
PINPOINT: Efficient and Effective Resource
Isolation for Mobile Security and Privacy

Paul Ratazzi∗†, Ashok Bommisetti†, Nian Ji† and Wenliang Du†
∗Information Directorate, Air Force Research Laboratory, Rome, NY

†Dept. of Electrical Engineering & Computer Science, Syracuse University, Syracuse, NY

Abstract—Virtualization is frequently used to isolate untrusted
processes and control their access to sensitive resources. How-
ever, isolation usually carries a price in terms of less resource
sharing and reduced inter-process communication. In an open
architecture such as Android, this price and its impact on
performance, usability, and transparency must be carefully con-
sidered. Although previous efforts in developing general-purpose
isolation solutions have shown that some of these negative side-
effects can be mitigated, doing so involves overcoming significant
design challenges by incorporating numerous additional platform
complexities not directly related to improved security. Thus, the
general purpose solutions become inefficient and burdensome if
the end-user has only specific security goals.

In this paper, we present PINPOINT, a resource isolation
strategy that forgoes general-purpose solutions in favor of a
“building block” approach that addresses specific end-user secu-
rity goals. PINPOINT embodies the concept of Linux Namespace
lightweight isolation, but does so in the Android Framework by
guiding the security designer towards isolation points that are
contextually close to the resource(s) that need to be isolated.
This strategy allows the rest of the Framework to function fully as
intended, transparently. We demonstrate our strategy with a case
study on Android System Services, and show four applications of
PINPOINTed system services functioning with unmodified market
apps. Our evaluation results show that practical security and
privacy advantages can be gained using our approach, without
inducing the problematic side-effects that other general-purpose
designs must address.

I. INTRODUCTION

Over the decade since its introduction, Android has been
a stunning success, eclipsing the market share of every other
mobile operating system by a huge margin, and now ship-
ping on well over 1 billion new devices annually [16]. This
growth, however, has not been without its pains. By one recent
measure, 97% of today’s mobile malware targets the Android
operating system [13]. Commensurate with this trend, end-
users are increasingly concerned about privacy and protecting
personal information. Unsurprisingly though, the typical end-
user possesses little or none of the specialized technical exper-
tise necessary to fully understand the security implications of
installing apps, granting permissions, entering sensitive data,
etc. As a result, most users have a hard time using currently-
available security indicators to identify which apps they should
trust, and which they should not [6]. Faced with this lack of
knowledge and confusing choices, many become complacent
or careless in performing what amounts to critical system
administration tasks.

Approved for public release; distribution unlimited (88ABW-2015-0958-
20150316).

Even though successive releases of Android continue to
enhance and improve security [2], balancing security with
usability has proven difficult. For example, Android 4.3’s
App Ops feature for selective permission granting was hidden
from end-users in version 4.4.2, apparently due to usability
concerns. Because developers cannot anticipate the endless
security configurations App Ops makes possible, many apps
failed to function or simply crashed when their permissions
were selectively revoked by the user [10]. Although this
functionality is still obtainable using third-party apps, most
uninformed users are unlikely to make the additional effort
of activating and understanding these features at the level of
technical detail necessary. As a result, even the latest releases
of Android 5.0 do little to help end-users protect themselves
from software they choose to install.

While many users may not fully understand the technical
aspects of security architectures, permissions, access control
mechanisms, or measuring trust, most have no trouble articulat-
ing which high level objects, resources or capabilities they are
most concerned with. For example, it’s common to find users
worried about how some apps might misuse location, sensitive
data such as personal contacts, or personally-identifiable infor-
mation (PII) like phone number or International Mobile Station
Equipment Identity (IMEI). In response to this, numerous
solutions to address these concerns have been proposed, and
many of these involve some form of virtualization combined
with access control to isolate untrusted applications.

Although every approach to isolation has its own unique
strengths and weaknesses, all include trade-offs in terms of
sharing and communication. In Android’s open architecture,
where resource sharing and inter-process communication (IPC)
are fundamental to the platform’s basic operation and usability,
careful attention must be paid to fully understanding how
a particular isolation boundary impacts the system’s func-
tionality and performance. If this trade-off is not considered
at the outset of a design, significant performance, usability,
and functionality issues can arise. Countering these negative
side-effects requires designers to overcome challenging system
problems, typically resulting in substantial modifications to the
operating system, and significant second-order complexities
not directly related to the initial security goals. These problems
are especially prevalent in general-purpose designs that attempt
to provide isolation containers for entire apps or virtual phones,
without the benefit of a priori knowledge of specific threat(s)
or end-user security goals.

In this paper, we present PINPOINT, a resource isolation
strategy that forgoes general-purpose solutions in favor of a
“building block” approach that addresses specific end-user se-
curity goals. By addressing stated security goals and no more,

1

Shared
Resources
C, D, E, F

Dependent
Resource G

App 1 App 2

Applications

Kernel

Framework
Resources

R
equest A

, C

R
et

ur
n

A
, C

R
equest A

, C

R
et

ur
n

A
',

C1

2

3

4

PINPOINT Hypovisor

Virtualized Resources
A, A', B, B'

5

Fig. 1. PINPOINT concept showing minimized isolation to address security
goals, with maximized sharing of system objects.

PINPOINT yields an effective result using only the minimum
amount of isolation. This helps minimize or eliminate the
negative side-effects that are sure to emerge when large parts
of Android’s open architecture are subject to isolation. The
PINPOINT concept and its scope of applicability in Android
are introduced in Section II. Section III describes a case
study whereby we implemented the PINPOINT concept as
a lightweight hypovisor1 within Android’s Context Manager
in order to make possible isolation of any system service.
Sections IV and V contain the implementation details and
evaluation results of isolating four Android system services
using this hypovisor. We summarize related work in Section
VI, future directions in Section VII, and conclude the paper in
Section VIII.

II. MOTIVATIONS & CONCEPT

Our idea for PINPOINT originated from the realization
that much of the time and effort devoted to implementing
current isolation architectures (summarized in Section VI) is
spent on overcoming the negative side-effects on the Android
system introduced by the chosen point of isolation. Most times,
eliminating or mitigating these side effects requires challeng-
ing and far-reaching operating system modifications. Even
when these challenges are met, we found ourselves unsure
whether end-users would tolerate the remaining reductions in
functionality, convenience, and performance. Furthermore, we
thought it to be unlikely that these complex and less-usable
designs would be adopted by Google or original equipment
manufacturers (OEM), since Android user experience and its
open architecture are paramount.

Nonetheless, we were intrigued by these designs’ use of
Linux Namespace lightweight isolation and were inspired to
further explore the possibilities. Our conclusion is that for
certain security scenarios, lightweight isolation using Linux
Namespaces has many interesting advantages over heavy-
weight forms of isolation, such as virtual machines. Through
a systematic analysis of Linux Namespaces, we identified six

1We use the term hypovisor to indicate the relatively small scope of authority
compared with supervisors (i.e., kernels) that have authority over an entire
userspace, and type I (native) hypervisors that have authority over one or
more guest operating systems. The term has been used similarly in [23].

key traits that have value to our goals of providing effective
yet efficient security. These traits are summarized in Table I.

On the other hand, we believe that the authors’ direct
use of Linux Namespaces as the point of isolation underlying
the Android Framework breaks several basic assumptions of
Android’s open design. Hence, this choice of kernel-level
isolation is the root cause of many of the complex system
problems and negative side-effects they encountered. Although
choosing an existing low-level mechanism as the foundation
for isolation enabled their general-purpose isolation containers,
there are many times when the cost of such comprehensive
isolation is not worth it, especially when the end-user’s security
goals are relatively simple. For example, preventing a single
untrusted app from accessing the device’s IMEI. Our work
fills this gap by providing an approach that moves the point
of isolation as close as possible to the object(s) needing
isolation, based on the stated security goals. In essence, we
strive to realize the benefits of lightweight isolation in Android
by identifying strategic locations where Linux Namespace
concepts can be implemented. As we will show, the result
is a simpler implementation free of problems and far-flung
platform side-effects. When specific security goals are taken
into account, the result can be just as effective as general-
purpose solutions.

Figure 1 depicts our general, high-level concept. Given a
specific security goal that relates to App 2’s interaction with
objects A and B, our goal is to place the point of isolation (i.e.,
the hypovisor) at a strategic location that enables virtualization
of only these objects such that App 1 and App 2 see different
instances of each, while everything else about the system is
common and unmodified. When trusted App 1 requests A and
C (¬), the hypovisor returns instances of A and C (). On the
other hand, when untrusted App 2 presents the same request
(®), the hypovisor returns instances of A′ and C (¯). Since
C and other resources D, E, F and G are not related to the
security goal, they are not virtualized, and either app may share
them. Thus, the isolation size is minimized to just A according
to the threat, and resources that can and must be shared for
transparent operation remain as shared as intended. Moreover,
Framework complexities that would arise from utilizing kernel-
level isolation mechanisms are completely avoided.

A non-trivial challenge that can sometimes arise when
PINPOINTing certain resources is when there are other op-
erating system components or resources, shown in Figure 1
as resource G, that depend on interactions (°) with A or B
and are unaware that now multiple virtual copies of them
exist. In these cases, G must also be modified to account
for this. Since this represents additional complexity, one must
always consider whether this extra complexity will negate the
lightweight benefits of the PINPOINT approach. If A is a large
and complex object that has many dependencies throughout
the system, it’s likely that creating virtual copies of A will
break many things that assume there is only one A. In cases
like these, it may be better to use a coarser isolation such as
those discussed in Section VI. On the other hand, if A has
few dependencies, then the modifications to G (if in fact there
are any) will be straightforward. Two of our four case study
applications described in Section IV exhibit this characteristic,
and these details will be included there.

Another challenge that can arise is when the same sensitive

2

TABLE I. SUMMARY OF NAMESPACE TRAITS AND THEIR VALUE TO ANDROID SECURITY

Namespace Trait Value to Android Security

Fine-grained isolation of specific resources Tailored isolation environment for each application, addressing specific threat and/or user goal

Resource-centric isolation Match user perspective on security; increase usability; simplicity

High efficiency Negligible performance impact; design simplicity

Share-by-default Preserve open system design; avoid breaking things unrelated to the isolated resource

Transparent to host and apps System retains control over apps; apps run unmodified

Small footprint (files, memory) Little impact on performance & resources; OTA updates

information can be revealed by more than one object. For
example, let’s say both A and C are capable of returning a
piece of sensitive data such as IMEI. It is important that all of
these paths be identified, and either blocked or added to the
isolation boundary. Our case study encountered one example
of this which will be described in Section IV.

When designing and implementing the hypovisor, care
must be taken to ensure that the system does not allow any
form of delegation of the hypovisor’s duties. For example, if
the hypovisor is responsible for dispatching a capability, there
must be no other ways for an entity to acquire that capability.
Any other ways must be blocked in order to maintain the
integrity of the isolation. Section III-C contains a specific
example of this and how we addressed it using mandatory
access controls (MAC).

Identifying the best place to instantiate the hypovisor is key
to achieving a balance between flexibility and specificity. In
our experiences thus far, we have found that the best isolation
points are places in the Framework where classes of objects
and/or their capabilities are managed or dispatched to apps.
In Android, many resources are abstracted as system services,
and their capabilities are dispatched by ContextManager (i.e.,
the native servicemanager process). As such, our initial
work has focused on PINPOINTing system services, and
our accomplishments thus far in this regard are described in
Sections III and IV. However, we see future opportunities for
implementing complementary hypovisors in key places other
than system services, including:

1) High level data objects, such as ContentProvider. These
may leak personal data [25].

2) Binder and Intents. These may be used as a path for a
malicious app to attack or trick other apps [15].

3) Camera, audio. These have obvious privacy implications
if miused, e.g., [30].

4) Clipboard. Can be used as an attack channel [35].
5) Accessibility subsystem. May be malicious toward critical

apps [20].
6) Notifications. Potential misuse [34].

III. CASE STUDY ON ANDROID SYSTEM SERVICE

In order to evaluate the PINPOINT concept, we undertook
a case study using Android’s system services framework in
both Android 4.4.4 (KitKat) and 5.1 (Lollipop) on a Nexus 5
device. Since a wide variety of key resources are abstracted
as system services, this choice illustrates that if the point of
isolation is wisely chosen, a single PINPOINT hypovisor can
be used for a variety of situations. To illustrate this point, we
first provide some background on system services.

A. Android System Services

Interactions between Android applications and system ser-
vices is enabled by the Binder and Service Manager subsys-
tems. Binder relies on capability-based security and imple-
ments a “call by invitation” mechanism to allow communi-
cation among apps, system services and Service Manager. As
such, before an app is allowed to call a service, it must receive
an invitation in the form of an IBinder token.

Invitations are first created when services are registered
with the central directory of services known as Context Man-
ager. By design, there can be only one Context Manager, a des-
ignation granted exclusively to the native servicemanager
process early during the boot process, by way of its privileged
relationship with Binder.2 Once Service Manager becomes
Context Manager, System Server registers core system services
using the addService() method of Service Manager. The
result of this registration process is that Service Manager
now holds an invitation (IBinder) for every system service
running on the device. When an app needs an invitation for
one of these services, it contacts Context Manager. Context
Manager then passes this invitation to the app, and upon seeing
this transaction, Binder updates its protected list of invitations
held by the app. Invitations cannot be forged because any
forged invitation will not have a corresponding entry in the
protected list maintained by Binder.

All requests for system services, even those made by sys-
tem components, must go through Context Manager. Thanks to
Binder, the native servicemanager process has access to
the trusted identity of the caller, in the form of the Linux uid,
which corresponds to the Android userId and appId. This
makes servicemanager an excellent place to implement
a system service hypovisor that can regulate applications’
interactions with virtualized system services. In this way, this
hypovisor represents the PINPOINT “sweet spot” of being
specific enough to limit inter-dependencies with other parts
of the system, but flexible enough to apply to a large class
of objects and the mechanism whereby their capabilities are
dispatched.

B. PINPOINTing System Services

We present our design in three parts as shown in Figure 2,
beginning with the central enabling core, the system service
hypovisor, labeled ¬. The hypovisor exists within the native
servicemanager process, where all service lookups are
processed and capabilities dispatched. Lookup requests by

2In fact, in the Android source (frameworks/native/cmds/
servicemanager/binder.h), Service Manager is described as “The One
Magic Object”.

3

System Service
Hypovisor

servicemanager

Policy
/etc/ns/nspolicy

<uid, service, namespace>

Service A

Service A'

Service A''

Service B

Service B'

Service B''

Application
getSystemService()

1

2

Request (service, uid)
3

Fig. 2. Design overview showing the service hypovisor and policy definition
¬, virtual service plug-ins , and application ®.

apps (®) arrive in the form of a Binder transaction con-
taining the name of the service requested (e.g., location)
and are identified by the app’s Linux uid and pid. This
identification can be trusted because it is applied by the
kernel in the Binder driver. By consulting with a secure
policy file, servicemanager uses the uid to determine
if the app has been assigned to an isolated namespace for the
requested service. This policy is defined by a set of 3-tuples
of < uid, service name, namespace >, where uid corre-
sponds to the appId of the app assigned to service name
namespace namespace. If the uid appears in the policy, then
servicemanager replies with the handle of the virtualized
service instance corresponding to the assigned namespace. If
not, then its reply contains the handle of the global instance,
as it would normally. The policy may specify more than one
service name and namespace for a given uid to contain
apps that present a multi-dimensional threat. Since handle
lookup requests can occur once or many times during the
lifecyle of an app, the design also supports dynamic policy
changes.

Currently, virtual services shown in Figure 2 at (e.g., A′,
A′′, B′ and B′′) are preconfigured at build time and started
by System Server along with their global counterparts, A and
B. Typically, the virtual services have interfaces identical to
the global service, but differ in terms of what they do. For
example, the global location service returns the actual current
location, while the other location services return noisy, random
or preset locations via an identical public interface.

C. Security Discussion

In our PINPOINT case study, we introduce a lightweight
services hypovisor into the native portion of Service Manager.
The purpose of the hypovisor is to isolate particular apps from
various services as specified by the user’s policy. This security
discussion is included to provide a sense of the strength of this
isolation. We begin with Binder, since most of the isolation
strength derives from Binder’s security model.

Every process using Binder, including system service
threads within system_server has a protected representa-
tion in the kernel as an instance of a binder_proc structure.
Each remote capability that a process holds is represented
by one or more binder_node structures attached to the
binder_proc instance. These nodes are known only to the
kernel module and are used to determine the recipient of the
communication, based on a handle provided from userspace.
Handles are local references and mappings from handles to
nodes are also stored securely in binder_proc. Hence,
only the kernel knows how to map a particular handle to the
corresponding node.

When System Server registers system services with Context
Manager using addService(), the kernel adds the service’s
binder_node to servicemanager’s binder_proc.
Context Manager also allocates a local index to each registered
service. When an app asks Context Manager for a handle
to a service, servicemanager returns the handle and the
kernel binder driver adds the service’s binder_node to the
app’s binder_proc. Apps can also send handles they posses
to other apps via Intent. Upon seeing the handle within the
transaction, the kernel driver adds the node to the receiver’s
binder_proc so that the recipient is now a valid holder of
that capability. This is known as a binder transfer.

With our addition of a services hypovisor, we do not change
anything about how handles are looked up and provided by
Context Manager or how capabilities are propagated by way
of the kernel binder driver. All apps, native and Java alike, are
subject to the intervention of our hypovisor when requesting
service handles. Any vulnerabilities in our prototype regarding
how service handles are obtained by apps, or vulnerabilities in
the binder driver itself, are also vulnerabilities of stock Android
and thus outside the scope of this discussion.

What our design does change is which handles are given
out. In PINPOINTing services, we have introduced the notion
of remote service handles that should be unobtainable by cer-
tain apps. This is different than stock Android where Context
Manager acts as an open directory service, and obtaining
a service handle via binder transfer from another app does
not represent a capability leak. In our design, this rather
unusual case of app-to-app transfers of system service handles
must be prevented so that our hypovisor cannot be bypassed.
Our prototype achieves this blocking in the kernel binder
driver’s binder_transaction() function, through an ex-
tension of existing SEAndroid MAC. Specifically, we extend
the security_binder_transfer_binder() hook by
also passing the task_struct of the binder_ref
(for references) or binder_node (for handles) being
transferred, so that the hook function can extract the
owner’s security identifier (SID) and decide if the trans-
fer should be allowed. Finally, we modified the type
enforcement rules associated with untrusted_app to
disallow transfer of u:r:system_server:s0 binders
between u:r:untrusted_app:s0 apps. By adding a
neverallow rule, we further ensure at build-time that there
are no allow rules elsewhere in the policy that are inconsis-
tent with this. This effectively blocks any attempted bypass of
our hypovisor, while allowing all other normal binder transfers
among apps and the system to proceed.

4

D. Policy Configuration

As explained in Section III-B, the hypovisor within
servicemanager consults a secure policy file to determine
if the requester has been assigned to any virtual services. This
policy can be created and updated by a variety of means:
via the system Settings app, via launcher configuration, from
hard-coded (i.e., build-time) mandatory policy, via over-the-
air (OTA) updates in a mobile device management (MDM)
architecture, etc. In our prototype, we included a default policy
file in the system build, and updated it via adb and a custom
launcher application. In terms of user-friendliness, our custom
launcher enables the end-user to drag-and-drop app icons to
and from different containers, each representing a specific
PINPOINT configuration. For example, a particular container
might be configured to protect two sensitive resources, location
and IMEI, from the apps placed within it. When an app is
dropped into this container, the launcher app automatically
updates the policy with the uid and service names corre-
sponding to the protected resources. This update takes effect
immediately since servicemanager consults the policy
each time the app makes a request.

E. Limitations

Currently, our case study prototype requires all global and
virtual system services to running whether or not any apps are
assigned to them. In terms of overhead, this fact manifests
itself as additional memory use by the system_server
process. Although we show in Section V-A that this overhead
is small, we feel that this aspect of the design could be made
more elegant and efficient in the future.

It is also important to note that our design does not provide
full security domain isolation in the sense that it does not
prevent apps from passing high-level sensitive information to
other apps.

IV. APPLICATIONS

In this section, we describe the specifics of our experience
with PINPOINTing four common system services, based on
specific security goals. All implementations were tested in An-
droid 4.4.4 (KitKat) and then ported to Android 5.1 (Lollipop)
on a Nexus 5 device.

1) LocationManagerService: A widely used location-
finding service that binds with a number of abstract
provider mechanisms. Security goal is to prevent un-
trusted apps from obtaining accurate location information
[8]. See Section IV-A.

2) IPhoneSubInfo: A “hidden” service for accessing
phone subscriber information, called only by other system
services such as TelephonyManager. Security goal
is to prevent untrusted apps from accessing sensitive
subscriber information [12]. See Section IV-B.

3) InputMethodManagerService: A service that ar-
bitrates communications between apps and a variety of
installed input methods, and has complex interactions
with other system objects including WindowManager.
Security goal is to protect critical apps from falling victim
to malicious input methods [27]. See Section IV-C.

4) SensorService: A native service that interfaces di-
rectly with hardware devices. Security goal is to prevent

untrusted apps from obtaining accurate sensor data to steal
data [33] [3], eavesdrop [24], or track movement/location
[22]. See Section IV-D.

By and large, porting from 4.4.4 to 5.1 was straightforward.
In one case however (IPhoneSubInfo), changes to the
underlying service architecture required us to slightly redesign
and expand the isolation boundary in order to continue to meet
the security goal. This will be discussed below.

A. Location Service

Although location services provide great convenience and
enable new functionality for users, they have significant se-
curity and privacy implications if misused. While some apps
require accurate location to fulfill their main purpose, others
utilize location information only to enrich their primary func-
tion. For example, a social networking app’s primary function
is to interact with friends via photo and status updates. These
apps usually enrich this interaction by attaching location to
these updates. If the end-user wishes to prevent only this one
app from knowing location, and still enjoy its primary friend-
interaction functions, she must rely on the trustworthiness of
the app’s own settings and controls. This is because current
location privacy support from Android itself is too coarse-
grained to achieve the user’s goal of isolating only this one
aspect of this one app. If the app is poorly-written or malicious
in its handling of location data, privacy leaks may occur despite
the user’s best efforts to prevent them. By PINPOINTing the
location service resource, and placing only this app in the
new location namespace, we can transparently and effectively
address this user’s security goal without inconveniencing her
or introducing the complex system modifications and overhead
of general-purpose solutions.

To demonstrate this, we PINPOINTed the location service
to provide three separate location namespaces for assigning
apps, each with different semantics but identical interfaces. The
global location namespace functions normally and is used with
trusted apps. A fuzzy location namespace provides reduced-
accuracy location information by adding noise to location
objects. Finally, a random location namespace returns totally
random location data to assigned apps.

We implemented these two additional location
namespaces by adding two additional system services,
LocationManagerService_1 (LMS′) and
LocationManagerService_2 (LMS′′), as shown
in Figure 3. These present the exact same API as the
stock service, and thus are indistinguishable from the app’s
perspective.

Each location service binds to the standard set of common
location providers such as GpsLocationProvider that
interfaces through native code to actual hardware. However, as
alluded to in Section II, these providers represent dependent
resources (G in Figure 1) that are designed based on an
assumption of only one location service. Thus, these must also
be modified slightly to make callbacks to all three location
services. Otherwise, LMS′ and LMS′′ will never get location
update callbacks since the providers are not otherwise aware
of the virtualized services.

5

Shared
Resources

App 1 App 2

Applications

Kernel / Hardware

System Service Hypovisor
Framework
Resources

R
equest LM

S

R
et

ur
n

LM
S

R
equest LM

S

R
et

ur
n

L
M

S
'

1

2

3

4

LMS
LMS'
LMS''

Other
Virtualized
Services

Location Providers 5

Fig. 3. PINPOINTing LocationManagerService.

(a) RunKeeper running in lo-
cation namespace with added
noise.

(b) RunKeeper running in ran-
dom location namespace.

Fig. 4. RunKeeper fitness app running in alternate location namespaces.

The semantics of the additional services are as fol-
lows: LocationManagerService_1 replaces location up-
dates returned from the providers with random data, while
LocationManagerService_2 adds random offsets to the
same. Since each namespace is indistinguishable from the
global location namespace in, apps in alternate namespaces
behave normally and process the virtual location data as if it
were real.

Figure 4 shows screenshots of a popular fitness app,
RunKeeper, that we used to demonstrate the isolated location
namespaces. Figure 4(a) shows points collected during an
activity while the app’s uid is assigned the noisy location
namespace. Figure 4(b) shows the same app while assigned
to the random location namespace. Note that in both cases,
the app’s display indicates “Good GPS”, demonstrating the
complete transparency of these namespaces to this unmodified
app.

B. Subscriber Information Service

iphonesubinfo is a hidden service used exclusively
by TelephonyManager to service app requests for sub-

scriber information such as IMEI, mobile equipment identi-
fier (MEID), electronic serial number (ESN), phone number,
voicemail number, private/public user identities, home network
name, etc. Several of these values have significant security
and privacy implications and are known to be malware targets
[12]. Although protected by Android’s READ_PHONE_STATE
permission, misusing or malicious apps can easily legitimize
declaration of this permission since it is necessary for a
number of common features, such as those provided by
PhoneStateListener.

To isolate an untrusted app from or more of the data
values returned by iphonesubinfo, we PINPOINTed
this system service. We enabled the non-global namespace
by modifying the internal telephony ProxyController
to instantiate PhoneSubInfoController_1 as well
as PhoneSubInfoController. The former starts
iphonesubinfo_1 service with an API identical to
iphonesubinfo, started by the latter. When an untrusted
app is assigned to the alternate iphonesubinfo namespace,
it can obtain the same instance of TelephonyManager
as trusted apps can, but any subsequent calls to
getDeviceId(), getLine1Number(), etc. by the
untrusted app are processed by iphonesubinfo_1.
iphonesubinfo_1 returns different values for sensitive
subscriber parameters.

When porting this design to Android 5.1, we found
that the underlying structure of the telephony service
had changed significantly. In particular, the ITelephony
(phone service) interface was enhanced to include its
own getDeviceId() call, and TelephonyManager was
modified to obtain the device ID from this interface rather
than IPhoneSubInfo as was the case in 4.4.4. Thus,
apps assigned to iphonesubinfo_1 would still get the
device’s real IMEI because our isolation did not include
every object that could return that sensitive data. This ne-
cessitates an expansion of the isolation boundary to include
both iphonesubinfo and phone services, and is a good
example of needing to identify all possible means of access to
the sensitive resource related to the end security goal.

To demonstrate effectiveness of our PINPOINTed sub-
scriber information service, we obtained the popular app
Your SIMCard. Figure 5 shows this app running unmod-
ified in both global (Figure 5(a)) and fake (Figure 5(b))
iphonesubinfo/phone namespaces. In the global names-
pace, the actual, valid IMEI of our test device is returned, while
a fake IMEI is returned to the app after it has been assigned
to the alternate iphonesubinfo_1/phone namespace by
adding its uid to the nspolicy file.

C. Input Method Service

Input Method Editors (IME) are screen controls that enable
users to enter text. Currently, there are about 900 third-party
keyboard apps published on the Google Play store, with at
least 10 having more than one million downloads. Most require
INTERNET or WRITE_EXTERNAL_STORAGE permissions,
which enable the IME to log or transmit any data that’s typed
in. In an empirical study of keyboard apps, it was found that
more than 61% require three or more permissions giving them
the ability to exploit keylogging and man-in-the-middle attack

6

(a) Your SIMCard
running in global
iphonesubinfo/phone
namespace.

(b) Your SIMCard
running in alternate
iphonesubinfo/phone
namespace.

Fig. 5. Your SIMCard running in different iphonesubinfo/phone
namespaces.

vectors [27]. To illustrate this threat, consider sensitive apps
like banking or purchasing apps, which often require users to
enter bank card numbers or passwords for authentication. All
entry of these values is done via the current IME, selected by
the user. If the IME is malicious, an attacker can easily collect
these values [26].

The overall working architecture of IMEs is shown
in Figure 6. In every application’s context space, there
exists an instance of InputMethodManager (path 1)
which is used to communicate with a system-wide service,
InputMethodManagerService. When an input field
comes into focus, the app’s InputMethodManager invokes
this system service (paths 4 and 5) after obtaining its handle
via Service Manager (paths 2 and 3). With this handle, the app
may obtain a unique InputConnection Binder token from
InputMethodManagerService for making direct calls to
the IME keyboard app. Using this token, the system is able
to secure and control interactions among multiple applications
and multiple IMEs [18].

Currently, apps do not have control over the IME se-
lected by the user. Instead, the system will bring up the
user’s selected IME whenever any text field comes into fo-
cus. While Google has recognized the security and privacy
issues associated with this design [1], the current measures
rely on the user to make wise choices regarding IME in-
stallation and selection. Using session information attached
to each window instance by WindowManager, the In-
put Method Framework (IMF) ensures that only the ac-
tive activity can get access to the data being entered. Fur-
thermore, InputMethodManagerService ensures that
all messages received from running IME applications are
from the current user. Importantly, this includes messages
for changing IMEs (i.e., messages resulting from calls
to InputMethodManager.setInputMethod()), which
are guarded with the token to ensure that they originated from
explicit user selection. However, none of these protections will
help if the IME itself is malicious or compromised and the user
selects it.

By PINPOINTing the InputMethodManagerService,
we are able to provide a mechanism to shield sensitive apps
from falling victim to a malicious IME selected by a
tricked user. Figure 7 shows the PINPOINT concept applied
to input methods. This is accomplished by using the
our PINPOINT service hypovisor prototype to virtualize

Fig. 6. Input method framework architecture.

Other
Shared

Resources

App 1 App 2

Applications

Kernel

System Service HypovisorFramework
Resources

R
equest IM

M
S

R
et

ur
n

IM
M

S

R
equest IM

M
S

R
et

ur
n

IM
M

S
'

1

2

3

4

IMMS'
KB1 KB2

WMS 5
Other Virtualized

Services

IMMS
KB1 KB2 KB3

Fig. 7. PINPOINTing InputMethodManagerService.

InputMethodManagerService. In the figure, IMMS
corresponds to the “real” InputMethodManagerService
(input_service), while IMMS′ is a second service
(input_service_1), with an identical interface and
features except for the fact that it holds only a subset of all
available IMEs.

As suggested in Section II, there are additional com-
plexities with virtualizing IMEs due to dependencies with
other objects in the system. Because of interactions with
WindowManager mentioned above, we needed to make
minor modifications to WindowManager, so that it can
be aware of the all the InputMethodManagerService
namespaces running and push updates about the current
activity to all of them. As with location service, this
situation corresponds to dependent resource G in Fig-
ure 1. To enable independent InputConnection from
each app’s InputMethodManager instance to each ser-
vice, we created a Java interface which all of the
InputMethodManagerService instances implemented.

A demonstration of our IME namespaces is shown in
Figure 8. Figure 8(a) depicts a non-critical app, EatStreet,
assigned to the global IME namespace, where any IME can
be used, including a representative untrusted IME, SwiftKey
(added from Google Play). Here, the Choose input method
dialog shows all installed input methods. In contrast, the
critical banking app of Figure 8(b) has been assigned to the
alternate IME namespace in order to protect its data from
possible malicious IMEs. Hence, the chooser only allows
selection of trusted IMEs, while SwiftKey is excluded as an
authorized IME for this app.

7

(a) Non-critical app running in
global IME namespace, showing
all input methods, including a 3rd

party (¬), as selection options.

(b) Critical banking app run-
ning in alternate IME namespace,
showing only built-in input meth-
ods as selection options.

Fig. 8. Non-critical and critical apps running in different IME namespaces.

D. Sensor Service

Modern mobile devices have a rich set of environmental
and motion sensors available to apps. Unfortunately, the An-
droid security architecture does not extend to most of these
sensors, making it all too easy for malware to utilize them
to compromise user data entry [33] [3], eavesdrop on voice
communications [24], track user movements, and infer location
[22]. By PINPOINTing SensorService, we enable the user
to take advantage of apps without needing to also trust their
handling of sensor data.

In the Android platform, apps may acquire sensor data
by getting an instance of SensorManager, which in turn
accesses raw sensor data via SensorService, a native
system service. SensorService’s threadLoop() col-
lects raw sensor data in a structured data buffer of type
sensor_event_t, which is then returned to the app via
its SensorManager’s SensorEventConnection. The
buffer structure contains raw sensor data for each of the
device’s sensors including acceleration, magnetic, orientation,
gyro, temperature, distance, light, pressure, and relative hu-
midity.

To PINPOINT sensor resources, we followed the same
general approach as with previous examples, by adding two
additional native SensorServices to the device, and regis-
tering them with Context Manager as sensorservice_1
and sensorservice_2. For demonstration purposes, we
hardcoded sensorservice_1 to overwrite the gyro, mag-
netic, and orientation structure members of the buffer struc-
ture with random data before it is returned to the app’s
SensorManager. Likewise, sensorservice_2 is hard-
coded to overwrite only the light structure member of the
structure with random values. Structure members containing
data from other sensors are passed through unmodified.

With three possible sensor service handles on the de-
vice, SensorManagers of apps assigned to one of the
two alternate sensor namespaces are always given handles
to sensorservice_1 or sensorservice_2, depending
on their assignment. To demonstrate the effectiveness of this,
we downloaded AndroSensor a popular Google Play Store
app, and ran it in each of the three sensor namespaces.
Figure 9 shows AndroSensor running in the global sensor
namespace, with all sensor traces steady, indicating a stable
physical environment. In contrast, Figures 10(a) and 10(b)

Fig. 9. AndroSensor running in global sensor namespace showing normal
traces for gyro (¬), light (), magnetic (®) and orientation (¯) sensors.

(a) AndroSensor running in 1st

alternative sensor namespace
showing normal trace for light
sensor (), and random traces
for gyro (¬), magnetic (®) and
orientation (¯) sensors.

(b) AndroSensor running in 2nd

alternative sensor namespace
showing normal traces for gyro
(¬), magnetic (®), and orien-
tation (¯) sensors, and random
trace for light sensor ().

Fig. 10. AndroSensor running in alternative sensor namespaces.

show AndroSensor running in the alternate sensor namespaces
of sensorservice_1 and sensorservice_2, respec-
tively. For all three cases, the physical envronment was ap-
proimately the same.

V. EVALUATION

A. Performance

To evaluate the overall performance impact of PINPOINT-
ing services, we performed the benchmark tests shown in Table
II, with and without namespaces. For each benchmark, we
measured performance under four different device configura-
tions: 0NS represents stock Android without any PINPOINT
capability or namespaces, while 1NS, 2NS, and 3NS represent
devices configured with one, two and three PINPOINTed
services, respectively. Figure 11 shows the average value of
10 runs of each benchmarking test.

8

TABLE II. EVALUATION BENCHMARKS USED.

Name Version Workload type

Linpack 1.2.8 CPU

Quandrant Advanced Edition 2.1.1 File I/O

Quandrant Advanced Edition 2.1.1 2D & 3D

SunSpider 1.0.2 CPU & I/O

(a) Average LINPACK CPU per-
formance score vs. number of
namespaces.

(b) Average file I/O performance
score vs. number of namespaces
(Quadrant file I/O).

(c) Average graphics
performance score vs. number
of namespaces (Quadrant 2D &
3D).

(d) Average browser
performance score vs. number of
namespaces (SunSpider).

Fig. 11. Benchmarking results for 0-, 1-, 2- and 3-namespace configurations.

Fig. 12. Average memory footprint in kB (VmSize) for 0-, 1-, 2- and 3-
namespace configurations.

We also measured the impact on memory of adding PIN-
POINTed services. Since each running service represents addi-
tional threads within SystemServer, we measured VmSize
of the system_server process by reading its /proc/
<pid>/status under each of the same four configurations.
Figure 12 shows the average value of 10 measurements of
memory footprint for each configuration.

B. Discussion

Performance evaluation results presented in Section V
indicate that increasing numbers of PINPOINTed services has
no apparent effect on CPU, browser, or graphics performance.
On the other hand, we observe a clear correlation between the
number of PINPOINTed services and file I/O. Decreases in this
score with increasing numbers of namespaces is expected due
to an increase in policy file size and associated data structures
being parsed and searched by servicemanager during
every service lookup request in order to support namespace
reassignments of running apps. In our current, unoptimized
design, file I/O performance degrades by an average of 1.57%
of the 0NS value for each additional namespace represented
in the policy file. Although this degradation is negligible for
simple policy files, we feel that this is an area for improvement.
Our future implementations will include an optimization of this

code, and policy options to configure how often policy lookups
are performed.

We also observed a growth in system_server’s mem-
ory size that is correlated to the the number of additional
service objects (i.e., namespaces) available for use in the
system_server process. On average, we observed this
increase to be approximately 0.64% of the 0NS value per
each additional service. For a system with one additional
IMEI namespace, two additional location namespaces, one
additional input method namespace, and two additional sensor
namespaces, system_server would have an approximately
3.84% larger memory footprint than the stock process. Note
that an unused namespace still consumes additional memory,
but since it does not add to the policy file, it will not contribute
to file I/O degradation.

VI. RELATED WORK

A number of previous efforts have addressed the problem
of untrusted apps having access to sensitive or private infor-
mation. Some of these address specific types of data, such as
location, while others look for more general solutions.

Two significant isolation approaches that influenced us
tremendously are Cells [7] and AirBag [32]. Cells leverages
Linux Namespaces to allow multiple Android user spaces to
run simultaneously on a single hardware platform. Each user
space, or virtual phone (VP), is isolated in a combination
of separate Linux Namespaces for file system paths, pro-
cess identifiers, IPC identifiers, network interface names, user
names, and hardware devices. Cells introduces the concept of
a foreground and multiple background phones that are isolated
from each other so that malicious or buggy apps in one VP
cannot affect others. Isolation in Cells is thus achieved at the
virtual phone boundary.

AirBag also leverages Linux Namespaces, but achieves
isolation at the native runtime boundary. This is accomplished
by instantiating a separate app runtime that has virtually no
interaction with the original native runtime. Each isolated
runtime contains its own copies of key service processes and
daemons, such as vold, binder and servicemanager
that are launched in separate namespaces as compared with
the normal runtime. Thus, an untrusted app “sees” an entirely
different set of services, binder objects, file paths, etc. through
the lens of its decoupled runtime. The untrusted app cannot
communicate with apps in different runtimes, and the system
resources it can view and control are completely dictated by the
isolated runtime. Condroid [4] improves on AirBag’s design
by restoring binder communications via virtual binders and
increasing efficiency by enabling many system services to be
shared among runtimes instead of duplicated.

While Cells, Airbag and Condroid provide excellent
general-purpose isolation, their designs are complex, burden
the system, and somewhat intrusive from the user’s point
of view. For example, all three require special modifications
to numerous shared hardware drivers, duplication of system
processes and resources not related to the security goals,
and introduce significant usability restrictions. Although they
leverage lightweight Linux Namespace isolation, key benefits
of Namespaces (Table I) are lost when the Android Framework
is added on top since many fundamental aspects of Android’s

9

open design are broken by the kernel-level isolation. Fixing
these problems greatly complicates the designs. Thus, our
main difference from these works is our deliberate choice
not to provide a general-purpose solution, but rather one
that addresses specific security goals by directly isolating
the specific Framework objects associated with the security
goals. For these specific cases, our approach is simpler, less
burdensome, and more usable.

MOSES [29] is a framework designed to isolate applica-
tions and data for the purpose of protecting sensitive corpo-
rate data. While MOSES also represents an effective general
solution to securing corporate data leaks on mixed-use person-
al/business devices, it is not very suitable for protecting users’
privacy or securing specific resources because of its security
profile-centric architecture that forces explicit switching and
carries performance penalties.

IPC Inspection [15] and Quire [9] prevent privilege esca-
lation and confused deputy attacks among apps and do not
address an app’s direct access to resources it already has
adequate permissions for, as our work does. TaintDroid [11]
inspects and analyzes information flows across the system, but
does not provide the means to manipulate or block information.
AppFence [19] leverages TaintDroid monitoring to enable data
substitution and blocking. For information resources, such as
location and IMEI, the resulting capability is similar to some of
our basic namespaces. However, AppFence cannot control the
semantics of functional resources, such as we demonstrated
with the input method namespace. Furthermore, AppFence’s
substitution and blocking capabilities affect information re-
sources for the entire platform rather than being selective for
individual apps as is the case in our system services case study.

Mr. Hide [21] adds finer-grained permissions to apps by
way of byte code rewriting, while APEX [28] introduces
context-sensitive run-time permissions. Compac [31] allows
different components within apps, such as in-app ads, to have
different sets of permissions. These and other permission-
enhancement designs can only restrict access to resources and
are unable to redefine them as we do.

Finally, as location data is widely viewed as having serious
privacy implications, there are numerous works specific to
improving location privacy. LP-Guardian [14], LISA [5], and
Koi [17] are examples of these. While each is effective for
controlling or preventing the use of location data, they are not
generally applicable to other resources as PINPOINT is. As
our case study on PINPOINTing system services demonstrates,
if the point of virtualization is chosen wisely, the resulting
isolation capability is flexible enough to apply to classes of
resources rather than only specific ones as these works do.

VII. FUTURE DIRECTIONS

In our present work, we have gained a tremendous insight
into the trade-off between isolation design alternatives, system
complexity, usability, convenience and effectiveness. We plan
to further quantify these relationships so that we can make
informed choices when addressing the high-level requirements
typically stated by end-users. Ultimately, we plan to formalize
the PINPOINT methodology, so that security designers can
easily understand the trade space of PINPOINT designs vs.
general-purpose approaches.

Through our case study of implementing a services hypovi-
sor, we’ve acquired a sense for the difficulty of implementing a
representative PINPOINT hypovisor and its companion virtual
resources within the Android Framework. Encouraged by our
experiences, we plan to consider the potential benefits of
PINPOINTing other resources, including those outside the
purview of Service Manager. Following from this, we envision
implementing a container abstraction, whereby multiple, het-
erogeneous PINPOINTs, Linux Namespaces, and other forms
of access control and virtualization can be easily combined by
the end-user to form easily-understood security and privacy
macros such as “incognito,” “banking,” etc.

We recognize the inflexibility of having to define PIN-
POINTed resources at system build time. As such, we see
opportunities to investigate techniques for establishing new
PINPOINTs while the system is running. Also, we would like
to evolve our current rudimentary means of policy configura-
tion into a more powerful and intuitive means for end-users to
configure, combine and use PINPOINTed resources, possibly
through an advanced launcher interface.

Additional project details, status, and instructions for re-
questing access to our prototype code are available at https:
//goo.gl/2pJeMp.

VIII. CONCLUSION

We have presented PINPOINT, a Android resource isola-
tion strategy that forgoes general-purpose solutions in favor
of a “building block” approach, similar in concept to Linux
Namespaces, but implemented in the Android Framework.
By addressing stated security goals and no more, PINPOINT
yields an effective result using only the minimum amount of
isolation. This helps minimize or eliminate the negative side-
effects that are sure to emerge when large parts of Android’s
open architecture are subject to isolation.

Through our case study on Android System Services, we
uncover the primary considerations of a PINPOINT designer.
These include correlating the stated security goals with specific
Android resources, identifying all Framework objects that have
access to these resources, and finding any dependent resources
that may exist in the remainder of the system. With this insight,
an appropriate hypovisor is then implemented, corresponding
objects with alternate semantics are created, and system MACs
are updated as necessary to enforce the hypovisor’s authority.

Our system services prototype and experiments with loca-
tion, subscriber, input method and sensor services demonstrate
that for specific security or privacy goals, PINPOINT yields
effective solutions for unmodified apps with a minimal amount
of design complexity, system modifications, or negative im-
pacts on user experience.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their careful read-
ing of our manuscript and the many insightful comments
and suggestions. This work was supported in part by NSF
Grant 1318814, and AFRL project GAIHCYBR. Any opinions,
findings, conclusions or recommendations expressed in this
material are solely those of the authors and do not necessarily
reflect the views of the NSF or the US Air Force.

10

REFERENCES

[1] “InputMethodManager | Android Developers.” [Online]. Avail-
able: http://developer.android.com/reference/android/view/inputmethod/
InputMethodManager.html

[2] “Security Enhancements | Android Developers.” [Online]. Available:
https://source.android.com/devices/tech/security/enhancements.html

[3] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith, “Practicality of
accelerometer side channels on smartphones,” in Proceedings of the
28th Annual Computer Security Applications Conference, ser. ACSAC
’12. New York, NY, USA: ACM, 2012, pp. 41–50.

[4] W. Chen, L. Xu, G. Li, and Y. Xiang, “A lightweight virtualization
solution for Android devices,” Computers, IEEE Transactions on,
vol. PP, no. 99, pp. 1–1, 2015.

[5] Z. Chen, X. Hu, X. Ju, and K. Shin, “Lisa: Location information
scrambler for privacy protection on smartphones,” in Communications
and Network Security (CNS), 2013 IEEE Conference on, Oct 2013, pp.
296–304.

[6] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user
confidence in smartphone security and privacy,” in Proceedings of the
Eighth Symposium on Usable Privacy and Security, ser. SOUPS ’12.
New York, NY, USA: ACM, 2012, pp. 1:1–1:16.

[7] C. Dall, J. Andrus, A. Van’t Hof, O. Laadan, and J. Nieh, “The
design, implementation, and evaluation of cells: A virtual smartphone
architecture,” ACM Trans. Comput. Syst., vol. 30, no. 3, pp. 9:1–9:31,
Aug. 2012.

[8] Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel,
“Unique in the crowd: The privacy bounds of human mobility,” Scien-
tific reports, vol. 3, 2013.

[9] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “Quire:
Lightweight provenance for smart phone operating systems,” in Pro-
ceedings of the 20th USENIX Conference on Security, ser. SEC’11.
Berkeley, CA, USA: USENIX Association, 2011, pp. 23–23.

[10] P. Eckersley, “Google removes vital privacy feature from
Android, claiming its release was accidental,” Dec 12
2013. [Online]. Available: https://www.eff.org/deeplinks/2013/12/
google-removes-vital-privacy-features-android-shortly-after-adding-them

[11] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
1–6.

[12] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of
Android application security,” in Proceedings of the 20th USENIX
Conference on Security, ser. SEC’11. Berkeley, CA, USA: USENIX
Association, 2011, pp. 21–21.

[13] F-Secure Corp., “Threat report H2 2013,” 2014. [Online]. Avail-
able: http://www.f-secure.com/static/doc/labs global/Research/Threat
Report H2 2013.pdf

[14] K. Fawaz and K. G. Shin, “Location privacy protection for smartphone
users,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’14. New York,
NY, USA: ACM, 2014, pp. 239–250.

[15] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permis-
sion re-delegation: Attacks and defenses,” in Proceedings of the 20th
USENIX Conference on Security, ser. SEC’11. Berkeley, CA, USA:
USENIX Association, 2011, pp. 22–22.

[16] Gartner, Inc., “Gartner says worldwide traditional PC, tablet,
ultramobile and mobile phone shipments are on pace to grow
6.9 percent in 2014.” [Online]. Available: http://www.gartner.com/
newsroom/id/2692318

[17] S. Guha, M. Jain, and V. N. Padmanabhan, “Koi: A location-privacy
platform for smartphone apps,” in Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 14–14.

[18] D. Hackborn, “Re: [PATCH 1/6] staging: android: binder: Remove
some funny && usage,” Jun 24 2009. [Online]. Available: https:
//lkml.org/lkml/2009/6/25/3

[19] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: Retrofitting Android to protect
data from imperious applications,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security, ser. CCS ’11.
New York, NY, USA: ACM, 2011, pp. 639–652.

[20] Y. Jang, C. Song, S. P. Chung, T. Wang, and W. Lee, “A11y attacks:
Exploiting accessibility in operating systems,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’14. New York, NY, USA: ACM, 2014, pp. 103–
115.

[21] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein, “Dr. Android and Mr. Hide: Fine-grained permissions
in Android applications,” in Proceedings of the Second ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices, ser. SPSM
’12. New York, NY, USA: ACM, 2012, pp. 3–14.

[22] K. Komeda, M. Mochizuki, and N. Nishiko, “User activity recognition
method based on atmospheric pressure sensing,” in Proceedings of the
2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing: Adjunct Publication, ser. UbiComp ’14 Adjunct. New
York, NY, USA: ACM, 2014, pp. 737–746.

[23] N. Krishnan, “Android hypovisors: Securing mobile devices through
high-performance, light-weight, subsystem isolation with integrity
checking and auditing capabilities,” Master’s thesis, Virginia Tech, Dec
12 2014.

[24] L. Lei, Y. Wang, J. Zhou, D. Zha, and Z. Zhang, “A threat to
mobile cyber-physical systems: Sensor-based privacy theft attacks on
Android smartphones,” in Trust, Security and Privacy in Computing and
Communications (TrustCom), 2013 12th IEEE International Conference
on, July 2013, pp. 126–133.

[25] X. Liu, W. Diao, Z. Zhou, Z. Li, and K. Zhang, “Gateless treasure:
How to get sensitive information from unprotected external storage on
Android phones,” CoRR, vol. abs/1407.5410, 2014.

[26] M. Mannan and P. van Oorschot, “Leveraging personal devices for
stronger password authentication from untrusted computers,” Journal
of Computer Security, vol. 19, no. 4, pp. 703–750, Jan 2011.

[27] F. Mohsen and M. Shehab, “Android keylogging threat,” in Collabora-
tive Computing: Networking, Applications and Worksharing (Collabo-
ratecom), 2013 9th International Conference Conference on, Oct 2013,
pp. 545–552.

[28] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending Android per-
mission model and enforcement with user-defined runtime constraints,”
in Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security, ser. ASIACCS ’10. New York, NY,
USA: ACM, 2010, pp. 328–332.

[29] G. Russello, M. Conti, B. Crispo, and E. Fernandes, “Moses: Supporting
operation modes on smartphones,” in Proceedings of the 17th ACM
Symposium on Access Control Models and Technologies, ser. SACMAT
’12. New York, NY, USA: ACM, 2012, pp. 3–12.

[30] L. Simon and R. Anderson, “PIN skimmer: Inferring PINs through the
camera and microphone,” in Proceedings of the Third ACM Workshop
on Security and Privacy in Smartphones & Mobile Devices, ser. SPSM
’13. New York, NY, USA: ACM, 2013, pp. 67–78.

[31] Y. Wang, S. Hariharan, C. Zhao, J. Liu, and W. Du, “Compac: Enforce
component-level access control in Android,” in Proceedings of the 4th
ACM Conference on Data and Application Security and Privacy, ser.
CODASPY ’14. New York, NY, USA: ACM, 2014, pp. 25–36.

[32] C. Wu, Y. Zhou, K. Patel, Z. Liang, and X. Jiang, “Airbag: Boosting
smartphone resistance to malware infection,” in Proceedings of the
21th Annual Network and Distributed System Security Symposium
(NDSS’14), 2014.

[33] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs on smart-
phone touchscreens using on-board motion sensors,” in Proceedings of
the Fifth ACM Conference on Security and Privacy in Wireless and
Mobile Networks, ser. WISEC ’12. New York, NY, USA: ACM, 2012,
pp. 113–124.

[34] Z. Xu and S. Zhu, “Abusing notification services on smartphones for
phishing and spamming,” in Proceedings of the 6th USENIX Workshop
on Offensive Technologies. Berkeley, CA: USENIX, 2012.

[35] X. Zhang and W. Du, “Attacks on Android Clipboard,” in Proceedings
of the 11th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), Egham, UK, July 10-11 2014.

11

