumethata points-tosetfor eachvariables
could be obtainedvia this analysis.The main concernof
this paperis how to usethe points-tosetsto build a Data
Dependency Graph,andbasedon which, how to conduct
security-relevancy analysis.In the following analysis,we
use \ � � 	 to representsthepoints-tosetof variable� .

With apoints-tosetfor eachvariablesavailable,onecan
computedependency relationshipsfrom the following as-
signments:�@�H�^] � 8]!_*	

= V �.�/�0�1	 9 �`� \ � � 	a�0�A� \ ��_*	bX�@���;] � 8 5 	 = V �.��� 5 	 9 �H� \ � � 	ZX�@��� [8]*_*	
= V � [���1	 9 �@� \ ��_*	ZX

2.2 Incompleteprogram

An assumptionunderneaththe above analysisis that the
sourcecodefor a programis complete.However, in prac-
tice this assumptionis not alwaystrue. Library routines,
for instance,usuallycomewith no sourcecodes.To solve
thisproblem,adependency digestfor eachof thoselibrary
subroutinesis manuallycomputed.A dependency digestof
asubroutinerepresentsthedependency relationshipamong
its formalparametersandreturnvalue.

Forexample,char * strcpy(char *s1, char
*s2) subroutinewill copy the contentspointedby +dc to
thelocationpointedby + S , andreturnthevalueof + S . Thus
thedependency digestis:

V �;] + S �b] +dc 	a�e�;] � �Z] + S 	b�-� � � + S 	ZX , where� is thereturn
value.

Therefore,for the statementS: x = strcpy(a, b),
we have

V �@��� C 	 8 V ����� � 	bXfE V � \ ���6	b� \ � � 	0	bXYE V � \ � � 	b� \ � � 	0	bX

2.3 Security RelevancyAnalysis

Security critical action

Someof actionsconductedby a programcouldbebenign
while somemight besecuritycritical, which meansthat if

the targetof the actionis not verifiedcorrectly, theaction
could lead to breach,suchas impairing systemintegrity,
confidentiality, accountability, or availability. Examplesof
suchactionsaresystemcalls likewrite(), unlink().
Takewrite() asanexample:if thetargetof thewrite ac-
tion is not appropriatelyvalidated,this operationcouldbe
appliedto anunwantedtarget,thusoverwriting thetarget.

In operatingsystemssuchasWindowsNT, UNIX, ase-
curity critical actionusuallyis representedby asystemcall
or by a procedurefrom library that invokessystemcalls.
A securitycritical attribute is associatedwith eachof of
thiskind of procedureindicatingwhetherits invocationhas
any potentialconsequenceonsystemsecurity. We definea
variable’s securityrelevancy basedon thesesecuritycriti-
calactions.

Definition 2.1 (SecurityRelevancyof Variable)A variable�
is securityrelevantin program

�
(denotedas

�`� Chg ���
	
),

if oneof thefollowing situationsis true:

1.
�

is passedasa parameterpassedonto function K ,
where K is securitycritical.

2.
� 5 �0�6	Y�2�H���
	

and 5 is securityrelevant.

After obtainingthedirectdependency relationshipsamong
all variablesof theprogram,onecanbuild a DataDepen-
dency Graph(DDG). A DDG is actuallya directedgraph,
the nodeof which representsa variable,and the edgeof
which representsadirectdependency relationship.If there
existsadirectdependency betweenvariables> and ? (say? dependson >), thenin theDDGtherelationshipisshown
asadirectededgefrom A’snodeto B’s node.

We will distinguishthosevariableswhich representin-
putsfrom othervariablesby markingeachof their nodes
with an i . We will also distinguishthe variableswhich
arefed directly to securitycritical actionsfrom othervari-
ablesby markingeachof theirnodeswith an C . Therestof
variablesaremarkedwith an j . Now theproblemof deter-
miningwhetheraninput is securityrelevantis transformed
into thefollowing problemstatement:

Definition 2.2 (SecurityRelevancyProblem)Giventhedi-
rectedgraph k 8 ��l��mn	

, where
 8 i E C E j , and i ,C , j arethreesetsof nodeswith differentproperties,find-

ing all securityrelevant inputs is equivalentto finding all
nodesR � i , suchthat 31+ � C , andthereexistsat leasta
pathfrom R to + ,

Proof: Sinceset C containsall securityrelevantnodes,
andseti containsall inputnodes,if thereexistsapathfrom
an i nodeto an C node,from the dependency definition,
weknow thatthe C nodedependson the i node.Fromthe
definitionof securityrelevancy of a variable,the i nodeis

4

a securityrelevantvariable.Theinput it representsis thus
a securityrelevantinput.

An intuitive solution to this graphproblemis to first
reversethedirectionof eachedge,thento find thecomplete
reachablesetfor eachC node,thencheckwhethertheset
containsany i node.If so,onecandecidethatthe i nodeis
securityrelevant.A straightforwardimplementationwould
havetherunningtimeof j � 9 Co90pYq 	

, whereq is thenumber
of securityrelevantvariables.In theworsecase,where 9 Co9
is in theorderof q , thealgorithmwould take j � q

O 	
time.

An improvedalgorithmwould (1) reversethedirection
of eachedgelike the above solution; (2) choosea node +
from C set,find thereachablesetfor node + ; (3) deleteall
nodesthatarein this reachablesetfrom thegraph,aswell
asall the edgesconnectedto thesenodes;(4) choosean-
otherunchosennodefrom C set,andrepeatstep(2) until
thereare no more nodesto choose. Finally, if any node
from i appearsin the union of all reachablesets,we say
thatthenodeis securityrelevant.Sincetheimprovedalgo-
rithm only traverseseachsecurityrelevantnodeonce,the
total runningtime would be j � q 	

, where q is thenumber
of securityrelevantvariables.

To further increasethe performanceof the algorithm,
onecouldcompressthe DataDependency Graphto some
extent. For example,oncea set of dependency relation-
shipsfor eachprocedureisobtained,all relationshipsamong
local variablescould be removed if they are not related
to any input. Thereby, only the dependency relationships
amongparameters,globalvariables,andinput-relatedlocal
variablesarekept. Of course,onecannot simply get rid
of thoselocal variables,since,for example,someformal
parametermight dependon a local variable,which itself
dependson anotherformal parameter, This circumstance
makesthefirst formalparameterdependonthesecondone.
The indirect dependency relationshipsamongformal pa-
rametersand global variablesshouldbe preserved while
thedependency relationshipsetis reduced.

3 Registry Security AnalysisProject

3.1 Background of the Project

TheRegistry in WindowsNT 4.0 is laid out in a hierarchi-
cal structureof keysandname-valuepairs. This structure
is usedasa centralconfigurationdatabasefor theuser, ap-
plication,operatingsystem,andcomputerinformation. A
key is a nodeof thehierarchicalRegistry structure.It con-
sistsof sub-keys andname-valuepairs. A sub-key is the
child of a parentkey. A name-value pair is the holder
of the datawithin a registry key. Eachkey mayhave any
numberof sub-keys and/orname-valuepairs[3]. We will
useregistrykey/valuein thispaperto referto bothkey and

name-valuepairs.

Definition 3.1 Securityrelevantregistrykey: aregistryname-
valueis securityrelevant if a changein its valuein some
way could leadto violation of systemsecurity, which in-
cludesconfidentiality, integrity, accountability, andavail-
ability. A registrykey is securityrelevantif any of its con-
tainingname-valuepairsaresecurityrelevant.

A project is initiated for the purposeof identifying all
securityrelevant registry keys in Windows NT Registry.
Thereareseveralmotivationsbehindthis project. First of
all, someregistry keys shouldbe configuredasprotected
resourceswhichnon-privilegedusercannotmakearbitrary
modificationon. Usually, the decisionaboutwhich reg-
istry keys shouldbe protectedcomeseither from specifi-
cation,or developers’formal or informal documentations.
As time goeson,however, thespecificationmight become
obsolete;it is hard to keepup with the evolution of soft-
ware.Furthermore,peoplewho madethedecisionregard-
ing which registry keys shouldbe protectedmight have
left. So, from time to time, peoplemight ask: “why is
this registrykey protected?whatis theconsequenceif I do
not protectit”? To answerthesequestions,softwareven-
dorshave to turn to the developers,provided that the de-
veloperswho madethe decisionarestill there;otherwise
they have to go throughthe specificationandfind out the
resultthemselves. Specificationcouldbeobsoleteandin-
completeaswell. yet nevertheless,comparedwith specifi-
cation,programsourcecodewouldprovidemoreaccurate,
morecompleteandmoreup-to-dateinformation. There-
fore, if we can derive the securityrelevancy information
from theprogramitself, especiallyif automatically, wecan
keepupwith theevolutionof thesoftwareregardingto the
securityrelevantregistrykeys.

Secondly, various enterprisecustomersor developers
from othergroupswantto know why a registrykey is pro-
tected.Thesecustomersmightwanttobuild theirownsoft-
wareon NT or port their softwareto NT. Sometimes,the
softwarerequiresthata non-privilegeduserhave theright
to modify a certainregistry key which is in theprotection
mode. They shouldeithermodify thesoftwareor remove
theprotectionfrom theregistry key. To make theright de-
cisionthey would needto do risk analysison whetherit is
appropriateto just remove theprotectionfrom theregistry
key. If therisk is not high enough,they might tradea little
bit of securityfor thecostof modifying software.Usually
customersarenotsatisfiedwith thespecificationsthatonly
specifythataregistrykey shouldbeprotectedwithoutpro-
viding furtherdetails.Themoredetailsthey have,themore
accuratetherisk analysisis.

Thirdly, the projecthopesto identify securityflaws re-
latedto theRegistry. Therestill areseveralworld-writable

5

registrykeysaftertheWindowsNT 4.0’sfreshinstallation.
Several NT securitybooks[17, 10] have pointedout that
someof the registriesshouldbe protected. We hopeto
identify the known one,aswell asuncover the unknown
onesif any.

3.2 Designand Implementation

Throughtheprojectwe want to beableto answerthefol-
lowing questions:

1. Whichregistrykeys/valuesareusedin theprogram?

2. Wherearethey used?

3. Are they securityrelevant?

4. Why arethey securityrelevant?

For theeaseof implementation,we divide our taskinto
two differentsteps.In the first step,we try to answerthe
first two questionsby gleaningregistry keys/valuesinfor-
mation from the program. The data itself is quite valu-
able,sinceit givesa global overview of the usageof the
Registry by variouscomponents.For example,from the
datawecollectedfrom WindowsNT4.0SP3sourcecodes,
we found that Winlogon registry key is used256 times
throughout33 differentmodules,andLsa registry key is
used190 timesthroughout24 differentmodules.This in-
formationsuggeststhatwe shouldbe very cautiousabout
changingthevalue,configuration,or themeaningof such
registry keys. Fortunately, thesetwo registry keys arepro-
tectedin thedefaultconfigurationandonly Administrators
andsystemcanmodify them. A datacollection tool has
beenimplementedfor collectingtheRegistry usageinfor-
mation.Althoughit is impossibleto resolve all thenames
of registry keys/valuesthat are usedin a programsince
somenamesof thekeys/valuesaredynamicallygenerated,
we have indeedresolve rts:u of them.

In the secondstep,the dependency and securityrele-
vancy analysistechniquesdiscussedin section2 areused
for analyzingthesecurityrelevancy of eachinput from the
Registry. Without theresultfrom thefirst step,onecantell
only whetheran input from a registry key is securityrel-
evant or not without knowing in particularwhich registry
key is securityrelevant.But whenthefirst stepandthesec-
ondstepresultsarecombined,the securityrelevancy of a
specificregistry key/valueis now ascertainable.

Data organization

The final resultsfrom the above two stepsarestoredin a
databasethatcontainsthefollowing fields:

v Registrykey: thisfield recordsthenameof aregistry
key usedin a program,or whosevalueis used.

v Registry valuename:if a registry valueis retrieved,
thefield recordsthevaluename.

v Accesspermissionfor “Everyone”on this registry
key: Sinceweareconcernedwith whetherthekey is
world-readableor world-writable,only the permis-
sionfor “Everyone”group(thisgroupincludesevery
userin thesystem)is recorded.

v Link to sourcefile: this field providesa link to the
sourcefile thatusestheregistrykey/value.

v Line number:this field recordswherein thesource
file theregistrykey/valueis used.

v Securityrelevancy: thedecisionmadeasto whether
theregistry key/valueis securityrelevant. Thedeci-
sionis basedon thesecurityrelevancy analysis.

v Criterion: thereasonof why theregistrykey/valueis
categorizedassecurityrelevant.Suchreasonscould
be: the input is passedasa file nameinto a deletion
function;or theinput is passedasafile nameinto an
executionfunction;or theinput is usedascondition
to decideif anetwork connectionfunctionshouldbe
invoked,andsoon.

Security relevancyanalysis

Beforesecurityrelevancy analysisis conducted,oneques-
tion hasto beanswered:what consistsof securitycritical
actionin theWindowsNT operatingsystem?Thesecurity
action in the Windows NT is definedat systemcalls and
library calls level, namely, systemcalls and library calls
arecategorizedinto two categories(securitycritical actions
and securitynon-critical actions)basedon the targetsto
which the actionsareapplied. Securitycritical actionsin
Windows NT aredescribedin the following, andthey are
categorizedby thetargetsto which theactionsareapplied:

v Executable: this kind of actionusuallyinvolvesex-
ecutinga program,loadinga DLL andexecutingits
procedure,invokingaserviceandetc.

v Permissionor Privilege: this kind of actionusually
involvessettingor modifyingapermissionor apriv-
ilegeon a target.

v File or Directory: this action involvesaccessinga
file or a directory including reading,writing, and
deleting.

v Registry: similar to accessingfiles, this kind of ac-
tion only involvesactionsof accessingregistry keys
or values.

6

v Network: this kind of actioninvolvesaccessingnet-
work, suchasconnecting,sendingor receiving on
network.

v EnvironmentVariable: sincealot of otherunexpected
actions,whethersecurityrelevantor not, dependon
environmentvariables,soachangeto asecurityvari-
ableis consideredsecurityrelevant.

v Processand Service: changinga processor a ser-
vice is securitycritical, sinceanactionmight cause
a denial-of-serviceproblemif the target is inappro-
priate.

v SecurityPolicy: Securitypolicy, suchaswhetherto
allow somebodyto login, is critical to systemsecu-
rity, so any changeto the securitypolicy is consid-
eredsecuritycritical. However, in theWindows NT
operatingsystem,thereis no standardAPI (Appli-
cationProgrammingInterface)for this functionality.
Sometimes,a policy is specifiedin a registry key,
sometimes,it is specifiedin a file. It is very diffi-
cult to distinguisha normalfile or a registry key ac-
cessingoperationfrom the operationsof accessing
securitypolicy. Our approachdependson manual
annotation(eitherby programmersthemselvesor by
codeinspectors)to identify suchanaction.

Example

An exampleis usedhereto illustratehow theanalysistech-
niquepresentedin section2 is appliedto analyzesecurity
relevancy of registrykeys/values.Theprogramusedin this
exampleis thefollowing:

f(){
RegQueryKey(hkey, ... input)
g(input);

}

g(char *str){
char name[30];
strcpy (name, "\\Winnt\\");
strcat(name, str);
h(name);

}

h(char *n){
CreateProcess(n)

}

Figure1showsthedependency relationshipsamongvari-
ables.BecauseCreateProcess is asecuritycritical ac-
tion, node

] q in thefigureis markedasan C node,andbe-
causeRegQueryKey is aninput procedure,node

] R;q���[6w

I

"\Winnt\"*input

*str

*name

*nS

Figure1: DataDependency Graph

is marked as an i node. From the figure, a path from] R^q��x[xw nodeto
] q nodeexists,therefore,accordingto se-

curity relevancy analysis,input fromRegQueryKey() is
consideredsecurityrelevant.

3.3 Results

Wehaveappliedthedatacollectiontool onthewholeWin-
dows NT4.0 (SP3)sourcetree. Thereare 16,009places
where the Registry is accessed.The namesof registry
key/valuesusedin r�s�u of thoseplaceshavebeenresolved.
The reasonthat the namesof registry keys/valuesusedin
the other c*s�u have not beenresolved is mainly because
someregistry key/valuenamesaredynamicallygenerated
during theprogramexecution;therefore,staticanalysisis
impossibleto resolve them.

Amongall those16,009entries,y�r�u arejustan“open”
or “close” operation,which doesnot involve the real data
exchangebetweentheprogramandtheRegistry. S y�u are
“set” operations,which are consideredas output as op-
posedto input. ctz�u are“query” operationswhichactually
input datafrom theRegistry to theprogram.Therest Se{ u
consistof otherregistryoperationswhichareof no interest
to this project.Although“open”, “close” and“set” opera-
tionssometimeshave securityimpacton thesystem,they
arebeyondthescopeof thiswork becauseweareonly con-
cernedaboutthesecurityrelevancy of the“input”. For the
“set” operation,if the outputfrom this operationis never
usedasan input, the involved registry key is not security
relevant; if the registry is usedasan input somewhere,it
will beunderthecategoryof “input”, andwill beanalyzed
in our approach.Therefore,in this project,only the reg-
istry keysinvolvedin a“query” operationwill bethetarget
of oursecurityrelevancy analysis.

7

Basedon the Registry usageinformationwe have col-
lected,experimentalanalysisusingthetechniquediscussed
in section2 wasconductedon about50 registry keys, 21
of which werefoundsecurityrelevantfor variousreasons.
Amongthosesecurityrelevantregistrykeys,11areworld-
writable, which meansif the programdoesnot perform
appropriatecheckson the thoseinputs, an unprivileged
usercould be ableto causesecuritybreachesby modify-
ing thoseregistry keys. The rest of this sectionpresents
partof theresultsobtainedfrom theanalyses.

Oneof theinterestingkeys is ‘‘HKLM | Software | Microsoft | Windows
NT | CV | Type 1 Installer | Type 1 Fonts’’

1. Fromthenameof thereg-
istry key, it seemsthatthis key containsinformationabout
fonts,whichareunlikely to causeaserioussecuritybreach
evenif somebodycantamperwith it. This is probablywhy
thekey is notprotected.However, theanalysisrevealsthat
a delete actionon files specifiedby this value. There-
fore, if somebodymakesthe registry key point to an im-
portantfile, thisactionwill seriouslyaffect thesystem.

HKLM | Software | Microsoft | Windows NT | CV | ProfileList | (sid) (sid is not a
registry key name;it is a user’s securityID andis userde-
pendent)registry key containsa ProfileImagePath
value, which is considereda directory nameand will be
appendedwith a string to form a file name. In a module
executedin privilegedcontext, this generatedfile nameis
passedontoadelete action,i.e. thefile representedby
this namewill be deleted. If somebodycan modify this
value,suchasmakingit point to otherpeople’s profile di-
rectory, theexecutionof this modulewill actuallydeletea
undesiredfile, thusbreakingsystemintegrity.

The sameregistry key andsamevalueareusedto set
theuser’s severalenvironmentvariables.Consideringthat
many applicationsmaydependon thoseenvironmentvari-
ables,acorruptionof theirvalueswill leadto anundesired
or, evenworse,unsecuredconsequence.

HKLM | Software | Microsoft | Windows NT | CV | Winlogon registrykey contains
a PolicyHandler value. This value is treatedas the
nameof a dynamic link library (dll) and a procedure
nameaswell. The dll nameis usedto load the corre-
spondingdynamic link library into the memory, and the
procedurenameis usedto find the correspondingproce-
durefrom theloadedlibrary to beinvokedby theprogram.
Thus, this value actually points to a pieceof code,and
compromisingof this valuewill lead to the executionof
anarbitrarycodeby theWinlogonmodule,which runsas
a privilegedprocess.Fortunately, this registry key is pro-
tectedin thedefaultconfiguration.

HKLM | Software | Microsoft | NetDDE | Parameters | General registry key con-
tains a DebugPath registry value. This value contains

1For thesake of convenience,thefollowing descriptionusesHKLM to
representHKEY LOCAL MACHINE, andCV to representCurrentVer-
sion.

the nameof a log file. Our analysisresultdisclosesthat,
in oneof modules,the programconductsa write oper-
ation to the file specifiedby this registry value. A closer
look at the programrevealsthat the programmerhasnot
checkedwhethertheregistry valueis trustedor not before
going aheadto write to the specifiedfile. Consequently,
animplicit assumptionis madeby theprogrammeron the
registryvalue.If theregistryvalueis notprotected,amali-
cioususercancauseany file to beoverwrittenif thatmod-
ule is executedby a privilegeduser.

Knowing whatregistrykeys/valuesaresecurityrelevant
alongwith thepermissionsseton eachof theregistry key,
it takes just a simple query on the databaseto find out
all registry keys/valuesthatarebothsecurityrelevantand
writableto “Everyone”group.Basedontheresultwehave
collected,we have identified11 suchregistry keys/values,
4 of which are not documentedin any literaturethat we
areaware of. Theseresultshave beenacknowledgedby
MicrosoftCorporation.

As of the writing of this paper, only 50 registry keys
have beenanalyzedat the initial stageof theanalysis.We
believe thatwith ananalysisof all of theregistry keys the
numberof unprotectedsecurity-relevantregistry keys will
be far more than11. The resultsof this projectarecon-
sideredvery useful by Windows NT securitygroup, and
thusare incorporatedinto the secureconfigurationof the
WindowsNT.

4 Relatedwork

Severalbooks[17, 10] have beenpublishedaboutNT se-
curity, mostof which mentionthatsomeregistry keys that
shouldbe protectedare not protectedin the default con-
figurationMost of thesuggestionscomefrom analyseson
windowsNT operatingsystem,from specificationanddoc-
umentation,or purelyfrom experience.Oursanalysispro-
videsanotherperspective, which takes into consideration
thefinal versionof thesourcecode.Wethereforeavoid the
potentialproblemscausedby inaccurateor obsoletedocu-
mentation.

Staticanalysistechniquehaslong beenusedasa tech-
niqueto enhanceprogramsecurity. Althoughthesestudies
arevery similar in the way to deploy the technique,they
deploy thetechniqueto achievedifferentgoals.

BishopandDilgerstudiedoneclassof thetime-of-check-
to-time-of-use(TOCTTOU) flaws [1]. A TOCTTOU flaw
occurswhen an applicationchecksfor a particularchar-
acteristicof an objectandthentakessomeactionthatas-
sumesthecharacteristicstill holdswhenin factit doesnot.
This approachfocuseson a source-codebasedtechnique
for identifyingpatternsof codewhich couldhave this pro-
grammingconditionflaw.

8

Fink andLevitt employ application-slicingtechniqueto
testprivilegedapplications [5]. This staticanalysistech-
niqueis usedfor theprogramslicingaccordingto thecrite-
ria derivedfrom thespecification.OrbekandPalsberg [14]
have introducedtrust analysisfor high-order languages.
Trustanalysisencouragestheprogrammerto makeexplicit
the trustworthinessof data,andin returnit canguarantee
thatno mistakeswith respectto trustwill bemadeat run-
time. The similar staticanalysistechniqueis usedin this
paperto analyzethetrustworthinessof data.

Thedifferencebetweenourwork andthoseotherworks
thatusesstaticanalysistechniquein enhancingsystemse-
curity are the following: First of all, mostof thosetech-
niquesfocuson detectingsecurityviolation, whereasour
work focuseson pointingout thedependency relationship
betweeninputsandthe program’s critical actions. While
this dependency doesnot necessarilyindicatea security
vulnerability in the program,it revealsthataslong asthe
input is notprotected,or theinput is notcorrectlychecked,
a securityvulnerability is possible.This informationmay
not leadto thediscovery of a securityvulnerability, but it
indeedhelpsthetesterslook in theright placefor thepur-
poseof securitytesting;it alsohelpsthedevelopersmake
theright decisionaboutwhetheror not to put extra efforts
into validating an input. Secondly, sometechniquesre-
quire the modificationof sourcecode,suchasannotating
a sourcecode. With the annotationof the code,analysis
techniquecould collect more information from the code,
thusleadingto a morepowerful analysis.However, given
sucha largesystemastheWindows NT, it is infeasibleto
modify thesourcecodesbeforeanalysis.

Penetrationtesting[11, 15] is anotherway of discover-
ing whetheraninput is securityrelevantor not by demon-
stratingthat certaininputscould causesecuritybreaches.
In the casewherethe sourcecodeis not availablethis is
an effective approachbecauseall thatneedsto bedoneis
to comeup with a differentinput andfeedit to thesystem
to seewhetherthe systemsecuritywill be compromised?
Thedisadvantageof this approachis thatonehasto seea
securitybreachesto believe that an input is securityrele-
vant. If anexecutionpathis nevercovered,it is difficult to
determinewhethertheinput relatedto thatpathis security
relevant. In addition,devising a test caseitself could be
difficult.

5 Summary

We have arguedanddemonstratedthatknowing thesecu-
rity relevancy of inputsis importantto enhancingprogram
security. In addition,we have presenteda techniquethat
revealsthe securityrelevancy of an input. This technique
is basedon theinsight thatfinding whetheran input is se-

curity relevantis equivalentto findingthedependency rela-
tionshipbetweentheinputandany securitycritical action.

We have alsoconductedexperimentalanalyseson the
Windows NT 4.0 sourcecode.Theresultsnot only reveal
thesecurityrelevancy informationof registry keys/values,
but alsopoint out several vulnerabilitiesin the configura-
tion of the Registry. Theseresultsdemonstratethat secu-
rity relevancy analysisis a useful techniquein enhancing
programsecurityby pointingout theexistingandpotential
vulnerabilityin theprograms.

6 Acknowledgement

TheauthorsareindebtedtoPeterBrundrett,MargaretJohn-
son,Kirk Solukandotherpeoplein theWindowsNT Secu-
rity groupfor their insightful advicethroughoutthewhole
project. We arealsogratefulto Microsoft Corporationfor
providinguswith thechanceto conductexperimentalanal-
yseson theWindows NT 4.0 sourcecode. We alsothank
theanonymousreviewersfor their usefulcomments.

References
[1] M. BishopandM. Dilger. Checkingfor raceconditionsin

file acesses.TheUSENIXAssociationComputingSystems,
9(2):131–151,Spring1996.

[2] J. Choi, M. Burke, P. Carini. Efficient flow-sensitive inter-
proceduralcomputationof pointer-inducedaliasesandside
effects. In ACM-20thPoPL, 1993.

[3] W. Chen and W. Berry. Windows NT Registry Guide.
Addison-Wesley DevelopersPress,1997.

[4] W. Du andA. Mathur. Vulnerabilitytestingof softwaresys-
temusingfault injection. Technicalreport,PurdueUniver-
sity, 1998.

[5] G. Fink andK. Levitt. Property-basedtestingof privileged
programs.In Proceedingsof the10thAnnualComputerSe-
curity ApplicationsConference; Orlando, FL, USA; 1994
Dec5-9, 1994.

[6] R. Ghiya and L. J. Hendren. Putting pointer analysisto
work. In POPL, SanDiego,CA USA, 1998.

[7] D. Jackson. Aspect: Detectingbugswith abstractdepen-
dences. ACM Transactionson Software Engineeringand
Methodology, 4(2):109–145,April 1995.

[8] D. Jacksonand E. J. Rollins. A new model of program
dependencesfor reverseengineering. In SIGSOFT, New
Orleans,LA, USA, 1994.

[9] R. Kemmerer. Security, computer. In Encyclopediaof Soft-
ware Engineering. 1994.

[10] N. LambertandM. Patel. PCWEEKWindowsNT Security:
SystemAdministrator’s Guide. Zif f-Davis Press,1997.

9

[11] R. R. Linde. Operatingsystempenetration.In AFIPSNa-
tional ComputerConference, pagespp.361–368,1975.

[12] A. Diwan,K. S.McKinley andJ.B. Moss.Type-basedalias
analysis.In SIGPLAN, Montreal,Canada,1998.

[13] J.Ferrante,K. J.OttensteinandJ.D. Warren.Theprogram
dependencegraphandits usein optimization.ACM Trans-
actionsonProgrammingLanguagesandSystems, 9(3),July
1987.

[14] J.Palsberg, andP. Orbek. Trust in the } -calculus.In Proc.
2nd International Symposiumon Static Analysis, pages
314–329,September1995.

[15] C. Pfleeger,S.PfleegerandM. Theofanos.A methodology
for penetrationtesting.Computers andSecurity, 8(7):613–
620,1989.

[16] S.Horwitz, T. RepsandD. Binkley. Interproceduralslicing
usingdependencegraphs.ACM Transactionson Program-
mingLanguagesandSystems, 12(1):26–60,January1990.

[17] C. Rutstein. Guide to WindowsNT Security: A Practical
Guide to SecuringWindows NT Servers & Workstations.
McGraw-Hill, 1997.

[18] A. Aho, R. SethiandJ. D. Ulman. Compilers Principles,
Techniques,and Tools. Addison-Wesley PublishingCom-
pany, 1986.

[19] M. Shapiro and S. Horwitz. Fast and accurateflow-
insensitivepoints-toanalysis.In POPL, Paris,France,1997.

[20] B. Steensgaard.Points-toanalysisin almostlineartime. In
POPL, St.Petersburg FLA, 1996.

10

