
SEED Emulator: An Internet Emulator for Research
and Education

Wenliang Du, Honghao Zeng, Kyungrok Won
Syracuse University

Syracuse, New York, USA
{wedu,hozeng,kwon01}@syr.edu

ABSTRACT
We have developed an open-source Internet Emulator, which
is a Python library, consisting of the classes for each essen-
tial element of the Internet, including autonomous system,
network, host, router, BGP router, Internet exchange, etc. It
also includes classes for a variety of services, including Web,
DHCP, DNS, Botnet, Darknet, and Blockchain. Many other
interesting network technologies can also be deployed on
the emulator. Using this library, users can easily construct a
miniature Internet. Although it is small, it has all the essential
elements of the real Internet. The construction is compiled
into Docker container files, and the emulation is executed by
Docker on a single machine, or on multiple cloud machines.

This emulator has been primarily used for education since
it was released in August 2021, but recently several research
groups have started to use it for their research. In this paper,
we present the design of this emulator and its applications.
This work is still in its early stage, so the objective of this
paper is to get feedback from the community, so it can be
more useful to research and education.

CCS CONCEPTS
• Networks� Network simulations;

KEYWORDS
Internet emulation

ACM Reference Format:
Wenliang Du, Honghao Zeng, Kyungrok Won. 2022. SEED Em-
ulator: An Internet Emulator for Research and Education. In Pro-
ceedings of The 21st ACM Workshop on Hot Topics in Networks
(HotNets’22). ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/3563766.3564097

1 INTRODUCTION
Every year since 2012, when one of the authors of this paper
taught BGP and attacks in his network security class, he

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
HotNets’22, November 14-15, 2022, Austin, Texas
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9899-2/22/11. . . $15.00
https://doi.org/10.1145/3563766.3564097

had to apologize to his students, because that was the only
topic in his class that did not have a corresponding hands-on
lab. He promised to develop one, but the next year, he had
to apologize again. That apology was repeated for almost
a decade. It was not that he was lazy; he simply did not
know how to implement such a lab. Other than using a cyber
range, the most effective way to do such a lab is to use an
emulator, but an Internet emulator that could be easily used for
this purpose did not exist. Although there are many existing
network emulators, as we will discuss in the next section,
Internet emulation and network emulation are quite different.

Eventually, after three years of development, we have built
an Internet emulator called SEED emulator (its original goal
was for SEcurity EDucation, hence the name SEED). While
the emulator was initially developed for educational uses, a
number of research groups have started to use the emulator
as the platform to run their evaluation. That motivated us
to expand the scope of the emulator to support research. To
achieve that goal, we have been actively communicating with
other researchers, listening to their needs, and developing
features that support their research needs. The communication
has helped shape the development of the emulator.

The SEED emulator is a Python library with 12,000 lines
of code, consisting of the classes for each essential element
of the Internet, including autonomous system, network, host,
router, BGP router, Internet exchange, etc. It also includes
the classes for a variety of services, including Web, DNS,
Botnet, Darknet, Blockchain, and more are being developed.
Using these classes, users can construct a mini-Internet to
emulate the real-world Internet. Although it is small, it has all
the essential elements of the real Internet. The construction
is compiled into Docker container files, and the emulation
is executed by Docker on a single machine, or on multiple
cloud machines.

The SEED emulator supports many useful features. First,
the emulator is extensible; plugin components can be easily
added. Second, the emulator supports a hybrid emulation.
External users can connect their computers to the emula-
tor, becoming a participant of the emulation. Third, multiple
emulators, local or remote, can be joined to form a larger
emulation. Fourth, the entire emulation can be visualized us-
ing our visualization tool, which can also display the packet
flows inside the emulator. These features are driven by the
education and research needs. The objective of this paper is
to present the design to a larger community, so we can hear
the feedback and advice from the researchers and educators.

https://doi.org/10.1145/3563766.3564097
https://doi.org/10.1145/3563766.3564097
https://doi.org/10.1145/3563766.3564097

HotNets’22, November 14-15, 2022, Austin, Texas Wenliang Du, Honghao Zeng, Kyungrok Won

2 RELATED WORK AND OUR
APPROACH

2.1 Comparison with Related Work
Internet emulation is not the same as network emulation. A
good Internet emulator should have the following three ele-
ments: (1) network emulation, (2) Internet infrastructure emu-
lation, and (3) service infrastructure emulation. The network
emulation part covers hosts, routers, networks, and routing.
This part is what most network emulators/simulators have
achieved well, including mininet [10], Common Open Re-
search Emulator (CORE) [1], NS-3 [3], GNS-3 [7], NetSim
(commercial) [12], OPNET (commercial) [17], etc. Our emu-
lator covers the basic and generic functionalities of network
emulation, but compared to these existing network emulators,
we have less features. For example, the control of the network
bandwidth and speed is quite limited (it is feasible, but has not
been implemented yet). The network emulation is necessary
for our emulator, but not a focus.

The second part involves emulating the essential infras-
tructure of the Internet, including autonomous systems (stub
and transit), Internet exchanges, BGP routing and peering.
BGP (IBGP and EBGP) is the core in this part. A good emu-
lator should allow users to easily set up and configure BGP
routers and peering. BGP peering is not just about connect-
ing two autonomous systems; a good emulator should also
capture the business relationship of the peers (such as the
provider-customer, and peer-to-peer relationships). Some of
the existing work that covers this part include Greybox [14]
and Mini-Internet project [9], but the approach that we are
taking is very different and advantageous, especially on how
the emulation is built and on the support of the BGP routing,
peering, and configuration.

The third part is the service infrastructure emulation. One
thing that makes the Internet interesting (for both research and
education) is the applications (or services) running on top of
it. A good Internet emulator should be able to emulate these
services, especially those that involve their own infrastructure,
such as DNS, Blockchain, Darknet, Botnet, Content Delivery
Network (CDN), etc. Setting up these infrastructures inside an
Internet emulator is non-trivial, and a good emulator should
reduce the complexity for users. This is the part where our
emulator really shines. 50% of the SEED emulator code is in
the service part, and much more will be added in this part in
the future.

2.2 Our Approach
A typical emulator consists of three parts: composing the
emulation, running the emulation, and interacting with the
emulator. The SEED emulator provides the SDK (libraries
and tools) for the first and third parts, while relying on the
docker container technologies to run the emulation. Figure 1
illustrates our approach.

For the emulation composition part, we have developed
an open-source Python library, consisting of the classes for

Emulation
Files

Composing
Emulation

Running
Emulation

Interacting
with Emulation

SDK

SDK

Compilation

Interaction

Figure 1: Our approach

each essential element of the Internet, including autonomous
system, network, host, router, BGP router, Internet exchange,
etc. It also includes the classes for a variety of services, in-
cluding Web, DNS, Botnet, Darknet, and Blockchain. Using
these classes, users can easily construct their own Internet
emulators using Python programs.

The composition is eventually compiled into container files
for Docker to run on a single machine or multiple cloud ma-
chines. Once the emulation has started, users can manually
interact with the containers using the standard docker com-
mands, or they can use another library that we have developed
for facilitating the interaction with the emulator. Due to the
page limitation, we only focus on the composition part, as it
is the most significant part of the emulator.

3 EMULATING INTERNET
INFRASTRUCTURE

The Internet is formed by host machines, routers, networks, In-
ternet exchanges, and autonomous systems. The autonomous
systems peer with one another using BGP. To build an Inter-
net in an emulation, we need to provide the building blocks
corresponding to these entities.

3.1 Internet Exchange
An autonomous system needs to connect to other autonomous
systems, so they can exchange network traffic. Connecting
two autonomous systems is called peering, which typically
occurs inside an Internet Exchange (IX) or colocation center.
An IX is basically a big high-throughput switch that connects
the routers from different ASes. Through this switch, packets
from one AS can be handed over to another AS. In the follow
example, we create two Internet exchanges, IX-100 and IX-
101 (the numbers are the autonomous system number assigned
to the IXes). Internally, a network is created for each IX (their
network names are automatically set to ix100 and ix101
in our convention.

ix100 = base.createInternetExchange(100)

ix101 = base.createInternetExchange(101)

3.2 Autonomous System
Autonomous system (AS) is an essential element of the In-
ternet. It is emulated in our emulator. When composing the
emulator, we can create an autonomous system, and then cre-
ate hosts, routers, and networks inside it. In the following

SEED Emulator: An Internet Emulator HotNets’22, November 14-15, 2022, Austin, Texas

example, we show how to create a transit AS (with 2 as the
AS number).

as2 = base.createAutonomousSystem(2)

as2.createNetwork("net0")

as2.createNetwork("net1")

as2.createNetwork("net2")

as2.createRouter(’r0’).joinNetwork(’ix100’)

.joinNetwork(’net0’)

as2.createRouter(’r1’).joinNetwork(’net0’)

.joinNetwork(’ix101’)

.joinNetwork(’net1’)

as2.createRouter(’r2’).joinNetwork(’net1’)

.joinNetwork(’net2’)

as2.createRouter(’r3’).joinNetwork(’net2’)

.joinNetwork(’ix102’)

In this example, we first create three internal networks
(net0, net1, and net2). We then use four routers to con-
nect them to form a topology (arbitrary topologies can be
created). By default, these routers are configured to run the
OSPF internal routing protocol. Other routing protocols can
also be used. Moreover, the routers r0, r1, and r3 also
connect to an Internet exchange network at IX-100, IX-101,
and IX-102, respectively. Therefore, these routers are BGP
routers. They will be configured to peer with one another via
the Internal BGP (IBGP) protocol.

3.3 External BGP (EBGP) Peering
While the IBGP peering is automatically configured by the
emulator, for EBGP peering, we need to explicitly specify
which ASes peer with each other. In the following example,
AS-3 peers with AS-160 and AS-161 at IX-103; their peer
relationship is provider and customer, with AS-3 being the
provider (i.e., AS-160 and 161 are customers of AS-3; in the
real world they typically pay AS-3 for the transit service).

ebgp.addPrivatePeerings(103, [3],

[160, 161], PeerRelationship.Provider)

In a public Internet exchange, autonomous systems may
peer with many other autonomous systems. To make the peer-
ing simple, most Internet exchanges provide a special server
called route server, so autonomous systems can peer with
one another via this server. In the following example, we peer
AS-2, AS-3, and AS-4 at IX-100 using a route server.

ebgp.addRsPeers(100, [2, 3, 4])

To help implement various peering relationships, we sup-
port the BGP Large communities protocol [13] in the emu-
lator. There are many applications of the BGP Large Com-
munities, such as identifying routes by their geographically
locations (countries, continent etc.), the business relation-
ships between peers (customers, providers, or peers), and
many other aspects. In our current implementation, we only

use the BGP Large communities to implement the peering re-
lationship, but more interesting applications can be supported
by our design.

The routing software used in the SEED emulator is called
BIRD [4], which is open source. It supports most standard
routing protocols. Configuring the BGP and internal routing
is quite sophisticated and requires in-depth knowledge of
how various routing protocols and how the BIRD software
works. Typical users may not have such knowledge. Our
emulation library hides all the complexity from the users,
who can convey their needs using the provided APIs.

3.4 APIs on Host
To support various applications inside the emulator, we need
to be able to install more software and files on the hosts, as
well as being able to conduct configuration. While this can be
done when the emulator is running, it is time-consuming to
do it on many hosts. We provide APIs so these tasks can be
done when we construct the emulator. The following example
shows how to install software and files on nodes (containers),
how to run commands when a container image is built and
when the container boots up.

host.addSoftware(’telnetd’)

host.importFile(hostpath="/tmp/f.py", ...)

host.addBuildCommand(’useradd -m ...’)

host.appendStartCommand(’/tmp/server &’)

With these low-level APIs, users can easily customize
nodes. For example, some researchers told us that they need
to run a modified Ethereum program geth on some nodes.
They can easily do that using these APIs. In general, anything
that can be done manually on a container can be done through
these APIs, which cover all the three phases of software:
installation, configuration, and execution.

3.5 Hybrid Emulation
By default, the SEED Internet emulator is isolated from the
outside: machines from outside cannot communicate with
those inside the emulator. This closed emulation by itself has
many applications, but the scope of the applications can be
broaden if we allow a hybrid emulation, i.e., allowing the
machines inside the Internet emulator to communicate with
those on the real Internet.

With the hybrid emulation, we do not need to duplicate ev-
erything inside the emulator. For example, if there is a useful
web service that we would like to include in our emulation,
we do not need to duplicate that inside the emulation. In-
stead, we can just directly use it using our hybrid emulation
technique.

To allow the emulated Internet to reach the real Internet,
we need to direct the packets to an exit point, where the
packets can exit from the emulator and enter the real Internet.
We use BGP to achieve the goal. We create an autonomous
system inside the emulator, and use this AS as the exit point.
The BGP router in this AS will announce two prefixes inside

HotNets’22, November 14-15, 2022, Austin, Texas Wenliang Du, Honghao Zeng, Kyungrok Won

the emulator: 0.0.0.0/1 and 128.0.0.0/1. These two
network prefixes cover the entire IPv4 address space, so if a
destination IP address does not match with any other entry in
the routing table, it will match with one of these two prefixes.
This makes the exit point a default destination: if a packet
does not go to any network inside the emulator, it will be
routed towards the exit point. If we only want to reach certain
networks in the real Internet, instead of to every network, we
can narrow down the scope of the announced prefixes.

The following code snippet shows how to create and set up
an exit point inside the emulator. In this example, we create an
autonomous system AS-99999, and connect its BGP router
to the Internet Exchange ix100.

as = base.createAutonomousSystem(99999)

rt = as.createRealWorldRouter(’rw’,

prefixes=[’0.0.0.0/1’, ’128.0.0.0/1’])

rt.joinNetwork(’ix100’, ’10.100.0.99’)

3.6 Participating in Emulation
External users and devices can easily participate in our emula-
tion. In one of our experiments, we put our Internet emulator
on a laptop, and hook a WiFi access point to the emulator.
We brought the setup to the classroom, asking students to
connect their machines or smartphones to our WiFi. By do-
ing that, students immediately became the participants of the
emulation. We call this BYOI (Bring Your Own Internet to
the Class). See Figure 2.

Host machine

Emulator

NIC

Figure 2: Participating in emulation

We then conducted the BGP network prefix hijacking in-
side the emulator, aiming to hijack our university’s network
prefix. Before the attack, students were able to access the uni-
versity’s website (due to our hybrid emulation setup), but as
soon as the attack was launched, the university’s website was
no long accessible, while students could still access the rest
of the Internet. Obviously, the attack only affects the routing
inside the emulator, not the real world.

While this experiment was conducted for an education ac-
tivity, this feature was originally requested by an IoT research
group. This setting allows the researchers to easily connect all
their IoT devices to the emulated Internet using WiFi or Ether-
net cable, so they can observe and interfere with the behaviors
of the devices. Another research group connects robots and
UAVs to the emulator, so they can test their algorithms in an

emulated deployment environment. We are working with this
group to try to make the emulation more realistic.

3.7 Distributed Emulation
Due to the resource limitation (CPU and RAM), conducting
emulation on a single machine can be limited. To solve this
problem, we have developed a mechanism to easily scale
up the emulation by joining multiple emulators running on
different computers together. These computers can be in the
same physical location or remote (on the cloud), and they each
run an instance of emulator. In this section, we describe how
to join these emulators together to form a larger emulation.
Being able to join multiple emulators enable users to easily
expand the scale of the emulation.

The merging of two emulators is done by simply bridging
two Internet exchanges from the two emulators. Assume that
we have two Internet emulators A and B, and we would like to
join them to form a larger emulation. To achieve that, A and
B should have a common Internet Exchange (say IX-100),
which is emulated using a network. Therefore, A has one part
of the network IX-100, and B has the other part. Bridging
these two parts of the network will result in the merging of
A’s IX-100 and B’s IX-100. See Figure 3.

IX
-1

0
0

 Emulator A

AS-3

AS-4

AS-5

AS-6

Host A

Emulator B

IX
-1

00

Host B

Figure 3: Bridging Internet Exchange

After the bridging, A’s BGP routers on IX-100 and B’s
BGP routers on IX-100 are now connected to the same LAN,
so they can peer with one another. Once peering is established,
packets can cross the bridge from one emulator to another.
Bridging can be done at multiple locations between two emu-
lators. It can also be done by more than two emulators at the
same location, as long as they share the same IX. Our emula-
tor supports both physical bridging (using a physical switch,
for machines at the same location) and virtual bridging (using
Layer-2 VPN, for remote machines).

3.8 Visualization
Being able to visualize what is happening inside the Internet
emulator is important. To this goal, we have developed an
independent web-based tool for the visualization (called Map).
This web application uses the standard docker APIs to retrieve
the node and network information from the emulators, and
plot them inside a web page. Users can interact with the nodes
using the Map tool. When we built the emulator, we added
meta data to each container, so meaningful information is

SEED Emulator: An Internet Emulator HotNets’22, November 14-15, 2022, Austin, Texas

preserved and can be retrieved from the emulator using the
docker APIs.

From the Map, using the tcpdump filter expression, users
can specify what type of packets they would like to visualize.
The Map tool will then request the docker to run the tcpdump
program with the filter on all the containers. An event will
be reported to the Map by a container if it sees a packet
matching the filter. The Map will visualize such an event.
This way, we can see the packet flow. The Map also supports
the record and replay feature, so users can replay events at a
slower speed. A visualization example is shown in Figure 5
when we discuss an application of the SEED emulator. We
are also adding new modules to this tool, so in addition to
the packet-level visualization, we can also provide service-
specific visualization, such as visualizing transactions on a
blockchain network.

4 EMULATING INTERNET SERVICE
INFRASTRUCTURE

One thing that makes the Internet interesting (for both re-
search and education) is the applications (or services) running
on top of it. Some of these services only involves standalone
servers, such as Web server, DHCP server, and email server.
It is quite easy to deploy this kind of services inside the
emulator. However, many useful services have their own in-
frastructure consisting of a large number of servers, such as
DNS, Blockchain, Darknet, Botnet, Content Delivery Net-
work (CDN), etc. Setting up such an infrastructure is non-
trivial, because it involves configuring many nodes and their
relationships. To help users build these service infrastructures
inside the SEED emulator, for each of these services, we have
developed a Python class, which encapsulates the complicated
setup details.

4.1 The Extensible Design
When building a service for the emulator, whether it is a stan-
dalone service or a service infrastructure, we would like this
service to be independent from the underlying Internet. This
way, a service is portable, and can be deployed in different
Internet emulators.

We use a layered design. There are two types of layers
in the SEED emulator: the base layer and the service layer.
The base layer consists of hosts, networks, and routing. At
this layer, each node corresponds to a “physical” entity (con-
tainer). Each service layer consists of a service (or a service
infrastructure). Nodes at the service layer are virtual nodes,
not physical ones. Basically, a node is represented by a sym-
bolic name. All the configuration and setup on a service node
will simply use that name.

The service layer will never reference any physical node at
the base layer; therefore it can be built independently from
the base layer. We call each service a component. To deploy
a service on top of a base layer, we bind the virtual nodes at
the service layer to the physical nodes at the base layer, just
like plugging a chip (service) onto a circuit board (base).

Currently, we have implemented several service compo-
nents, including DNS, blockchain, Darknet, Botnet, Web,
DHCP, and email. More components will be added in the
future. In this section, we provide some details for two useful
components.

4.2 Example 1: DNS Infrastructure
The goal of a DNS component (Figure 4) is to set up the
DNS infrastructure, including configuring the zone files for
each domain hosted in this infrastructure. Each DNS server
inside this component is a virtual node. In the following code
snippet, we show how we create a DNS infrastructure. The
dns.install(name) will create a node using name if
such a node does not exist. We can then install zones on these
virtual nodes, and configure their zone files. These nodes are
virtual nodes; they are just names, and they do not bind to
any existing physical node in the emulator. This makes the
component portable.

dns = DomainNameService()

dns.install(’root-a’).addZone(’.’).setMaster()

dns.install(’root-b’).addZone(’.’)

dns.install(’com’).addZone(’com.’)

dns.install(’ns-example’)

.addZone(’example.com.’)

dns.getZone(’example.com.’)

.addRecord(’www A 5.5.5.5’)

DNS Infrastructure

A-Root-1

B-Root

COM-1

COM-2

NET-1

NET-2

EDU-1

EDU-2

e
xa

m
p

le.co
m

Base Layer

go
d

a
d

d
y.co

m

n
sf.go

v

syr.e
d

u

A-Root-2

APIs for customization

Figure 4: DNS component

The above DNS component can be saved into a file and
be plugged into any base. To do that, we bind each of the
virtual node in this component to a physical node in the base.
After that, all the DNS configuration conducted on the virtual
node will be applied to the physical node. The following
example binds the virtual node root-a to a host in ASN-
171 (the emulator will automatically find a suitable host for
us, or create a new host if no suitable one is found). After the
binding, this selected host will become a DNS root server.

emu.addBinding(Binding(’root-a’,

filter=Filter(asn=171))

HotNets’22, November 14-15, 2022, Austin, Texas Wenliang Du, Honghao Zeng, Kyungrok Won

Our DNS component supports hybrid emulation, i.e., we
only need to host part of the DNS infrastructure inside the
emulator, while relying on the real-world DNS for the rest.
For example, we can simply host the com and edu TLDs,
while relying on the real-world DNS to answer the queries
for the other TLDs.

4.3 Example 2: Blockchain Emulator
Blockchain has been a very active research area these days.
One of the problems faced by researchers is the evaluation.
Using a real-world blockchain to do the evaluation has many
issues, especially for work involving attacks. Moreover, it is
very hard to know the ground truth. Many researchers have
to set up their own testbed, but they face two challenges:
(1) setting up a large scale test bed is quite complicated, (2)
some Blockchain research [8, 15, 16] depends on the Internet
infrastructure, so they need an Internet emulator.

We have developed an Ethereum-based blockchain com-
ponent. In the following example, we show how to build a
blockchain with 100 nodes, with one third set as bootnodes,
and two third as sealers (for Proof-of-Authority consensus)

eth = EthereumService()

eth.setBaseConsensusMechanism

(ConsensusMechanism.POA)

balance = 32 * pow(10, 18)

for i in range(100):

e = eth.install("eth{}".format(i))

if i%3 == 0:

e.setBootNode(True)

else:

e.createPrefundedAccounts(balance, 1)

e.unlockAccounts().startSealer()

This component has been the focus of our recent develop-
ment. New APIs, driven by the requests from researchers,
will be added in the future releases. On September 15th,
2022, the Ethereum Merge finally happened. We followed
up with that by providing the Proof-of-Stake support in our
Ethereum emulator. We plan to implement components for
other blockchains, including Hyperledger [2] and Bitcoin [11].

5 EVALUATION AND APPLICATIONS
We have conducted a comprehensive evaluation on the perfor-
mance of the emulator. Due to the page limitation, we are not
able to include the results in this paper. Readers can find the
results in a thesis written by one of the authors [18].

The Internet emulator can have many applications. Ap-
plications in cybersecurity education have already been es-
tablished, while applications in research have not been es-
tablished yet, but we are actively helping several research
groups (in both networking and cybersecurity fields) adopt
the emulator for their research. Due to the page limitation,
we only describe one of the applications (in cybersecurity
education). More applications can be found from the project’s
website [6].

In this application, we created a mini-Internet emulator
using 275 containers, consisting of 5 Internet exchanges, 12
stub autonomous systems (AS), with each AS having one
internal network with 20 hosts (240 hosts in total). These
ASes peer with several transits ASes at the Internet exchanges.
See Figure 5. During the construction of the emulator, we
installed a vulnerable server on these 240 host containers. The
server has a buffer-overflow vulnerability. The construction
only involves 86 lines of Python code. Despite having these
many machines, the entire emulator can run on a Ubuntu
20.04 virtual machine with 2 cores and 8GB of RAM, so it is
possible to run on most students’ personal computers.

Figure 5: The spreading of the worm: the nodes with
the bold black border are compromised nodes, which are
also attacking others. They actually flash in visualization.

Students’ job is to write a simplified Morris worm program.
They can only release the worm on one of the nodes. The
worm should then automatically attack the others. self dupli-
cates, and propagates to its victim. The whole process can
be visualized using our Map tool. After finishing the lab, a
student commented, “seeing it from the entire Internet per-
spective is remarkable and stunning.” A video demo can be
found from YouTube [5].

6 SUMMARY
The SEED Internet emulator is an open-source project, which
was developed initially for cybersecurity education, but its
scope is now expanded beyond that. Its objective is to help
users easily create a miniature Internet with required services
deployed, so they can use the emulator to evaluate their re-
search ideas. While the emulator is fully functioning and is
already adopted by others, it is still under active development.
More features will be added in the near future. We welcome
other people to try the emulator, give us feedback, and help
us make this open-source software to better serve the research
and education communities.

The work is funded in part by the National Science Founda-
tion (Award No. 2214916) and by the Meredith Professorship
fund from the Syracuse University.

SEED Emulator: An Internet Emulator HotNets’22, November 14-15, 2022, Austin, Texas

REFERENCES
[1] J. Ahrenholz, C. Danilov, T. Henderson, and J. kim. 2008. CORE:

A real-time network emulator. MILCOM 2008 - 2008 IEEE Military
Communications Conference (2008), 1–7.

[2] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris,
Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet
Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessan-
dro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed
Cocco, and Jason Yellick. 2018. Hyperledger Fabric: A Distributed Op-
erating System for Permissioned Blockchains. CoRR abs/1801.10228
(2018). arXiv:1801.10228 http://arxiv.org/abs/1801.10228

[3] NS-3 contributors. 2022. NS-3: Network Simulator. https://www.
nsnam.org/. (2022).

[4] CZ.NIC. 2022. BIRD Internet Routing Daemon. https://bird.network.
cz/. (2022).

[5] Wenliang Du. 2021. SEED Labs: Morris Worm Attack
Lab (Demo). Available at https://www.youtube.com/watch?v=
2VZV-aFoVjk. (2021).

[6] Wenliang Du. 2022. SEED Internet Emulator. Available at https:
//seedsecuritylabs.org/emulator/. (2022).

[7] GNS3. 2022. Graphical Network Simulator-3. https://www.gns3.com/.
(2022).

[8] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg.
2015. Eclipse Attacks on Bitcoin’s Peer-to-Peer Network. In 24th
USENIX Security Symposium (USENIX Security 15). USENIX Associa-
tion, Washington, D.C., 129–144. https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/heilman

[9] T. Holterbach, T. Bühler, T. Rellstab, and L. Vanbever. 2020. An Open
Platform to Teach How the Internet Practically Works. SIGCOMM Com-
put. Commun. Rev. (2020). https://doi.org/10.1145/3402413.3402420

[10] B. Lantz, B. Heller, and N. McKeown. 2010. A Network in a Lap-
top: Rapid Prototyping for Software-Defined Networks. In Hotnets.
Monterey, CA, USA.

[11] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash
System. Cryptography Mailing list at https://metzdowd.com (03 2009).

[12] NetSim. 2022. NetSim Network Simulator. https://www.tetcos.com/.
(2022).

[13] Job Snijders, John Heasley, and Martijn Schmidt. 2017. Use of BGP
Large Communities. RFC 8195. (June 2017). https://doi.org/10.17487/
RFC8195

[14] Gabriel L. Somlo. 2016. GreyBox: Single-Host Internet Simulator.
https://github.com/cmu-sei/greybox. (2016).

[15] Muoi Tran, Inho Choi, Gi Jun Moon, Anh V. Vu, and Min Suk Kang.
2020. A Stealthier Partitioning Attack against Bitcoin Peer-to-Peer
Network. In 2020 IEEE Symposium on Security and Privacy (SP).
894–909. https://doi.org/10.1109/SP40000.2020.00027

[16] Muoi Tran, Akshaye Shenoi, , and Min Suk Kang. 2021. On the
Routing-Aware Peering against Network-Eclipse Attacks in Bitcoin. In
Proceedings of the 30th USENIX Security Symposium.

[17] Wikipedia contributors. 2021. OPNET — Wikipedia, The Free Ency-
clopedia. (2021). https://en.wikipedia.org/w/index.php?title=OPNET&
oldid=1019617098 [Online; accessed 9-January-2022].

[18] Honghao Zeng. 2021. SEEDEMU: The SEED Internet Emulator. Mas-
ter’s thesis. Syracuse University.

http://arxiv.org/abs/1801.10228
https://www.nsnam.org/
https://www.nsnam.org/
https://bird.network.cz/
https://bird.network.cz/
https://www.youtube.com/watch?v=2VZV-aFoVjk
https://www.youtube.com/watch?v=2VZV-aFoVjk
https://seedsecuritylabs.org/emulator/
https://seedsecuritylabs.org/emulator/
https://www.gns3.com/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://doi.org/10.1145/3402413.3402420
https://www.tetcos.com/
https://doi.org/10.17487/RFC8195
https://doi.org/10.17487/RFC8195
https://github.com/cmu-sei/greybox
https://doi.org/10.1109/SP40000.2020.00027
https://en.wikipedia.org/w/index.php?title=OPNET&oldid=1019617098
https://en.wikipedia.org/w/index.php?title=OPNET&oldid=1019617098

	Abstract
	1 Introduction
	2 Related Work and Our Approach
	2.1 Comparison with Related Work
	2.2 Our Approach

	3 Emulating Internet Infrastructure
	3.1 Internet Exchange
	3.2 Autonomous System
	3.3 External BGP (EBGP) Peering
	3.4 APIs on Host
	3.5 Hybrid Emulation
	3.6 Participating in Emulation
	3.7 Distributed Emulation
	3.8 Visualization

	4 Emulating Internet Service Infrastructure
	4.1 The Extensible Design
	4.2 Example 1: DNS Infrastructure
	4.3 Example 2: Blockchain Emulator

	5 Evaluation and Applications
	6 Summary
	References

