
SEED Labs – VPN Lab 1

Virtual Private Network (VPN) Lab

Copyright © 2006 - 2016 by Wenliang Du.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. If you remix, transform, or build upon the material, this copyright notice must be left intact, or
reproduced in a way that is reasonable to the medium in which the work is being re-published.

1 Overview

A Virtual Private Network (VPN) is used for creating a private scope of computer communications or pro-
viding a secure extension of a private network into an insecure network such as the Internet. VPN is a
widely used security technology. VPN can be built upon IPSec or TLS/SSL (Transport Layer Security/Se-
cure Socket Layer). These are two fundamentally different approaches for building VPNs. In this lab, we
focus on the TLS/SSL-based VPNs. This type of VPNs is often referred to as TLS/SSL VPNs.

The learning objective of this lab is for students to master the network and security technologies under-
lying VPNs. To achieve this goal, students will be asked to implement a simple TLS/SSL VPN. Although
this VPN is simple, it does include all the essential elements of a VPN. The design and implementation of
TLS/SSL VPNs exemplify a number of security principles, including the following:

• Virtual Private Network
• TUN/TAP, and IP tunneling
• Routing
• Public-key cryptography, PKI, and X.509 certificate
• TLS/SSL programming
• Authentication

Readings and videos. Detailed coverage of VPN, PKI, and TLS can be found in the following:

• Chapters 19, 24, and 25 of the SEED Book, Computer & Internet Security: A Hands-on Approach,
2nd Edition, by Wenliang Du. See details at https://www.handsonsecurity.net.

• Section 8 of the SEED Lecture, Internet Security: A Hands-on Approach, by Wenliang Du. See details
at https://www.handsonsecurity.net/video.html.

Related labs. We have a separate SEED lab on PKI, and another one on TLS. It is recommended that
students finish these two crypto labs before working on this comprehensive VPN lab. If students are only
interested in the tunneling part of the VPN (without the crypto part), they should use the VPN Tunneling
Lab, instead of this one.

Lab Environment. This lab has been tested on our pre-built Ubuntu 20.04 VM, which can be downloaded
from the SEED website. We need to use the opensslpackage in this lab. The package includes the header
files, libraries, and commands. The package was already installed in our pre-built VM image.

https://www.handsonsecurity.net
https://www.handsonsecurity.net/video.html

SEED Labs – VPN Lab 2

2 Lab Tasks

In this lab, students need to implement a simple VPN for Linux. We will call it miniVPN.

2.1 Task 1: VM Setup

We will create a VPN tunnel between a computer (client) and a gateway, allowing the computer to securely
access a private network via the gateway. We need at least three VMs: VPN client (also serving as Host
U), VPN server (the gateway), and a host in the private network (Host V). The network setup is depicted in
Figure 1.

`

`
192.168.60.101

User

VPN Client
Gateway

(VPN Server)

192.168.60.1

Host U

Host V

“NAT Network” Adapter

“Internal Network” Adapter

10.0.2.7 10.0.2.8

Figure 1: VM setup for this lab

In practice, the VPN client and VPN server are connected via the Internet. For the sake of simplicity,
we directly connect these two machines to the same LAN in this lab, i.e., this LAN simulates the Internet.
We will use the “NAT Network” adaptor for this LAN. The third machine, Host V, is a computer inside the
private network. Users on Host U (outside of the private network) want to communicate with Host V via
the VPN tunnel. To simulate this setup, we connect Host V to VPN Server (also serving as a gateway) via
an “Internal Network”. In such a setup, Host V is not directly accessible from the Internet; nor is it directly
accessible from Host U.

Note if a VM uses the “Internal Network” mode, VirtualBox provides no DHCP to it, so the VM must
be statically configured. To do this, click the network icon on the top-right corner of the desktop, and select
"Edit Connections". You will see a list of "Wired connections", one for each of the network
adaptors used by the VM. For Host V, there is only one connection, but for VPN Server, we will see two.
To make sure that you pick the one that is corresponding to the “Internal Network” adapter, You can check
the MAC address displayed in the pop-up window after you have picked a connection to edit. Compare this
MAC address with the one that you get from ifconfig, and you will know whether you picked the right
connection.

After you have selected the right connection to edit, pick the "ipv4 Settings" tab and select the
"Manual" method, instead of the default "Automatic (DHCP)". Click the "Add" button to set up
the new IP address for the VM. See Figure 2 for details.

SEED Labs – VPN Lab 3

Figure 2: Manually set up the IP address for the "Internal Network" adaptor on VPN Server.

2.2 Task 2: Creating a VPN Tunnel using TUN/TAP

The enabling technology for the TLS/SSL VPNs is TUN/TAP, which is now widely implemented in modern
operating systems. TUN and TAP are virtual network kernel drivers; they implement network device that
are supported entirely in software. TAP (as in network tap) simulates an Ethernet device and it operates with
layer-2 packets such as Ethernet frames; TUN (as in network TUNnel) simulates a network layer device and
it operates with layer-3 packets such as IP packets. With TUN/TAP, we can create virtual network interfaces.

A user-space program is usually attached to the TUN/TAP virtual network interface. Packets sent by an
operating system via a TUN/TAP network interface are delivered to the user-space program. On the other
hand, packets sent by the program via a TUN/TAP network interface are injected into the operating system
network stack; to the operating system, it appears that the packets come from an external source through the
virtual network interface.

When a program is attached to a TUN/TAP interface, the IP packets that the computer sends to this
interface will be piped into the program; on the other hand, the IP packets that the program sends to the
interface will be piped into the computer, as if they came from the outside through this virtual network
interface. The program can use the standard read() and write() system calls to receive packets from
or send packets to the virtual interface.

We have created a sample VPN client program (vpnclient) and a server program (vpnserver),
both of which can be downloaded from this lab’s web site. The programs are explained in details in Chapter
16 of the SEED book titled Computer & Internet Security: A Hands-on Approach, 2nd Edition; the chapter
also explains how TUN/TAP works and how to use it to create VPN.

The vpnclient and vpnserver programs are the two ends of a VPN tunnel. They communicate
with each other using either TCP or UDP via the sockets depicted in Figure 3. In our sample code, we
choose to use UDP for the sake of simplicity. The dotted line between the client and server depicts the path
for the VPN tunnel. The VPN client and server programs connect to the hosting system via a TUN interface,
through which they do two things: (1) get IP packets from the hosting system, so the packets can be sent
through the tunnel, (2) get IP packets from the tunnel, and then forward it to the hosting system, which will
forward the packet to its final destination. The following procedure describes how to create a VPN tunnel
using the vpnclient and vpnserver programs.

SEED Labs – VPN Lab 4

192.168.53.1

`

192.168.53.5

VPN
Client Program

VPN
Server Program

Internet

socket socket

tun0 tun0

VPN Tunnel (TCP or UDP)

VPN
Client
VM

VPN
Server
VM

10.0.2.7 10.0.2.8

Figure 3: VPN client and server

Step 1: Run VPN Server. We first run the VPN server program vpnserver on the Server VM. Af-
ter the program runs, a virtual TUN network interface will appear in the system (we can see it using the
"ifconfig -a" command; the name of the interface will be tun0 in most cases, but they can be tunX,
where X is a number). This new interface is not yet configured, so we need to configure it by giving it an IP
address. We use 192.168.53.1 for this interface.

Run the following commands. The first command will start the server program, and the second command
assigns an IP address to the tun0 interface and then activates it. It should be noted that the first command
will block and wait for connections, so we need to find another window run the second command.

$ sudo ./vpnserver

Run the following command in another window:
$ sudo ifconfig tun0 192.168.53.1/24 up

Unless specifically configured, a computer will only act as a host, not as a gateway. The VPN Server
needs to forward packets between the private network and the tunnel, so it needs to function as a gateway.
We need to enable the IP forwarding for a computer to behave like a gateway. IP forwarding can be enabled
using the following command:

$ sudo sysctl net.ipv4.ip_forward=1

Step 2: Run VPN Client. We now run the VPN client program on the Client VM. We run the following
commands on this machine. The first command will connect to the VPN server program (the server’s IP
address is hardcoded inside the program, and you need to change it accordingly). This command will block
as well, so we need to find another window to configure the tun0 interface created by the VPN client
program. We assign IP address 192.168.53.5 to the tun0 interface.

On VPN Client VM:
$ sudo ./vpnclient

Run the following command in a different window
$ sudo ifconfig tun0 192.168.53.5/24 up

SEED Labs – VPN Lab 5

Step 3: Set Up Routing on Client and Server VMs: After the above two steps, the tunnel will be
established. Before we can use the tunnel, we need to set up routing paths on both client and server machines
to direct the intended traffic through the tunnel. On the client machine, we need to direct all the packets going
to the private network (192.168.60.0/24) towards the tun0 interface, from where the packets can be
forwarded through the VPN tunnel. Without this setup, we will not be able to access the private network at
all. We can use the route command to add an routing entry. The following example shows how to route
the 10.20.30.0/24-bound packets to the interface eth0.

$ sudo route add -net 10.20.30.0/24 eth0

On both client and server machines, we also need to set up a routing entry so all the traffic going to the
192.168.53.0/24 network are directed to the tun0 interface. This entry will usually be automatically
added when we assign 192.168.53.X to the tun0 interface. If for some reasons it is not added, we can
use the route command to add it.

Step 4: Set Up Routing on Host V. When Host V replies to a packet sent from Host U, it needs to route
the packets to the VPN Server VM, from where, it can be fed into the VPN tunnel toward the other end.
You need to find out what entry to add, and then use the route command to add the routing entry. Hint:
when Host V receives a packet from Host U (via the tunnel), you need to know what the source IP is in the
packet; in the reply packet, the source IP becomes the destination IP, which will be used by the routing table.
Therefore, you need to figure out the source IP of the packets from U to V. It is your task to figure this out
and set the routing correctly in this step.

Step 5: Test the VPN Tunnel: After everything is set up, we can access Host V from Host U via the
tunnel. Please conduct the following tests using ping and telnet; please report your results. You should
use Wireshark to capture the network traffics on all the interfaces on the client VM, and pinpoint which
packets are part of the tunnel traffic, and which packets are not the tunnel traffic.

On Host U:
$ ping 192.168.60.101
$ telnet 192.168.60.101

Step 6: Tunnel-Breaking Test. On Host U, telnet to Host V. While keeping the telnet connection
alive, we break the VPN tunnel. We then type something in the telnet window, and report what you
observe. We then reconnect the VPN tunnel. What is going to happen to the telnet connection? Will it
be broken or resumed? Please describe and explain your observations.

2.3 Task 3: Encrypting the Tunnel

At this point, we have created an IP tunnel, but our tunnel is not protected. Only after we have secured
this tunnel, can we call it a VPN tunnel. This is what we are going to achieve in this task. To secure this
tunnel, we need to achieve two goals, confidentiality and integrity. The confidentiality is achieved using
encryption, i.e., the contents that go through the tunnel is encrypted. The integrity goal ensures that nobody
can tamper with the traffic in the tunnel or launch a replay attack. Integrity can be achieved using Message
Authentication Code (MAC). Both goals can be achieved using Transport Layer Protocol (TLS).

TLS is typically built on top of TCP. The sample VPN client and server programs in Task 2 use UDP,
so we first need to replace the UDP channel in the sample code with a TCP channel, and then establish a
TLS session between the two ends of the tunnel. A sample TLS client and server program (tlsclient

SEED Labs – VPN Lab 6

and tlsserver) is provided in a zip file that can be downloaded from the website. Instructions on how to
compile and run the code is provided in the README file included in the zip file. For detailed explanation
of the sample code, please read Chapter 25 of the SEED book (Computer & Internet Security: A Hands-on
Approach, 2nd Edition). In your demonstration, you need to use Wireshark to capture the traffic inside the
VPN tunnel, and show that the traffic is indeed encrypted.

2.4 Task 4: Authenticating the VPN Server

Before a VPN is established, the VPN client must authenticate the VPN server, making sure that the server
is not a fraudulent one. On the other hand, the VPN server must authenticate the client (i.e. user), making
sure that the user has the permission to access the private network. In this task, we implement the server
authentication; the client authentication is in the next task.

A typical way to authenticate servers is to use public-key certificates. The VPN server needs to first get
a public-key certificate from a Certificate Authority (CA). When a client makes a connection to the VPN
server, the server will use the certificate to prove it is the intended server. The HTTPS protocol uses this
approach to authenticate web servers, ensuring that you are talking to an intended web server, not a fake
one.

In this lab, MiniVPN should use such a method to authenticate the VPN server. We can implement
an authentication protocol (such as TLS/SSL) from the scratch, but fortunately, openssl has taken care
most of the work for us. We just need to configure our TLS session properly, so openssl can conduct the
authentication automatically for us.

There are three important steps in server authentication: (1) verifying that the server certificate is valid,
(2) verifying that the server is the owner of the certificate, and (3) verifying that the server is the intended
server (for example, if the user intends to visit example.com, we need to ensure that the server is indeed
example.com, not another site). Please point out what lines of the code in your program carry out the
above verifications. In your demonstration, you need to demonstrate two different cases regarding the third
verification: a successful server authentication where the server is the intended server, and a failed server
authentication where the server is not the intended server.

Note: Our MiniVPN program should be able to communicate with VPN servers on different machines,
so you cannot hardcode the hostname of the VPN server in the program. The hostname needs to be typed in
from the command line. This name represents the user’s intention, so it should be used in the verification.
This name should also be used to find the IP address of the server. Section 3.2 provides a sample program
to show you how to get the IP address for a given hostname.

Our sample TLS client and server programs. Server authentication is implemented in the sample pro-
grams provided by us. Part of the authentication requires the certificate of the CA who issues the server
certificate. We have put two CA certificates in the ./ca client folder: one is the CA that issues our
server’s certificate (the hostname of the server is vpnlabserver.com), and the other is the CA that is-
sues Google’s certificate. Therefore, the sample TLS client program can talk to our own server, as well as
Google’s HTTPS server:

$./tlsclient vpnlabserver.com 4433
$./tlsclient www.google.com 443

It should be noted that students should not use vpnlabserver.com from the sample code as their
VPN server name; instead, they should include their last name in the server name. Students should gen-

vpnlabserver.com

SEED Labs – VPN Lab 7

erate their own CA in order to create server certificates. The objective of this requirement is to differentiate
student’s work.

To use our client to talk to an HTTPS server, we need to get its CA’s certificate, save the certificate in
the ./ca client folder, and create a symbolic link to it (or rename it) using the hash value generated
from its subject field. For example, to enable our client to talk to Google, who gets its certificate from a root
CA called “GeoTrust Global CA”, we get this root CA’s certificate (GeoTrustGlobalCA.pem) from the
Firefox browser, and run the following command to get its hash and then set up the symbolic link:

$ openssl x509 -in GeoTrustGlobalCA.pem -noout -subject_hash
2c543cd1

$ ln -s GeoTrustGlobalCA.pem 2c543cd1.0
$ ls -l
lrwxrwxrwx 1 ... 2c543cd1.0 -> GeoTrustGlobalCA.pem
lrwxrwxrwx 1 ... 9b58639a.0 -> cacert.pem
-rw-r--r-- 1 ... cacert.pem
-rw-r--r-- 1 ... GeoTrustGlobalCA.pem

2.5 Task 5: Authenticating the VPN Client

Accessing the machines inside a private network is a privilege that is only granted to authorized users, not
to everybody. Therefore, only authorized users are allowed to establish a VPN tunnel with the VPN server.
In this task, authorized users are those who have a valid account on the VPN server. We will therefore use
the standard password authentication to authenticate users. Basically, when a user tries to establish a VPN
tunnel with the VPN server, the user will be asked to provide a user name and a password. The server will
check its shadow file (/etc/shadow); if a matching record is found, the user is authenticated, and the
VPN tunnel will be established. If there is no match, the server will break its connection with the user, and
thus no tunnel will be established. See Section 3.3 for sample code on how to authenticate users using the
shadow file.

2.6 Task 6: Supporting Multiple Clients

In the real world, one VPN server often supports multiple VPN tunnels. Namely, the VPN server allows
more than one clients to connect to it simultaneously, with each client having its own VPN tunnel (and thus
its own TLS session). Our MiniVPN should support multiple clients.

In a typical implementation, the VPN server process (the parent process) will create a child process for
each tunnel (see Figure 4). When a packet comes from the tunnel, its corresponding child process will get
the packet, and forward it to the TUN interface. This direction is the same regardless of whether multiple
clients are supported or not. It is the other direction that becomes challenging. When a packet arrives at
the TUN interface (from the private network), the parent process will get the packet, now it needs to figure
out which tunnel this packet should go to. You need to think about how to implement this decision-making
logic.

Once the decision is made and a tunnel is selected, the parent process needs to send the packet to the
child process, to which the selected tunnel is attached. This calls for IPC (Inter-Process Communication).
A typical approach is to use pipes. We provide a sample program in Section 3.4 to demonstrate how to use
pipes for IPC.

Child processes need to monitor this pipe interface, and read data from it if there are data. Since child
processes also need to watch out for data coming from the socket interface, they need to simultaneously

SEED Labs – VPN Lab 8

t
u

n
0

Process 1

Process 2

Process 3

Tunnel 1

Tunnel 2

Tunnel 3

Client 1

Client 2

Client 3

`

`

`

PacketsWhich
way?

Parent Process

Figure 4: Supporting multiple VPN clients

monitor multiple interfaces. Section 3.5 shows how to achieve that.

3 Guidelines

3.1 Displaying TLS Traffic in Wireshark

Wireshark identifies TLS/SSL traffic based on port numbers. It knows 443 is the default port number for
HTTPS, but our VPN server listens to a different and non-standard port number. We need to let Wireshark
know that; otherwise, Wireshark will not label our traffic as SSL/TLS traffic. Here is what we can do:
go to the Edit menu in Wireshark, and click Preferences, Protocols, HTTP, and then find the
"SSL/TLS Ports" entry. Add your SSL server port. For example, we can change the content of the
entry to 443,4433, where 4433 is the port used by our SSL server.

Displaying decrypted traffic. The approach shown above only gets Wireshark to recognize the traffic as
TLS/SSL traffic; Wireshark cannot decrypt the encrypted traffic. For debugging purposes, we would like
to see the decrypted traffic. Wireshark provides such a feature; all we need to do is to provide the server’s
private key to Wireshark, and Wireshark will automatically derive the session keys from the TLS/SSL hand-
shake protocol, and use these keys to decrypt traffic. To provide the server’s private key to Wireshark, do
the following:

Click Edit -> Preferences -> Protocols -> SSL
Find the "RSA key list", and click the Edit button
Provide the required information about the server, see this example:

IP Address: 10.0.2.65
Port: 4433
Protocol: ssl
Key File: /home/seed/vpn/server-key.pem (privat key file)
Password: deesdees

SEED Labs – VPN Lab 9

3.2 Getting IP Address from Hostname

Given a hostname, we can get the IP address for this name. In our sample tlsclient program, we use
the gethostbyname() function to get the IP address. However, this function is obsolete because it does
not support IPV6. Applications should use getaddrinfo() instead. The following example shows to
how to use this function to get IP addresses.

#include <stdio.h>
#include <stdlib.h>
#include <netdb.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <arpa/inet.h>

struct addrinfo hints, *result;

int main() {

hints.ai_family = AF_INET; // AF_INET means IPv4 only addresses

int error = getaddrinfo("www.example.com", NULL, &hints, &result);
if (error) {

fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(error));
exit(1);

}

// The result may contain a list of IP address; we take the first one.
struct sockaddr_in* ip = (struct sockaddr_in *) result->ai_addr;
printf("IP Address: %s\n", (char *)inet_ntoa(ip->sin_addr));

freeaddrinfo(result);
return 0;

}

3.3 Authentication Using the Shadow File

The following program shows how to authenticate a user using the account information stored in the shadow
file. The program uses getspnam() to get a given user’s account information from the shadow file,
including the hashed password. It then uses crypt() to hash a given password and see whether the result
matches with the values fetched from the shadow file. If so, the user name and the password match, and the
authentication is successful.

#include <stdio.h>
#include <string.h>
#include <shadow.h>
#include <crypt.h>

int login(char *user, char *passwd)
{

struct spwd *pw;
char *epasswd;

SEED Labs – VPN Lab 10

pw = getspnam(user);
if (pw == NULL) {

return -1;
}

printf("Login name: %s\n", pw->sp_namp);
printf("Passwd : %s\n", pw->sp_pwdp);

epasswd = crypt(passwd, pw->sp_pwdp);
if (strcmp(epasswd, pw->sp_pwdp)) {

return -1;
}

return 1;
}

void main(int argc, char** argv)
{

if (argc < 3) {
printf("Please provide a user name and a password\n");
return;

}

int r = login(argv[1], argv[2]);
printf("Result: %d\n", r);

}

We can compile the code above and run it with a user name and a password. It should be noted that the
root privilege is needed when reading from the shadow file. See the following commands for compilation
and execution.

$ gcc login.c -lcrypt
$ sudo ./a.out seed dees

It should be noted that we use -lcrypt in the above compilation; we used -lcryptowhen compiling
our TLS programs. The crypt and crypto are two different libraries, so this is not a typo.

3.4 Inter-Process Communication Using Pipe

The following program shows how a parent process sends data to its child process using pipe. The parent
process creates a pipe using pipe() in Line À. Each pipe has two ends: the input end’s file descriptor is
fd[0], and the output end’s file descriptor is fd[1].

After the pipe is created, a child process is spawned using fork(). Both parent and child processes
have the file descriptors associated with the pipe. They can send data to each other using the the pipe, which
is bi-directional. However, we will only use this pipe to send data from the parent process to the child
process, and the parent will not read anything from the pipe, so we close the input end fd[0] in the parent
process. Similarly, the child does not send anything via the pipe, so it closes the output end fd[1]. At
this point, we have established a uni-directional pipe from the parent process to the child process. To send
data via the pipe, the parent process writes to fd[1] (see Line Á); to receive data from the pipe, the child
process reads from fd[0] (see Line Â).

SEED Labs – VPN Lab 11

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

int main(void)
{

int fd[2], nbytes;
pid_t pid;
char string[] = "Hello, world!\n";
char readbuffer[80];

pipe(fd); À

if((pid = fork()) == -1) {
perror("fork");
exit(1);

}

if(pid>0) { //parent process
close(fd[0]); // Close the input end of the pipe.

// Write data to the pipe.
write(fd[1], string, (strlen(string)+1)); Á
exit(0);

}
else { //child process

close(fd[1]); // Close the output end of the pipe.

// Read data from the pipe.
nbytes = read(fd[0], readbuffer, sizeof(readbuffer)); Â
printf("Child process received string: %s", readbuffer);

}
return(0);

}

3.5 Using select to Monitor Multiple Input Interfaces

Our VPN program needs to monitor multiple interfaces, including the TUN interface, the socket interface,
and sometimes, the pipe interface. All these interfaces are represented by file descriptors, so we need to
monitor them to see whether there are data coming from them. One way to do that is to keep polling them,
and see whether there are data on each of the interfaces. The performance of this approach is undesirable,
because the process has to keep running in an idle loop when there is no data. Another way is to read from
an interface. By default, read is blocking, i.e., the process will be suspended if there are no data. When
data become available, the process will be unblocked, and its execution will continue. This way, it does not
waste CPU time when there is no data.

The read-based blocking mechanism works well for one interface. If a process is waiting on multiple
interfaces, it cannot block on just one of the interfaces. It has to block on all of them altogether. Linux has a
system call called select(), which allows a program to monitor multiple file descriptors simultaneously.
To use select(), we need to store all the file descriptors to be monitored in a set using the FD SET
macro (see Lines À and Á in the code below). We then give the set to the select() system call (Line Â),

SEED Labs – VPN Lab 12

which will block the process until data are available on one of the file descriptors in the set. We can then use
the FD ISSET macro to figure out which file descriptor has received data. In the following code example,
we use select() to monitor a TUN and a socket file descriptor.

fd_set readFDSet;
int ret, sockfd, tunfd;

FD_ZERO(&readFDSet);
FD_SET(sockfd, &readFDSet); À
FD_SET(tunfd, &readFDSet); Á
ret = select(FD_SETSIZE, &readFDSet, NULL, NULL, NULL); Â

if (FD_ISSET(sockfd, &readFDSet){
// Read data from sockfd, and do something.

}

if (FD_ISSET(tunfd, &readFDSet){
// Read data from tunfd, and do something.

}

3.6 An example: using telnet in our VPN

To help you fully understand how packets from an application flow to its destination through our MiniVPN,
we have drawn two figures to illustrate the complete packet flow path when users run telnet 10.0.20.100
from a host machine, which is the Point A of a host-to-gateway VPN. The other end of the VPN is on a
gateway, which is connected to the 10.0.20.0/24 network, where our telnet server 10.0.20.100
resides.

Figure 5(a) shows how a packet flow from the telnet client to the server. Figure 5(b) shows how
a packet flow from the telnet server back to the client. We will only describe the path in Figure 5(a)
in the following. The return path is self-explained from Figure 5(b) once you have understood the path in
Figure 5(a).

1. The data of the packet starts from the telnet program.

2. The kernel will construct an IP packet, with the destination IP address being 10.0.20.100.

3. The kernel needs to decide which network interface the packet should be routed through: eth1 or
tun0. You need to set up your routing table correctly for the kernel to pick tun0. Once the decision
is made, the kernel will set the source IP address of the packet using the IP address of the network
interface, which is 10.0.4.1.

4. The packet will reach our VPN program (Point A) through the virtual interface tun0, then it will be
encrypted, and then be sent back to the kernel through a UDP port (not through the tun0 interface).
This is because our VPN program use the UDP as our tunnel.

5. The kernel will treat the encrypted IP packet as UDP data, construct a new IP packet, and put the
entire encrypted IP packet as its UDP payload. The new IP’s destination address will be the other end
of the tunnel (decided by the VPN program we write); in the figure, the new IP’s destination address
is 128.230.208.97.

6. You need to set up your routing table correctly, so the new packet will be routed through the interface
eth1; therefore, the source IP address of this new packet should be 209.164.131.32.

SEED Labs – VPN Lab 13

7. The packet will now flow through the Internet, with the original telnet packet being entirely en-
crypted, and carried in the payload of the packet. This is why it is called a tunnel.

8. The packet will reach our gateway 128.230.208.97 through its interface eth1.

9. The kernel will give the UDP payload (i.e. the encrypted IP packet) to the VPN program (Point B),
which is waiting for UDP data. This is through the UDP port.

10. The VPN program will decrypt the payload, and then feed the decrypted payload, which is the original
telnet packet, back to the kernel through the virtual network interface tun0.

11. Since it comes through a network interface, the kernel will treat it as an IP packet (it is indeed an IP
packet), look at its destination IP address, and decide where to route it. Remember, the destination IP
address of this packet is 10.0.20.100. If your routing table is set up correctly, the packet should
be routed through eth2, because this is the interface that connects to the 10.0.20.0/24 network.

12. The telnet packet will now be delivered to its final destination 10.0.20.100.

4 Submission and Demonstration

You should submit a detailed lab report to describe your design and implementation. You should also de-
scribe how you test the functionalities and security of your system. You also need to demonstrate your
system to us. Please sign up a demonstration time slot with the TA. Please take the following into consider-
ation when you prepare for demonstration:

• The total time of the demo will be 15 minutes, no more additional time would be given. So prepare
your demonstration so you can cover the important features.

• You are entirely responsible for showing the demo. We will NOT even touch the keyboard during
the demonstration; so you should not depend on us to test your system. If you fail to demo some
important features of your system, we will assume that your system does not have those features.

• You need to practice before you come to the demonstration. If the system crashes or anything goes
wrong, it is your own fault. We will not debug your problems, nor give you extra time for it.

• During the demo, you should consider yourself as salesmen, and you want to sell your system to us.
You are given 15 minutes to show us how good your system is. So think about your sales strategies.
If you have implemented a great system, but fail to show us how good it is, you are not likely to get a
good grade.

• Do turn off the messages your system prints out for debugging purposes. Those messages should not
appear in a demonstration.

5 Checklist for Demonstration

During the COVID-19 outbreak, we cannot do in-person demo. Although doing demo online is an option,
we decide to experiment with a different approach: asking students to record their demo and submit the
video file. To help them conduct a self-guided demo, we provide a checklist in Table 1. Even if we do
in-person demo, this checklist is still quite useful.

SEED Labs – VPN Lab 14

10.0.20.100

Internet

Telnet Program

TCP Port

VPN Program (Point A)

tun0
UDP Port

Kernel

IP

TCP

Data

Routing

IP

TCP

Data

eth1

IP

TCP

Data

Encrypt

New IP

UDP

IP

TCP

Data

New IP

UDP

IP

TCP

Data

VPN Program (Point B)

IP

TCP

Data

IP

TCP

Data

Decrypt

eth1

UDP Port
tun0

IP

TCP

Data

Telnet 10.0.20.100

Routing

Kernel

NIC Card

` `

10.0.20.101

eth2

IP: 10.0.4.1 => 10.0.20.100

New IP: 209.164.131.32 => 128.230.208.97

10.0.4.1 10.0.5.1

209.164.131.32 128.230.208.97

How packets flow from client to server when running “telnet 10.0.20.100” using a VPN

NIC CardNIC Card

Data

(a) An Example of packet flow from telnet client to server in Host-to-Gateway Tunnel

10.0.20.100

Internet

Telnet Program

TCP Port

VPN Program (Point A)

tun0
UDP Port

Kernel

IP

TCP

Data

IP

TCP

Data

eth1

IP

TCP

Data

Decrypt

New IP

UDP

IP

TCP

Data

New IP

UDP

IP

TCP

Data

VPN Program (Point B)

IP

TCP

Data

IP

TCP

Data

Encrypt

eth1

UDP Port
tun0

IP

TCP

Data

Telnet 10.0.20.100

Kernel

NIC Card

` `

10.0.20.101

eth2

IP: 10.0.20.100 => 10.0.4.1

New IP: 128.230.208.97 => 209.164.131.32

10.0.4.1 10.0.5.1

209.164.131.32 128.230.208.97

Routing

Data

How packets return from server to client when running “telnet 10.0.20.100” using a VPN

NIC Card NIC Card

(b) An Example of packet flow from telnet server to client in Host-to-Gateway Tunnel

Figure 5: An Example of Packet Flow in VPN.

SEED Labs – VPN Lab 15

Table 1: Checklist for VPN demonstration

Requirements Details

Initial State • Rebooting all three VMs. Start recording after the VMs are rebooted. You should
start demo immediately after rebooting. If you wait too long, you will have to do
the rebooting again.

• Type "last reboot; date" in a terminal to show the rebooting time and cur-
rent time on all three VMs. The difference between these two times should not be
more than 5 minute.

• Display the routing tables on all three VMs.

Pre-Tunnel Test • Before VPN is set up, ping Host V from Host U and explain your observation.

Tunnel Creation • Start vpn client and vpn server programs.

– You need to type passwords to authenticate yourself to the server, the password
should not be visible (10 points will be deducted if we see your passwords).
You can use getpass() to achieve that (type “man getpass” to see its
manual).

– Passwords cannot be hardcoded in your program. If you do this, 50 points will
be deducted.

• Perform configuration on all VMs. Although you can put the configuration com-
mands in a script, you do need to show the script and explain the commands in your
script.

• Show routing tables on all three VMs after the configuration.

Ping Test • On Host U: ping Host V.

• Use Wireshark to prove that your VPN works correctly.

• Show us the proof that the tunnel is indeed encrypted.

Telnet Test • On Host U: telnet to Host V.

• Use Wireshark to prove that your VPN works correctly.

SEED Labs – VPN Lab 16

Tunnel-Breaking
Test

• On Host U, telnet to Host V. While keeping the telnet connection alive, break the
VPN tunnel by stopping the vpn client and/or vpn server programs. Then type
something in the telnet window. Do you see what you type? What happens to the
TCP connection? Is the connection broken?

• Let us now reconnect the VPN tunnel (do not wait for too long). Run the client and
server programs again, and conduct the necessary configuration (no need to explain
or show commands). Once the tunnel is re-established, what is going to happen to
the telnet connection? Please describe and explain your observation.

Large Packet Test • Send a large packet (size > 3000) from Host U to Host V. You can use "ping -s"
to do that.

• Use Wireshark to describe and explain your observations.

TLS Setup • Show us how you set up your TLS on both client and server sides.

• Show us where you place the server certificates and self-signed certificate.

• Show us which lines of code load those certificates.

MITM Test • Demonstrate that your system can successfully defeat MITM attacks. You need
to set up a simulated MITM attack, and demonstrate that your client program can
defeat it.

Code Explanation 1 Which lines of code are responsible for the following:

• verifying that the server certificate is valid

• verifying that the server is the owner of the certificate

• verifying that the server is the intended server

Code Explanation 2 Which line of code in the client forces TLS handshake to stop if the server certificate
verification fails?

Code Explanation 3 Which line(s) of code do the following?

• sending username and password to the server

• getting account information from the shadow file

Ending Time Type "last reboot; date" commands to display the time before ending your
demo.

	Overview
	Lab Tasks
	Task 1: VM Setup
	Task 2: Creating a VPN Tunnel using TUN/TAP
	Task 3: Encrypting the Tunnel
	Task 4: Authenticating the VPN Server
	Task 5: Authenticating the VPN Client
	Task 6: Supporting Multiple Clients

	Guidelines
	Displaying TLS Traffic in Wireshark
	Getting IP Address from Hostname
	Authentication Using the Shadow File
	Inter-Process Communication Using Pipe
	Using select to Monitor Multiple Input Interfaces
	An example: using telnet in our VPN

	Submission and Demonstration
	Checklist for Demonstration

