
SEED Labs – Firewall Evasion Lab 1

Firewall Evasion Lab

Copyright © 2022 by Wenliang Du.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. If you remix, transform, or build upon the material, this copyright notice must be left intact, or
reproduced in a way that is reasonable to the medium in which the work is being re-published.

1 Overview

There are situations where firewalls are too restrictive, making it inconvenient for users. For example, many
companies and schools enforce egress filtering, which blocks users inside of their networks from reaching
out to certain websites or Internet services, such as game and social network sites. There are many ways
to evade firewalls. A typical approach is to use the tunneling technique, which hides the real purposes
of network traffic. There are a number of ways to establish tunnels. The two most common tunneling
techniques are Virtual Private Network (VPN) and port forwarding. The goal of this lab is to help students
gain hands-on experience on these two tunneling techniques. The lab covers the following topics:

• Firewall evasion
• VPN
• Port forwarding
• SSH tunneling

Readings and videos. Detailed coverage of the tunneling technology and how to use it to evade firewalls
can be found in the following:

• Chapter 9 of the SEED Book, Internet Security: A Hands-on Approach, 3rd Edition, by Wenliang Du.
See details at https://www.handsonsecurity.net.

Lab environment. This lab has been tested on our pre-built Ubuntu 20.04 VM, which can be downloaded
from the SEED website. Since we use containers to set up the lab environment, this lab does not depend
much on the SEED VM. You can do this lab using other VMs, physical machines, or VMs on the cloud.

2 Task 0: Get Familiar with the Lab Setup

We will conduct a series of experiments in this chapter. These experiments need to use several computers
in two separate networks. The experiment setup is depicted in Figure 1. We use docker containers for these
machines. Readers can find the container setup file from the website of this lab. In this lab, the network
10.8.0.0/24 serves as an external network, while 192.168.20.0/24 serves as the internal network.

The host 10.8.0.1 is not a container; this IP address is given to the host machine (i.e., the VM
in our case). This machine is the gateway to the Internet. To reach the Internet from the hosts in both
192.168.20.0/24 and 10.8.0.0/24 networks, packets must be routed to 10.8.0.1. The routing
has already been set up.

https://www.handsonsecurity.net

SEED Labs – Firewall Evasion Lab 2

 192.168.20.6 192.168.20.5

192.168.20.11 (eth1)

192.168.20.0/24

10.8.0.11 (eth0)

Router
(Firewall)10.8.0.6

10.8.0.0/24

` `

192.168.20.99

`

`

B B1 B2

A2

10.8.0.1

Internet

`
10.8.0.99

`

A

`

A1

10.8.0.5

Figure 1: Network setup

Router configuration: setting up NAT. The following iptables command is included in the router
configuration inside the docker-compose.yml file. This command sets up a NAT on the router for
the traffic going out from its eth0 interface, except for the packets to 10.8.0.0/24. With this rule,
for packets going out to the Internet, their source IP address will be replaced by the router’s IP address
10.8.0.11. Packets going to 10.8.0.0/24 will not go through NAT.

iptables -t nat -A POSTROUTING ! -d 10.8.0.0/24 -j MASQUERADE -o eth0

In the above command, we assume that eth0 is the name assigned to the interface connecting the router
to the 10.8.0.0/24 network. This is not guaranteed. The router has two Ethernet interfaces; when the
router container is created, the name assigned to this interface might be eth1. You can find out the correct
interface name using the following command. If the name is not eth0, you should make a change to the
command above inside the docker-compose.yml file, and then restart the containers.

ip -br address
lo UNKNOWN 127.0.0.1/8
eth1@if1907 UP 192.168.20.11/24
eth0@if1909 UP 10.8.0.11/24

Router configuration: Firewall rules. We have also added the following firewall rules on the router.
Please make sure that eth0 is the interface connected to the 10.8.0.0/24 network and that eth1 is the
one connected to 192.168.20.0/24. If not, make changes accordingly.

// Ingress filtering: only allows SSH traffic
iptables -A FORWARD -i eth0 -p tcp -m conntrack \

--ctstate ESTABLISHED,RELATED -j ACCEPT
iptables -A FORWARD -i eth0 -p tcp --dport 22 -j ACCEPT
iptables -A FORWARD -i eth0 -p tcp -j DROP

// Egress filtering: block www.example.com
iptables -A FORWARD -i eth1 -d 93.184.216.0/24 -j DROP

SEED Labs – Firewall Evasion Lab 3

The first rule allows TCP packets to come in if they belong to an established or related connection. This
is a stateful firewall rule. The second rule allows SSH, and the third rule drops all other TCP packets if they
do not satisfy the first or the second rule. The fourth rule is an egress firewall rule, and it prevents the internal
hosts from sending packets to 93.184.216.0/24, which is the network for www.example.com.

Lab task. Please block two more websites and add the firewall rules to the setup files. The choice of
websites is up to you. We will use them in one of the tasks. Keep in mind that most popular websites have
multiple IP addresses that can change from time to time. After adding the rules, start the containers, and
verify that all the ingress and egress firewall rules are working as expected.

3 Task 1: Static Port Forwarding

The firewall in the lab setup prevents outside machines from connecting to any TCP server on the internal
network, other than the SSH server. In this task, we would like to use static port forwarding to evade this
restriction. More specifically, we will use ssh to create a static port forwarding tunnel between host A (on
the external network) and host B (on the internal network), so whatever data received on A’s port X will be
sent to B, from where the data is forwarded to the target T’s port Y. In the following command, we use ssh
to create such a tunnel.

$ ssh -4NT -L <A’s IP>:<A’s port X>:<T’s IP>:<T’s port Y> <user id>@<B’s IP>

// -4: use IPv4 only, or we will see some error message.
// -N: do not execute a remote command.
// -T: disable pseudo-terminal allocation (save resources).

Regarding A’s IP, typically we use 0.0.0.0, indicating that our port forwarding will listen to the
connection from all the interfaces on A. If want to limit the connection from a particular interface, we should
use that interface’s IP address. For example, if we want to limit the connection to the loopback interface,
so only the program on the local host can use this port forwarding, we can use 127.0.0.1:<port> or
simply omit the IP address (the default IP address is 127.0.0.1).

Lab task. Please use static port forwarding to create a tunnel between the external network and the internal
network, so we can telnet into the server on B1. Please demonstrate that you can do such telnet from hosts A,
A1 and A2. Moreover, please answer the following questions: (1) How many TCP connections are involved
in this entire process. You should run wireshark or tcpdump to capture the network traffic, and then point
out all the involved TCP connections from the captured traffic. (2) Why can this tunnel successfully help
users evade the firewall rule specified in the lab setup?

4 Task 2: Dynamic Port Forwarding

In the static port forwarding, each port-forwarding tunnel forwards the data to a particular destination. If we
want to forward data to multiple destinations, we need to set up multiple tunnels. For example, using port
forwarding, we can successfully visit the blocked example.com website, but what if the firewall blocks
many other sites, how do we avoid tediously establishing one SSH tunnel for each site? We can use dynamic
port forwarding to solve this problem.

In the lab setup, the router already blocks example.com, so hosts on the internal network cannot
access the example.comwebsite. Please add firewall rules to the router, so two more websites are blocked.

SEED Labs – Firewall Evasion Lab 4

The choice of the websites is up to individual students. Please provide evidences to show that the websites
are indeed blocked.

4.1 Task 2.1: Setting Up Dynamic Port Forwarding

We can use ssh to create a dynamic port-forwarding tunnel between B and A. We run the following com-
mand on host B. In dynamic port forwarding, B is often called proxy.

$ ssh -4NT -D <B’s IP>:<B’s port X> <user id>@<A’s IP>

Regarding B’s IP, typically we use 0.0.0.0, indicating that our port forwarding will listen to the
connection from all the interfaces on B. After the tunnel is set up, we can test it using the curl command.
We specify a proxy option, so curl will send its HTTP request to the proxy B, which listens on port X. The
proxy forwards the data received on this port to the other end of the tunnel (host A), from where the data
will be further forwarded to the target website. The type of proxy is called SOCKS version 5, so that is why
we specify socks5h.

$ curl --proxy socks5h://<B’s IP>:<B’s port> <blocked URL>

Lab task. Please demonstrate that you can visit all the blocked websites using curl from hosts B, B1, and
B2 on the internal network. Please also answer the following questions: (1) Which computer establishes the
actual connection with the intended web server? (2) How does this computer know which server it should
connect to?

4.2 Task 2.2: Testing the Tunnel Using Browser

We can also test the tunnel using a real browser, instead of using curl. Although it is hard to run a browser
inside a container, in the docker setup, by default, the host machine is always attached to any network created
inside docker, and the first IP address on that network is assigned to the host machine. For example, in our
setup, the host machine is the SEED VM; its IP address on the internal network 192.168.20.0/24 is
192.168.20.1.

To use the dynamic port forwarding, we need to configure Firefox’s proxy setting. To get to the setting
page, we can type about:preferences in the URL field or click the Preference menu item. On the
General page, find the "Network Settings" section, click the Settings button, and a window
will pop up. Follow Figure 2 to set up the SOCKS proxy.

Lab task. Once the proxy is configured, we can then browse any website. The requests and replies will
go through the SSH tunnel. Since the host VM can reach the Internet directly, to make sure that our web
browsing traffic has gone through the tunnel, you should do the following: (1) run tcpdump on the router/-
firewall, and point out the traffic involved in the entire port forwarding process. (2) Break the SSH tunnel,
and then try to browse a website. Describe your observation.

Cleanup. After this task, please make sure to remove the proxy setting from Firefox by checking the "No
proxy" option. Without a proper cleanup, future labs may be affected.

SEED Labs – Firewall Evasion Lab 5

<proxy’s IP address> <port#>

Figure 2: Configure the SOCKS Proxy

4.3 Task 2.3: Writing a SOCKS Client Using Python

For port forwarding to work, we need to specify where the data should be forwarded to (the final destination).
In the static case, this piece of information is provided when we set up the tunnel, i.e., it is hard-wired into
the tunnel setup. In the dynamic case, the final destination is dynamic, not specified during the setup, so
how can the proxy know where to forward the data?

Applications using a dynamic port forwarding proxy must tell the proxy where to forward their data.
This is done through an additional protocol between the application and the proxy. A common protocol for
such a purpose is the SOCKS (Socket Secure) protocol, which becomes a de facto proxy standard.

Since the application needs to interact with the proxy using the SOCKS protocol, the application soft-
ware must have a native SOCKS support in order to use SOCKS proxies. Both Firefox and curl have such
a support, but we cannot directly use this type of proxy for the telnet program, because it does not provide a
native SOCKS support. In this task, we implement a very simple SOCKS client program using Python.

#!/bin/env python3
import socks

s = socks.socksocket()
s.set_proxy(socks.SOCKS5, "<proxy’s IP>", <proxy’s port>)
s.connect(("<server’s IP or hostname>", <server’s port>))

hostname = "www.example.com"
req = b"GET / HTTP/1.0\r\nHost: " + hostname.encode(’utf-8’) + b"\r\n\r\n"
s.sendall(req)
response = s.recv(2048)
while response:

print(response.split(b"\r\n"))
response = s.recv(2048)

SEED Labs – Firewall Evasion Lab 6

Lab task. Please complete this program, and use it to access http://www.example.com from hosts
B, B1, and B2. The code given above is only for sending HTTP requests, not HTTPS requests (sending
HTTPS requests is much more complicated due to the TLS handshake). For this task, students only need to
send HTTP requests.

5 Task 3: Virtual Private Network (VPN)

VPN is often used to bypass firewall. In this task, we will use VPN to bypass ingress and egress firewalls.
OpenVPN is a powerful tool that we can use, but in this task, we will simply use SSH, which is often called
the poor man’s VPN. We need to change some default SSH settings on the server to allow VPN creation.
The changes made in /etc/ssh/sshd_config are listed in the following. They are already enabled
inside the containers.

PermitRootLogin yes
PermitTunnel yes

5.1 Task 3.1: Bypassing Ingress Firewall

To create a VPN tunnel from a client to a server, we run the following ssh command. This command creates
a TUN interface tun0 on the VPN client and server machines, and then connect these two TUN interfaces
using an encrypted TCP connection. Both zeros in option 0:0 means tun0. Detailed explanation of the
-w option can be found in the manual of SSH.

ssh -w 0:0 root@<VPN Server’s IP>

It should also be noted that creating TUN interfaces requires the root privilege, so we need to have the
root privilege on both ends of the tunnel. That is why we run it inside the root account, and also SSH into
the root account on the server. The above command only creates a tunnel; further configuration is needed on
both ends of the tunnel. The following improved command include some of the configuration commands:

ssh -w 0:0 root@<VPN Server’s IP> \
-o "PermitLocalCommand=yes" \
-o "LocalCommand= ip addr add 192.168.53.88/24 dev tun0 && \

ip link set tun0 up" \
-o "RemoteCommand=ip addr add 192.168.53.99/24 dev tun0 && \

ip link set tun0 up"
root@<VPN Server’s IP> password: **** ÙPassword: dees

The LocalCommand entry specifies the command running on the VPN client side. It configures the
client-side TUN interface: assigning the 192.168.53.88/24 address to the interface and bringing it
up. The RemoteCommand entry specifies the command running on the VPN server side. It configures the
server-side TUN interface. The configuration is incomplete, and further configuration is still needed.

Lab task. Please create a VPN tunnel between A and B, with B being the VPN server. Then conduct all
the necessary configuration. Once everything is set up, please demonstrate that you can telnet to B, B1, and
B2 from the outside network. Please capture the packets trace, and explain why the packets are not blocked
by the firewall.

http://www.example.com

SEED Labs – Firewall Evasion Lab 7

5.2 Task 3.2: Bypassing Egress Firewall

In this task, we will use VPN to bypass egress firewall. In our setup, we have blocked three external websites,
so the hosts on the 192.168.20.0/24 cannot access these websites. The objective of this task is to use
the VPN tunneling technique to bypass these rules. This objective of is the same as that of Task 2, except
that this time, we use VPN, instead of dynamic port forwarding. The command for creating VPN tunnels is
similar to that in Task 3.1. In this task, we use B as the VPN client and A as the VPN server.

It should be noted that when a packet generated on the VPN client is sent to the VPN server via the
tunnel, the source IP address of the packet will be 192.168.53.88 according to our setup. When this
packet goes out, it will go through VirtualBox’s NAT (Network Address Translation) server, where the
source IP address will be replaced by the IP address of the host computer. The packet will eventually arrive
at example.com, and the reply packet will come back to our host computer, and then be given to the same
NAT server, where the destination address is translated back 192.168.53.88. This is where the problem
comes up.

VirtualBox’s NAT server knows nothing about the 192.168.53.0/24 network, because this is the
one that we create internally for our TUN interface, and VirtualBox has no idea how to route to this network,
much less knowing that the packet should be given to VPN server. As a result, the reply packet from
example.com will be dropped.

To solve this problem, we will set up our own NAT server on VPN server, so when packets from
192.168.53.88 go out, their source IP addresses are always replaced by the VPN server A’s IP ad-
dress (10.8.0.99). We can use the following command to create a NAT server on the eth0 interface of
the VPN server.

iptables -t nat -A POSTROUTING -j MASQUERADE -o eth0

Lab task. Please set up a VPN tunnel between B and A, with A being the VPN server. Please demonstrate
that you can use this VPN tunnel to successfully reach the blocked websites from hosts B, B1 and B2. Please
capture the packets trace, and explain why the packets are not blocked by the firewall.

6 Task 4: Comparing SOCKS5 Proxy and VPN

Both SOCKS5 proxy (dynamic port forwarding) and VPN are commonly used in creating tunnels to bypass
firewalls, as well as to protect communications. Many VPN service providers provide both types of services.
Sometimes, when a VPN service provider tells you that it provides the VPN service, but in reality, it is just a
SOCKS5 proxy. Although both technologies can be used to solve the same problem, they do have significant
differences. Based on your experience from this lab, please compare these two technologies, describing their
differences, pros and cons.

7 Submission

You need to submit a detailed lab report, with screenshots, to describe what you have done and what you
have observed. You also need to provide explanation to the observations that are interesting or surprising.
Please also list the important code snippets followed by explanation. Simply attaching code without any
explanation will not receive credits.

	Overview
	Task 0: Get Familiar with the Lab Setup
	Task 1: Static Port Forwarding
	Task 2: Dynamic Port Forwarding
	Task 2.1: Setting Up Dynamic Port Forwarding
	Task 2.2: Testing the Tunnel Using Browser
	Task 2.3: Writing a SOCKS Client Using Python

	Task 3: Virtual Private Network (VPN)
	Task 3.1: Bypassing Ingress Firewall
	Task 3.2: Bypassing Egress Firewall

	Task 4: Comparing SOCKS5 Proxy and VPN
	Submission

