Building an Internet Emulator for Cybersecurity Education

Wenliang (Kevin) Du
Syracuse University
Outline

• Motivation for this project
• The design ideas
• The emulator details
• Applications: Labs
 • BGP attack lab
 • Morris worm attack lab
• Demos
Motivation

https://seedsecuritylabs.org/

Adopted by 1000 institutes
Limitations

SEED Labs 1.0: Using **VMs**
SEED Labs 2.0: Using docker **containers**
The Open-Source Project

• **Founders**
 - Kevin Du
 - Honghao Zeng (MS student)

• **History**
 - 2018 – 2020: Investigation & Design
 - August 2020: Implementation
 - July 2021: First release

https://github.com/seed-labs/seed-emulator
The Most Important Design Decision

Building Emulation

Conducting Emulation
Existing Work

• CORE: Common Open Research Emulator
 • Based on Linux namespace

• GNS-3: Graphical Network Simulator-3
 • Focus on network emulation, not Internet
 • Good at emulating vendor-specific network devices

• NS-3
 • A simulator, not an emulator
 • Good at simulating network technologies
 • Not transparent to applications
Our Approach

• Using Docker for emulation

• Our job: compose the emulation
 • Constructing docker files
Building Emulation

429 Nov 16 20:13 082b96ec819c95ae773daebde675ef80
1072 Nov 16 20:13 17ac2d12a99a91e7f747e1defb72a29
2578 Nov 16 20:13 2b0aee083300eccd430955538618caee7d
242 Nov 16 20:13 d18852efc6bb66ec3a19d872077acfd2
1110 Nov 16 20:13 d3d51f7f4bad30dc5db560a1ce629
911 Nov 16 20:13 Dockerfile
58 Nov 16 20:13 e01e36443f9f72c6204189260d0bd276
Different Approaches

• GUI Approach
• Configuration Approach (JSON, YAML)
• Programming Approach

What they have in common: language
Our Design

Primitives (Classes)

- Autonomous System
- Internet Exchange
- Network
- Router, BGP speaker
- Host
- Service
- etc.

Composing Emulation (Programming) → Python Classes

Emulator SDK (our main contribution)

Emulation Files → Emulation using existing technologies

- docker
- kubernetes
The Architecture

Constructing the Emulation
(Programming in Python)

Modules

Examples: DNS, Botnet, Darknet, Blockchain, etc.

Base

Routing layer

AS, networks, nodes

Rendering

Binding modules to base, binding layers

Compiling

Different compilers for different emulation technologies

Emulation Files

Used for the actual emulation
Example: Create a Transit AS

Create the autonomous system (asn = 2)
as2 = base.createAutonomousSystem(2)

Create 3 internal networks
as2.createNetwork('net0')
as2.createNetwork('net1')
as2.createNetwork('net2')

Create 4 routers
as2.createRouter('r0').joinNetwork('ix100')
 .joinNetwork('net0')
as2.createRouter('r1').joinNetwork('net0')
 .joinNetwork('ix100')
 .joinNetwork('net1')
as2.createRouter('r2').joinNetwork('net1')
 .joinNetwork('net2')
as2.createRouter('r3').joinNetwork('net2')
 .joinNetwork('ix102')
Example: BGP Peering

ebgp.addPrivatePeerings([102, [2, 4], [11, 154], PeerRelationship.Provider])

ebgp.addPrivatePeerings([102, [11], [154, 11872], PeerRelationship.Provider])
Customizing Nodes

Get an instance of the host from AS-151
host0 = as151.getHost('host0')

Install software on the host
host0.addSoftware('telnetd').addSoftware('telnet')

Import a file to the host
host0.importFile(hostpath="/home/seed/ddos.py",
 nodepath="/tmp/ddos.py")

Create a file on the host
host0.setFile(content="some content",
 path="/tmp/file.txt")

This command is executed when the container is built
host0.addBuildCommand('useradd -m -s /bin/bash seed
 && echo "seed:dees" | chpasswd')

Append a command to the start script
host0.appendStartCommand('cd /bof && /bof/server &')
Shadow Internet

```
as152 = base.getAutonomousSystem(152)
as152.getNetwork('net0').enableRemoteAccess(ovpn)
```

```
as11872 = base.createAutonomousSystem(11872)
as11872.createRealWorldRouter('rw').joinNetwork('ix102', '10.102.0.118')
```
Visualization Tool: the Map

Set filter for packet trace visualization

Click on a node

Filter Search

udp and dst port 53

Replay

Recording events...

Get a terminal on a selected node
Visualization Tool: Design

The Map Application

Frontend

Backend

Docker Daemon

Internet Emulator:
Running Containers
Demo: Building Internet Emulator

Code: inside the examples/ folder
Components
Components

Components (Class + Object)

- DNS infrastructure
- Botnet
- Darknet
- A national/state backbone
- A company’s networks
- Blockchain
Extensible Design for Components

```python
emu.addBinding(Binding('root-a', filter=Filter(asn=171))
emu.addBinding(Binding('root-b', filter=Filter(asn=150))
emu.addBinding(Binding('com-a', filter=Filter(asn=151))
emu.addBinding(Binding('ns-syr-edu',
    filter=Filter(asn=152))

as_list = [150, 151, 152, 153, 154, 160, 161, 162]
for counter in range(10):
    vname = 'bot-node-%.2d' % (counter)
    asn = random.choice(as_list)
    emu.addBinding(Binding(vname,
        filter=Filter(asn=asn), action=Action.NEW))
```
DNS: A Component Example

Create a DNS layer
dns = DomainNameService()

Create two nameservers for the root zone
dns.install('root-a').addZone('.').setMaster()
dns.install('root-b').addZone('.')

Create nameservers for TLD zones
dns.install('com-a').addZone('com.').setMaster()
dns.install('com-b').addZone('com. ')
dns.install('edu').addZone('edu. ')

Create nameservers for second-level zones
dns.install('ns-example-com').addZone('example.com. ')
dns.install('ns-syr-edu').addZone('syr.edu. ')

Add records to zones
dns.getZone('example.com.').addRecord('@ A 2.2.2.2 ')
 .addRecord('www A 5.5.5.5 ')
 .addRecord('xyz A 5.5.6 ')
Blockchain Component

Create Ethereum nodes
```
e1 = eth.install("eth1").startMiner()
e2 = eth.install("eth2").startMiner()
e3 = eth.install("eth3").startMiner()
e4 = eth.install("eth4").startMiner()
e5 = eth.install("eth5")
e6 = eth.install("eth6")
```

Set bootnodes on e1 and e2.
The other nodes can use these bootnodes to find peers.
```
e1.setBootNode(True)
e2.setBootNode(True)
```

Deploy a smartcontract on e3
```
contract = SmartContract("./Contracts/contract.bin",
                         "/./Contracts/contract.abi")
e3.deploySmartContract(contract)
```
Adding Blockchain to Emulator

• Host Machine (Ubuntu 20.04 VM)

 1 [100.0%]
 2 [100.0%]

 Mem [2.58G/7.78G]
 Swp [477M/4.00G]

• Mini-Internet
 • 63 machines (containers)
 • 34 networks
 • 6 Internet exchanges
 • 13 stub autonomous systems
 • 5 transit autonomous systems
 • Blockchain
 • 4 mining nodes
 • 2 non-mining nodes
Blockchain: Integrating with Existing Tools

e6.startMiner().createNewAccount(2).
 unlockAccounts().
 enableExternalConnection()

Web3 Provider Endpoint
http://127.0.0.1:8545
Applications: Labs
Demo: BGP Attack Lab

• 2008: Pakistan Hijacked YouTube
• **Hijack 10.154.0.0/24** (AS-154)
• Attacker: **AS-161**

```plaintext
protocol static {
    ipv4 { table t_bgp; }
    route 10.154.0.0/25 blackhole {
        bgp_large_community.add(LOCAL_COMM);
    }
    route 10.154.0.128/25 blackhole {
        bgp_large_community.add(LOCAL_COMM);
    }
}
```
BGP Attack: Fight Back

Fight back (by AS-154)

```plaintext
protocol static {
    ipv4 { table t_bgp; };
    route 10.154.0.0/26 via "net0" {
        bgp_large_community.add(LOCAL_COMM);
    };
    route 10.154.0.64/26 via "net0" {
        bgp_large_community.add(LOCAL_COMM);
    };
    route 10.154.0.128/26 via "net0" {
        bgp_large_community.add(LOCAL_COMM);
    };
    route 10.154.0.192/26 via "net0" {
        bgp_large_community.add(LOCAL_COMM);
    };
}
```

Block it on upstream ISP

```plaintext
protocol bgp c_as161 {
    ipv4 {
        table t_bgp;
        import filter {
            bgp_large_community.add(CUSTOMER_COMM);
            bgp_local_pref = 30;
            if (net != 10.161.0.0/24) then reject;
            accept;
        };
        ...;
    }
    ...;
}
```
Morris Worm Lab Demo video https://youtu.be/2VZV-aFoVjk
Performance
Memory Usage

Powerful Server (20 cores, 120 GB of RAM)

Virtual Machine (2 cores, 4 GB of RAM)
CPU

Powerful Server

![Graph showing CPU time (s) vs. Number of ASes and CPU usage (%)]

- X-axis: Number of ASes
- Y-axis (left): CPU time (s)
- Y-axis (right): CPU usage (%)
Network Throughput

Powerful Server

Virtual Machine

Total throughput (Gbps)

Number of streams
Round Trip Time

Powerful Server

![Graph showing the relationship between number of streams and average RTT (ms)]
Additional Information
Getting the Code

• Download the source code
 GitHub: https://github.com/seed-labs/seed-emulator

• Set up the development environment
 $ source development.env

• The examples/ folder
Additional Information

SEED Website: https://seedsecuritylabs.org/

SEED Internet Emulator

We have developed an open-source Python framework, which can be used to create emulation of the Internet. It opens a door for many new activities that are difficult to perform in the current SEED platform, including BGP attacks, large-scale DNS attacks, Blockchain, Botnet, Dark-net, etc. We welcome everybody to join us in this project. More details about the Internet emulator and labs can be found here.
YouTube Videos

- **SEED Internet Emulator: Overview**
 - Kevin Du
 - Duration: 23:46

- **Build a small Internet**
 - Kevin Du
 - Duration: 23:45

- **BGP Attacks using SEED Emulator**
 - Kevin Du
 - Duration: 24:27

- **Deploy Botnet inside SEED Emulator**
 - Kevin Du
 - Duration: 12:36

- **Using SEED Emulator as a shadow Internet**
 - Kevin Du
 - Duration: 32:25

- **BGP Routing and Attacks**
 - Kevin Du
 - Duration: 2:04:53

- **SEED Labs: Morris Worm Attack Lab (Demo)**
 - Kevin Du
 - Duration: 0:48
Summary

• The SEED Internet Emulator
 • Design
 • Applications in cybersecurity education
 • Performance

• This is an open-source project

• Questions?