
BYOI: Bring Your Own Internet to Research and Education

Kyungrok Won and Wenliang Du
Syracuse University

Syracuse, New York, USA
{kwon01,wedu}@syr.edu

ABSTRACT

The SEED Internet emulator allows us to create a miniature
Internet inside a personal computer. While this emulator
standalone can have many applications, in many applications,
it is often more desirable if external computers and devices
can join the emulated Internet. For example, when using
the emulated Internet in class, it will be more interesting if
student can participate in the emulator using their computers
or mobile devices. In IoT research, allowing IoT devices
to connect to the emulator enables researchers to conduct
investigation that is hard to do on the real Internet.

Allowing our emulator to join the real Internet is also
useful for research and education. This way, we do not need
to duplicate everything inside the emulator; we can leverage
many services in the real Internet. We show how to achieve
this in the SEED emulator. Moreover, using a single computer
to do the emulation limits the scale of the emulation. To
solve this problem, we have developed a mechanism to allow
distributed emulation by joining multiple emulators to form
a single and larger scale emulator.

KEYWORDS

Internet emulation, networking, BGP

1 BRING YOUR OWN INTERNET

The SEED Internet emulator can be used as a standalone
emulation, but in many scenarios, it is often necessary to
connect external computers and devices to the emulator. For
example, when we use the emulator in the class to demon-
strate an interesting attack on the Internet, if we can let
students feel the impact, instead of just seeing the attack, the
effectiveness on learning will be better. To feel the impact,
students’ computers or smartphones should be connected to
the SEED emulator. Another use case is the IoT devices.
For IoT research, to benefit from the Internet emulator, it is
necessary to let the physical IoT devices join the emulation.

The problem that we are trying to solve is how to let
external physical devices join the emulation, which consists
entirely of virtual devices. To solve this problem, we need to
allow an external device to join one of the networks inside
the emulator. There are two specific problems that we need
to solve. First, networks inside the emulator are virtual, so
how to attach a physical device to a virtual network? Second,
once the device is attached to the network, it needs to get
an IP address. We need to create an DHCP server inside the
emulator to do this.

1.1 Setting Up DHCP

When an external device is attached to a network inside the
emulator, it must be assigned an IP address. This IP address
cannot be arbitrary; it must be routable inside the emulator,
or nobody can reach it. Inside the emulator, each network’s
prefix is announced by the BGP routers of its autonomous
system, so other hosts inside the emulator know how to reach
this network. When an external device is attached to such a
network, it must use the same network prefix.

Assigning IP address automatically is typically conducted
by a DHCP server on the network. To achieve this goal, we
have implemented a DHCP component, which allows us to
easily add a DHCP server to a network. The following code
snippet creates a DHCP server, and then install it to a host
inside AS-151.

1 # Create a DHCP server (virtual node).

2 dhcp = DHCPService()

3

4 # Default DhcpIpRange : n.n.n.101 ~ n.n.n.120

5 # Set DhcpIpRange : n.n.n.125 ~ n.n.n.140

6 dhcp.install(’dhcp-01’).setIpRange(125, 140)

7

8 # Customize the display name (for visualization)

9 emu.getVirtualNode(’dhcp-01’)

10 .setDisplayName(’DHCP Server 1’)

11

12 # Create a new host in AS-151

13 # Use it to host the DHCP servers.

14 # We can also host it on an existing node.

15 as151 = base.getAutonomousSystem(151)

16 as151.createHost(’dhcp-server-01’).joinNetwork(’net0’)

17

18 # Bind the DHCP virtual node to physical node.

19 emu.addBinding(Binding(’dhcp-01’, filter =

20 Filter(asn=151, nodeName=’dhcp-server-01’)))

With this setup, when an external host is attached to
the net0 of AS-151, if it is configured to use DHCP, it
will automatically get an IP address in the range of from
10.151.0.125 to 10.151.0.140, where 10.151.0.0/24 is the
network prefix assigned to net0.

1.2 Hardware Setup

We show how to attach an external device to a network
inside the emulator. The main idea is illustrated in Figure ??.
On the outside, all the external devices are either directly
plugged into a switch, or connected to a WiFi access point
that is plugged into a switch. This switch is then connected

1

to the targeted network. This setup is standard, similar to
the network connection in the real world.

The main challenge is how to connect the physical switch
to the network inside the emulator, so the physical switch
becomes an extension of the emulated network. Therefore,
when an external device is attached to this switch, it is
essentially attached to the network inside the emulator, and
thus becomes a member host of the emulation.

Host machine

Emulator

NIC

Figure 1: Connecting external devices to emulator

Networks inside the emulator are created by docker. They
are virtual and they are actually implemented using Linux
bridge, which behaves like a network switch and forwards
packets between interfaces that are connected to it. In docker,
attaching a container to a virtual network essentially attaches
the container’s network interface (virtual) to a Linux bridge.
We can also attach a physical network interface to this bridge.
After that, all the devices connected to the other end of this
interface also become attached to this Linux bridge, and thus
become attached to the virtual network corresponding to the
bridge.

We show how to connect the NIC in Figure 1 to a virtual
network inside the emulator. We can pick any network. In
our explanation, we choose net0 from AS-151 as an example.

We need to first find out the name of the physical inter-
face. After running the emulator, if we use the "ip address"

command to list all the network interfaces, we can get many,
because the list includes all the virtual network interfaces
and bridges created for the emulator. To hide these interfaces,
we use the grep command to exclude the interfaces that have
veth or br in their names.

$ ip -br addr | grep -vE ’veth|br’

lo UNKNOWN 127.0.0.1/8

enp0s3 UP 10.0.5.5/24

docker0 DOWN 172.17.0.1/16

enx7cc2c633b399 UP fe80::1c05:939...

In our setup, the interface enx7cc2c633b399 is the one
connected to the external physical switch, so we are going
to use this name. Make sure that the interface is in the UP

state before moving forward. More instruction regarding the
interface can be found in Section 1.3.

Next, we need to find out the name of the Linux bridge
corresponding to AS-151’s net0. We know this network’s pre-
fix is 10.151.0.0/24, so we can use the following command
to find the bridge.

$ ip -br addr show to 10.151.0.0/24

br-425e1d573afc UP 10.151.0.1/24

We now add the physical interface enx7cc2c633b399 to
this Linux bridge using the "ip link" command. After doing
that, we can also list all the interfaces connected to the bridge.
The entry marked by ✰ is the one added by us. The other
entries are for the containers attached to the same network.

$ sudo ip link set enx7cc2c633b399 master \

br-425e1d573afc

$ ip -br link show master br-425e1d573afc

veth40a62e5@if1577 UP 7e:c8:52:05:85:1a ...

enx7cc2c633b399 UP 7c:c2:c6:33:b3:99 ... ✰

veth604dd32@if1411 UP 02:14:0c:6c:41:5f ...

veth883181a@if1495 UP 0e:78:c8:73:cc:9b ...

vethe028bd9@if1499 UP 9e:42:e5:8f:74:6b ...

veth36692ec@if1501 UP 32:bd:c9:5a:a0:27 ...

As soon as the physical interface is added to the AS-151
network, all the external devices plugged into the physical
switch will get an IP address from the 10.151.0.0/24 net-
work, and therefore they become a host on the network net0

inside AS-151. They should be able to communicate with all
the hosts inside the emulator.

1.3 Adding a Network Interface

The most tricky part of the process is the physical network
interface involved in the setup. It depends on how we run
the emulator.

If we run the emulator inside a Ubuntu machine, the setup
will be the easiest. If the machine has a built-in ethernet
interface, we can use this one. If not, we can get a USB-to-
Ethernet adapter, so we can add an Ethernet interface to
our machine. We do not need to do much of the setup in
this case. All the commands used in Section 1.2 are from the
Ubuntu operating system.

The emulator can also run directly inside other types
of OS, such as Mac OS, but that will make the hardware
setup described in Section 1.2 difficult, if possible at all.
For example, To our limited knowledge, adding a physical
network interface to a virtual network created by docker is
not possible in the Mac OS.

If we run the emulator inside a virtual machine, the situ-
ation will be a little bit more complicated. All the network
interfaces created for the virtual machines by the VM soft-
ware (such as VirtualBox) are virtual, and in our experience,
we have found out that adding them to the docker’s virtual
network (i.e., bridge) did not produce a reliable result. The
best way is to use a physical network interface. The question

2

is how to get a physical network interface on the host into
the VM.

It will be difficult, if possible at all, to expose a physical
ethernet network interface on the host machine to the VM,
because VM software typically do not pass this physical
device into the VM. However, most VM software, such as
VirtualBox, does support USB pass through, i.e., a USB
device connected to the host machine can pass through the
host machine and become connected to the virtual machine.
Therefore, we can use a USB-to-Ethernet adaptor to connect
an physical ethernet network interface to the virtual machine.

There are many instructions on the Internet regarding how
to add a USB device to a virtual machine, so we will not
include one in this document. The procedure depends on the
type of virtual machine software, but it is quite similar and
straightforward.

1.4 Connecting at Multiple Locations

Connection to the Internet emulator can be conducted at
multiple locations. Figure 1 only shows the connection at
one location, but we can use the same method to connect
external devices to the emulator at multiple locations. We
just need to find another network inside the emulator, and
connects a physical network interface to that network. This
allows us to more realistically emulate the real world, where
devices joining the Internet from different locations.

1.5 Applications

We have conducted an experiment using our setup. In the
experiment, we put our Internet emulator on a laptop, and
hook a WiFi access point to the emulator. We brought the
setup to the classroom, asking students to connect their ma-
chines or smartphones to our WiFi. By doing that, students
immediately became the participants of the emulation. The
process was quite smooth, and it did not have much difference
compared to connecting to the campus WiFi.

We then conducted the BGP network prefix hijacking
inside the emulator, aiming to hijack our university’s net-
work prefix. Before the attack, students were able to access
the university’s website (due to our hybrid emulation setup,
which will be discussed later), but as soon as the attack was
launched, the university’s website was no long accessible,
while students could still access the rest of the Internet. Obvi-
ously, the attack only affects the routing inside the emulator,
not the real world.

2 DISTRIBUTED EMULATION

Due to the resource limitation (CPU and RAM), conducting
emulation on a single machine can be limited. To solve this
problem, we have developed a mechanism to easily scale
up the emulation by joining multiple emulators running on
different computers together. These computers can be in
the same physical location or remote (on the cloud), and
they each run an instance of emulator. In this section, we
describe how to join these emulators together to form a larger

emulation. Being able to join multiple emulators enable users
to easily expand the scale of the emulation.

2.1 Bridging Internet Exchanges

The merging of two emulators is done by simply bridging two
Internet exchanges from the two emulators. Assume that we
have two Internet emulators A and B, and we would like to
join them to form a larger emulation. To achieve that, A and
B should have a common Internet Exchange (say IX-100),
which is emulated using a network. Therefore, A has one part
of the network IX-100, and B has the other part. Bridging
these two parts of the network will result in the merging of
A’s IX-100 and B’s IX-100. See Figure 2.

IX
-1

0
0

 Emulator A

AS-3

AS-4

AS-5

AS-6

Host A

Emulator B

IX
-1

00

Host B

Figure 2: Bridging Internet Exchange

Once these two IXes are bridged, the BGP routers con-
nected to A’s IX-100 network and the BGP routers connected
to B’s IX-100 network are now connected to the same net-
work, and they can peer with one another. After peering
sessions are set up among these BGP routers, packets can
cross the bridge from one emulator to another. For example,
after the bridging, we can peer AS-3 with AS-5, and these
two BGP routers will start forwarding the network prefixes
that they know to each other. As results, AS-3 will now know
how to reach the networks in the emulator B, and AS-5 will
know how to reach the networks in the emulator A.

Two emulators can connect at multiple locations (IXes),
so they can reach each other via different paths. We just
need to bridge each pair of shared IXes between these two
emulators. Moreover, multiple emulators (more than two)
can be merged at the same location, as long as they share
the same IX.

2.2 Bridging Using Switch

Bridging two IXes from different emulators is similar to
connecting external devices to an emulator. As we can see in
Figure 2, the physical switch is connected to the IX’s network
via a physical network interface. This setup is exactly the
same as that described in Section 1.2. The only difference is
that for connecting external devices, we pick an autonomous
system’s network, while here we pick an Internet exchange’s
network. Since we will not add new hosts to the network,
there is no need to add an DHCP server to the network.

3

Once the same physical switch is connected both IX net-
works, the IX networks in the two emulators are connected
at the Layer 2, i.e., they become one single network.

2.3 Bridging Using VPN

Our emulator supports both physical bridging (using a phys-
ical switch, for machines at the same location) and virtual
bridging (using Layer-2 VPN, for remote machines). Detailed
instructions for this part will be added later. Contact us if
this is what you need.

2.4 BGP Peering

After bridging the IX networks from the two (or more) emula-
tors, we need to set up the BGP peering, so the BGP routers
on the merged IX network can exchange network traffic. To
peer two autonomous systems at an IX, we need to modify
their BGP routers’ configuration file /etc/bird/bird.conf,
and reload the configuration file into the routing daemon
using "birdc configure".

We use an example to show how to peer AS-2 with AS-5
at IX-100. In our emulator, IX-100’s network has a prefix
10.100.0.0/24, and AS-N’s BGP router on this network has
an IP address 10.100.0.N, where N is the autonomous system
number. We add the following to AS-2’s BGP configuration
to specify that AS-2 peers with AS-5.

protocol bgp p_as5 {

ipv4 {

table t_bgp;

import filter {

bgp_large_community.add(PEER_COMM);

bgp_local_pref = 20;

accept;

};

export where bgp_large_community ~ [LOCAL_COMM,

CUSTOMER_COMM];

next hop self;

};

local 10.100.0.2 as 2;

neighbor 10.100.0.5 as 5;

}

The local option in the configuration specifies which AS
the router belongs to and the IP address of the router. In this
case, AS-2’s IP address 10.100.0.2 is used. The neighbor

option specifies the IP address of the peer and what AS it
belongs to. This is the actual peering part. In this example,
we set up a BGP session between AS-2 and AS-5, so they can
exchange route information using the BGP protocol. The IP
address of AS-5’s BGP router on this network is 10.100.0.5.

It should be noted that when A and B peer with each other,
it is not necessary that A and B will tell each other every
network prefix that they know. What they tell each other
depends on their peering relationship. In the BGP session
above, AS-2 and AS-5 have peer-to-peer relationship. That is

why in the "import filter" section, all the routers from AS-
5 are marked as PEER COMM. With this relationship, AS-2 only
export the routes originated from itself or its downstream
customers. AS-2 will not export to AS-5 the routes from
its upstream providers. This is specified in the export filter.
If we would like to overwrite this rule, we can replace the
"export where ..." entry with "export all".

Peering entry also needs to be added to AS-5’s BGP router,
specifying that AS-5 peers with AS-2.

protocol bgp p_as2 {

ipv4 {

table t_bgp;

import filter {

bgp_large_community.add(PEER_COMM);

bgp_local_pref = 20;

accept;

};

export where bgp_large_community ~ [LOCAL_COMM,

CUSTOMER_COMM];

next hop self;

};

local 10.100.0.5 as 5;

neighbor 10.100.0.2 as 2;

}

Even if AS-2 or AS-5 knows all the routes from its own side
and export all of them to each other, it still does not guarantee
that all the routes from one emulator can be propagated
to the other emulator. This is because whether AS-2 or
AS-5 will further propagate the routes learned from each
other to its other peers depend on its peering relationship
with them. That is just the nature of BGP, and also how
things work in the real world. BGP peering relationship is
quite complicated. Readers can find more details from this
document (link). To improve the chance for all the networks
on one side to be reachable from the other side, peering with
multiple autonomous systems is suggested.

2.5 Overlapping Network Prefixes

When building distributed emulation, other than the shared
Internet exchanges, we should try to avoid having overlapping
network prefixes among different emulators. However, even
if that happens, it is not a problem. They will be simply
treated as IP anycast. Packets to the overlapping network
prefixes will arrive at one of the networks; which network
gets the packets depends on the routing. TCP services on
such a network may have issues, as the other end of the TCP
connection may change in the middle of a connection.

3 HYBRID EMULATION

By default, the SEED Internet emulator is isolated from the
outside: If a node tries to send packets to the outside, the
packet will be dropped by routers, because BGP routers do
not know how to route the packets. This closed emulation by
itself has many applications, but the scope of the applications

4

https://github.com/wonkr/seed-emulator/blob/development/docs/user_manual/bgp_peering.md

can be broaden if we allow a hybrid emulation, i.e., allowing
the machines inside the Internet emulator to communicate
with those on the real Internet. See Figure 3.

Emulator

Real Internet

Exit
point

Figure 3: Hybrid emulation

With the hybrid emulation, we do not need to duplicate
everything inside the emulator. For example, if there is a
useful web service that we would like to include in our emu-
lation, we do not need to duplicate that inside the emulation.
Instead, we can just directly use it using our hybrid emulation
technique.

Another application is to emulate the denial-of-service
attack on the real-world target. With the hybrid emulation,
our emulator can be used as a shadow Internet. Using the
setup described in Section 1, students visiting the real Internet
will go through the emulator. Their packets will eventually
exit the emulator and reach the final destination. If we want
to emulate a real denial-of-service attack against a real-world
target, such as example.com, we can now do it inside the
emulator, which to the user, is equivalent to the attack inside
the real Internet.

3.1 Hybrid Internet

To allow the emulated Internet to reach the real Internet,
we need to create an exit point inside the emulator. Packets
going to the real Internet will be routed to this exit point,
from where the packets will be forwarded to the real Internet.
Multiple exit points can also be created.

We create an autonomous system inside the emulator, and
use this AS as the exit point. The BGP router in this AS will
announce two prefixes inside the emulator: 0.0.0.0/1 and
128.0.0.0/1. These two network prefixes cover the entire
IPv4 address space, so if a destination IP address does not
match with any other entry in the routing table, it will match
with one of these two prefixes. This makes the exit point a
default destination: if a packet does not go to any network
inside the emulator, it will be routed towards the exit point.
If multiple exit points announce the same network prefixes,
it will be treated as IP anycast, which is naturally supported
by BGP.

If we only want to reach certain network in the real Internet,
instead of every network, we can narrow down the scope of the
prefix announcement. For example, if we only want to include
the example.com in our emulator, we can just announce the
93.184.216.0/24 prefix from the exit point.

Once a packet to the real-world Internet reaches the BGP
router of the exit point, the router will forwarded the packet
out after conducting the NAT (Network Address Translation).
NAT is necessary because we want the return packets to
come back to the exit point, from where the packet can be
forwarded to the emulated Internet.

The following code snippet shows how to create and set up
an exit point inside the emulator. In this example, we create
an autonomous system AS-99999, connect its BGP router to
the Internet Exchange ix100.

1 # Create hybrid AS.

2 # AS99999 is the emulator’s autonomous system that

3 # routes the traffics to the real-world internet

4 as99999 = base.createAutonomousSystem(99999)

5 router = as99999.createRealWorldRouter(’rw-real-world’,

6 prefixes=[’0.0.0.0/1’, ’128.0.0.0/1’])

7 router.joinNetwork(’ix100’, ’10.100.0.99’)

The createRealWorldRouter() API will create and set up
an exit-point BGP router, so it can announce the specified
network prefixes inside the emulator, as well as setting an
NAT server to conduct the network address translation. Other
than these special requirements, this BGP router is just like
any other BGP router inside the emulator.

Show some testing results ...

3.2 Hybrid DNS Infrastructure

DNS is an essential infrastructure for the Internet, so it is
supported in our emulator. The SEED Internet emulator can
host its own DNS infrastructure, from the root servers, to
TLD servers, and to the domain servers. To support the hy-
brid emulation, we need to include the real-world domains, so
we can find the IP addresses of the machines on the real Inter-
net. For example, if we want to visit the real www.google.com
website from inside the emulator, our DNS infrastructure
should help us resolve the IP address for this domain.

We support a hybrid DNS infrastructure, with some of the
nameservers hosted inside the emulator and some hosted in
the real Internet. Figure 4 illustrates the hybrid infrastructure,
where the shaded nodes represent zones hosted inside the
emulator, and the non-shaded nodes represent zones hosted
in the real Internet.

Root

com net edu

Figure 4: Hybrid DNS infrastructure

5

Hosting a hybrid DNS infrastructure like what is illustrated
in Figure 4 is quite challenging. There are two scenarios that
need to be dealt with differently. In the first scenario (the
com branch in the hierarchy of Figure 4 is an example), the
parent zone is inside the emulator. We can easily add the
child zone’s nameservers to the parent zone, regardless of
whether the child zone is hosted inside the emulator or not.
See the following code example.

Create the root and com zone

dns = DomainNameService()

dns.install(’root-server’).addZone(’.’)

dns.install(’ns-com’).addZone(’com.’)

Create the example.com zone

dns.install(’ns-example-com’).addZone(’example.com.’)

dns.getZone(’example.com.’).addRecord(’@ A 1.2.3.4’)

Register google.com’s nameserver to the com server

dns.getZone(’com.’)

.addRecord(’google.com NS ns1.google.com.’)

.addRecord(’google.com NS ns2.google.com.’)

.addRecord(’ns1.google.com A 216.239.32.10’)

.addRecord(’ns2.google.com A 216.239.34.10’)

In this example, we host the example.com nameserver in-
side the emulator, while using the real-world’s nameserver for
the google.com domain. For the first case, the example.com

domain’s nameserver will be automatically added to the
com server. For the latter case, we need to manually add
the google.com domain’s nameserver information to the com
nameserver.

The first scenario is not suitable if we need to register
many child zones from outside to the parent zone. It is not
just the amount of work involved; it is also the complexity,
because some real-world domain’s DNS is quite complicated.
Therefore, the second setup is more appropriate (see the net

branch in Figure 4). In this setup, we directly use the outside
nameservers for the parent zone. The challenge that we now
face is that if we host a child zone inside the emulator, how
do we register it with the real-world parent zone?

There is no easy way to do that, because in order to register
a child zone to its parent zone (which is real), we need to
actually own the child zone. That is not feasible. We use
a work-around to solve this problem. We create a forward
zone in the local DNS server to directly forward the query
to the child nameserver, instead of going through the entire
process, from root zone, TLD zone, and so on. This way, we
completely bypass the parent zone if the child zone of this
parent is hosted inside the emulator, so there is no need to
register to the parent zone.

In the following example, we create a nameserver for the
root zone. We use the setRealRootNS() API to specify that
the real-world zone file should be used to configure the root
zone. The API will download the real root zone records from
the Internet.

Create the root zone

dns = DomainNameService()

dns.install(’root-server’).addZone(’.’).setRealRootNS()

Create nameservers for example.net

dns.install(’ns-example-net’).addZone(’example.net.’)

dns.getZone(’example.net.’).addRecord(’@ A 1.2.3.4’)

Create a local DNS server

ldns = DomainNameCachingService()

ldns.install(’global-dns’)

.addFowardZone(’exampple.net.’, ’ns-example-net’)

In this example, we did not create any TLD zone. Because
the root zone file is from the real world, so the TLD servers
from the real Internet will be used. We do want to host a
second-level domain example.net inside the emulator. To
do that, we added a forward zone to the local DNS server.
This way, if the machines inside this emulation sends a DNS
query for google.com, the query will go to the real google
nameserver. However, for the query for example.net, the
local DNS server will take a “shortcut” and directly forward
the query to the emulated example.net nameserver.

4 SUMMARY

The SEED Internet emulator is an open-source project, which
was developed initially for cybersecurity education, but its
scope is now expanded beyond that. Its objective is to help
users easily create a miniature Internet with required services
deployed, so they can use the emulator to evaluate their
research ideas. While the emulator is fully functioning and is
already adopted by others, it is still under active development.
More features will be added in the near future. We welcome
other people to try the emulator, give us feedback, and help
us make this open-source software to better serve the research
and education community.

ACKNOWLEDGMENTS

The SEED emulator project was funded in part by the US
National Science Foundation (No. 1718086) and Syracuse
University’s Meredith Professorship grant and CUSE grant.

6

	Abstract
	1 Bring Your Own Internet
	1.1 Setting Up DHCP
	1.2 Hardware Setup
	1.3 Adding a Network Interface
	1.4 Connecting at Multiple Locations
	1.5 Applications

	2 Distributed Emulation
	2.1 Bridging Internet Exchanges
	2.2 Bridging Using Switch
	2.3 Bridging Using VPN
	2.4 BGP Peering
	2.5 Overlapping Network Prefixes

	3 Hybrid Emulation
	3.1 Hybrid Internet
	3.2 Hybrid DNS Infrastructure

	4 Summary
	Acknowledgments

