
SEED Labs – Remote DNS Cache Poisoning Attack Lab 1

The Kaminsky Attack Lab

Copyright © 2006 - 2020 by Wenliang Du.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. If you remix, transform, or build upon the material, this copyright notice must be left intact, or
reproduced in a way that is reasonable to the medium in which the work is being re-published.

1 Lab Overview

The objective of this lab is for students to gain the first-hand experience on the remote DNS cache poisoning
attack, also called the Kaminsky DNS attack. DNS (Domain Name System) is the Internet’s phone book;
it translates hostnames to IP addresses and vice versa. This translation is through DNS resolution, which
happens behind the scene. DNS attacks manipulate this resolution process in various ways, with an intent to
misdirect users to alternative destinations, which are often malicious. This lab focuses on a particular DNS
attack technique, called DNS Cache Poisoning attack. In another SEED Lab, we have designed activities to
conduct the same attack in a local network environment, i.e., the attacker and the victim DNS server are on
the same network, where packet sniffing is possible. In this remote attack lab, packet sniffing is not possible,
so the attack becomes much more challenging than the local attack. This lab covers the following topics:

• DNS and how it works
• DNS server setup
• DNS cache poisoning attack
• Spoofing DNS responses
• Packet spoofing

Readings and videos. Detailed coverage of the DNS protocol and attacks can be found in the following:

• Chapter 18 of the SEED Book, Computer & Internet Security: A Hands-on Approach, 3rd Edition, by
Wenliang Du. See details at https://www.handsonsecurity.net.

• Section 7 of the SEED Lecture, Internet Security: A Hands-on Approach, by Wenliang Du. See details
at https://www.handsonsecurity.net/video.html.

Lab environment. This lab has been tested on the SEED Ubuntu 20.04 VM. You can download a pre-built
image from the SEED website, and run the SEED VM on your own computer. However, most of the SEED
labs can be conducted on the cloud, and you can follow our instruction to create a SEED VM on the cloud.

2 Lab Environment Setup (Task 1)

The main target for DNS cache poisoning attacks is local DNS server. Obviously, it is illegal to attack a real
server, so we need to set up our own DNS server to conduct the attack experiments. The lab environment
needs four separate machines: one for the victim, one for the DNS server, and two for the attacker. The lab
environment setup is illustrated in Figure 1.

We put all these machines on the same LAN only for the sake of simplicity. Students are not allowed to
exploit this fact in their attacks; they should treat the attacker machine as a remote machine, i.e., the attacker
cannot sniff packets on the LAN. This is different from the local DNS attack.

https://www.handsonsecurity.net
https://www.handsonsecurity.net/video.html

SEED Labs – Remote DNS Cache Poisoning Attack Lab 2

User
10.9.0.5

` ` `

Local DNS Server
10.9.0.53

Attacker’s Nameserver
10.9.0.153

Attacker
10.9.0.1

Network: 10.9.0.0/24

(zone: attacker32.com)

Figure 1: Environment setup for the experiment

2.1 Container Setup and Commands

Please download the Labsetup.zip file to your VM from the lab’s website, unzip it, enter the Labsetup
folder, and use the docker-compose.yml file to set up the lab environment. Detailed explanation of the
content in this file and all the involved Dockerfile can be found from the user manual, which is linked
to the website of this lab. If this is the first time you set up a SEED lab environment using containers, it is
very important that you read the user manual.

In the following, we list some of the commonly used commands related to Docker and Compose. Since
we are going to use these commands very frequently, we have created aliases for them in the .bashrc file
(in our provided SEEDUbuntu 20.04 VM).

$ docker-compose build # Build the container images
$ docker-compose up # Start the containers
$ docker-compose down # Shut down the containers

// Aliases for the Compose commands above
$ dcbuild # Alias for: docker-compose build
$ dcup # Alias for: docker-compose up
$ dcdown # Alias for: docker-compose down

All the containers will be running in the background. To run commands on a container, we often need
to get a shell on that container. We first need to use the "docker ps" command to find out the ID of
the container, and then use "docker exec" to start a shell on that container. We have created aliases for
them in the .bashrc file.

$ dockps // Alias for: docker ps --format "{{.ID}} {{.Names}}"
$ docksh <id> // Alias for: docker exec -it <id> /bin/bash

// The following example shows how to get a shell inside hostC
$ dockps
b1004832e275 hostA-10.9.0.5
0af4ea7a3e2e hostB-10.9.0.6
9652715c8e0a hostC-10.9.0.7

$ docksh 96
root@9652715c8e0a:/#

SEED Labs – Remote DNS Cache Poisoning Attack Lab 3

// Note: If a docker command requires a container ID, you do not need to
// type the entire ID string. Typing the first few characters will
// be sufficient, as long as they are unique among all the containers.

If you encounter problems when setting up the lab environment, please read the “Common Problems”
section of the manual for potential solutions.

2.2 About the Attacker Container

In this lab, we can either use the VM or the attacker container as the attacker machine. If you look at
the Docker Compose file, you will see that the attacker container is configured differently from the other
containers.

• Shared folder. When we use the attacker container to launch attacks, we need to put the attacking
code inside the attacker container. Code editing is more convenient inside the VM than in containers,
because we can use our favorite editors. In order for the VM and container to share files, we have
created a shared folder between the VM and the container using the Docker volumes. If you look
at the Docker Compose file, you will find out that we have added the following entry to some of the
containers. It indicates mounting the ./volumes folder on the host machine (i.e., the VM) to the
/volumes folder inside the container. We will write our code in the ./volumes folder (on the
VM), so they can be used inside the containers.

volumes:
- ./volumes:/volumes

• Host mode. In this lab, the attacker needs to be able to sniff packets, but running sniffer programs
inside a container has problems, because a container is effectively attached to a virtual switch, so it
can only see its own traffic, and it is never going to see the packets among other containers. To solve
this problem, we use the host mode for the attacker container. This allows the attacker container to
see all the traffics. The following entry used on the attacker container:

network_mode: host

When a container is in the host mode, it sees all the host’s network interfaces, and it even has the
same IP addresses as the host. Basically, it is put in the same network namespace as the host VM.
However, the container is still a separate machine, because its other namespaces are still different
from the host.

2.3 Summary of the DNS Configuration

All the containers are already configured for this lab. We provide a summary here, so students are aware of
these configurations. Detailed explanation of the configuration can be found from the manual.

Local DNS Server. We run the BIND 9 DNS server program on the local DNS server. BIND 9 gets its
configuration from a file called /etc/bind/named.conf. This file is the primary configuration file, and
it usually contains several "include" entries, i.e., the actual configurations are stored in those included
files. One of the included files is called /etc/bind/named.conf.options. This is where the actual
configuration is set.

SEED Labs – Remote DNS Cache Poisoning Attack Lab 4

• Simplification. DNS servers now randomize the source port number in their DNS queries; this makes
the attacks much more difficult. Unfortunately, many DNS servers still use predictable source port
number. For the sake of simplicity in this lab, we fix the source port number to 33333 in the config-
uration file.

• Turning off DNSSEC. DNSSEC is introduced to protect against spoofing attacks on DNS servers. To
show how attacks work without this protection mechanism, we have turned off the protection in the
configuration file.

• DNS cache. During the attack, we need to inspect the DNS cache on the local DNS server. The
following two commands are related to DNS cache. The first command dumps the content of the
cache to the file /var/cache/bind/dump.db, and the second command clears the cache.

rndc dumpdb -cache // Dump the cache to the specified file
rndc flush // Flush the DNS cache

• Forwarding the attacker32.com zone. A forward zone is added to the local DNS server, so
if anybody queries the attacker32.com domain, the query will be forwarded to this domain’s
nameserver, which is hosted in the attacker container. The zone entry is put inside the named.conf
file.

zone "attacker32.com" {
type forward;
forwarders {

10.9.0.153;
};

};

User machine. The user container 10.9.0.5 is already configured to use 10.9.0.53 as its local DNS
server. This is achieved by changing the resolver configuration file (/etc/resolv.conf) of the user
machine, so the server 10.9.0.53 is added as the first nameserver entry in the file, i.e., this server will
be used as the primary DNS server.

Attacker’s Nameserver. On the attacker’s nameserver, we host two zones. One is the attacker’s legitimate
zone attacker32.com, and the other is the fake example.com zone. The zones are configured in
/etc/bind/named.conf:

zone "attacker32.com" {
type master;
file "/etc/bind/attacker32.com.zone";

};

zone "example.com" {
type master;
file "/etc/bind/example.com.zone";

};

SEED Labs – Remote DNS Cache Poisoning Attack Lab 5

2.4 Testing the DNS Setup

From the User container, we will run a series of commands to ensure that our lab setup is correct. In your
lab report, please document your testing results.

Get the IP address of ns.attacker32.com. When we run the following dig command, the lo-
cal DNS server will forward the request to the Attacker nameserver due to the forward zone entry
added to the local DNS server’s configuration file. Therefore, the answer should come from the zone file
(attacker32.com.zone) that we set up on the Attacker nameserver. If this is not what you get, your
setup has issues. Please describe your observation in your lab report.

$ dig ns.attacker32.com

Get the IP address of www.example.com. Two nameservers are now hosting the example.com
domain, one is the domain’s official nameserver, and the other is the Attacker container. We will query these
two nameservers and see what response we will get. Please run the following two commands (from the User
machine), and describe your observation.

// Send the query to our local DNS server, which will send the query
// to example.com’s official nameserver.
$ dig www.example.com

// Send the query directly to ns.attacker32.com
$ dig @ns.attacker32.com www.example.com

Obviously, nobody is going to ask ns.attacker32.com for the IP address of www.example.com;
they will always ask the example.com domain’s official nameserver for answers. The objective of the
DNS cache poisoning attack is to get the victims to ask ns.attacker32.com for the IP address of
www.example.com. Namely, if our attack is successful, if we just run the first dig command, the one
without the @ option, we should get the fake result from the attacker, instead of getting the authentic one
from the domain’s legitimate nameserver.

3 The Attack Tasks

The main objective of DNS attacks is to redirect the user to another machine B when the user tries to get to
machine A using A’s host name. For example, assuming www.example.com is an online banking site.
When the user tries to access this site using the correct URL www.example.com, if the adversaries can
redirect the user to a malicious web site that looks very much like www.example.com, the user might be
fooled and give away his/her credentials to the attacker.

In this task, we use the domain name www.example.com as our attacking target. It should be noted
that the example.com domain name is reserved for use in documentation, not for any real company. The
authentic IP address of www.example.com is 93.184.216.34, and its nameserver is managed by the
Internet Corporation for Assigned Names and Numbers (ICANN). When the user runs the dig command
on this name or types the name in the browser, the user’s machine sends a DNS query to its local DNS
server, which will eventually ask for the IP address from example.com’s nameserver.

The goal of the attack is to launch the DNS cache poisoning attack on the local DNS server, such that
when the user runs the dig command to find out www.example.com’s IP address, the local DNS server
will end up going to the attacker’s nameserver ns.attacker32.com to get the IP address, so the IP

SEED Labs – Remote DNS Cache Poisoning Attack Lab 6

address returned can be any number that is decided by the attacker. As results, the user will be led to the
attacker’s web site, instead of to the authentic www.example.com.

Victim
DNS server

(Apollo)

Attacker’s DNS Server
ns.attacker32.comAttacker

(3) Answer:
Go ask .COM server

(4) Query .COM
server

(2) Query the
Root server

(5) Answer:
Go ask example.com’s
name server

(7) Answer:
www.example.com’s

IP address

(6) Query
example.com’s

name server

(1) Query: what’s the
IP address of

www.example.com

(8) Answer:
www.example.com’s
IP address

.COM
DNS Server

Root
DNS Server

example.com
DNS Server

Figure 2: The complete DNS query process

3.1 How Kaminsky attack works

In this task, the attacker sends a DNS query request to the victim DNS server (Apollo), triggering a DNS
query from Apollo. The query may go through one of the root DNS servers, the .COM DNS server, and
the final result will come back from example.com’s DNS server. This is illustrated in Figure 2. In case
that example.com’s nameserver information is already cached by Apollo, the query will not go through
the root or the .COM server; this is illustrated in Figure 3. In this lab, the situation depicted in Figure 3 is
more common, so we will use this figure as the basis to describe the attack mechanism.

While Apollo waits for the DNS reply from example.com’s name server, the attacker can send
forged replies to Apollo, pretending that the replies are from example.com’s nameserver. If the forged
replies arrive first, it will be accepted by Apollo. The attack will be successful.

If you have done our local DNS attack lab, you should realize that those attacks assume that the attacker
and the DNS server are on the same LAN, i.e., the attacker can observe the DNS query message. When the
attacker and the DNS server are not on the same LAN, the cache poisoning attack becomes more difficult.
The difficulty is mainly caused by the fact that the transaction ID in the DNS response packet must match
with that in the query packet. Because the transaction ID in the query is usually randomly generated, without
seeing the query packet, it is not easy for the attacker to know the correct ID.

Obviously, the attacker can guess the transaction ID. Since the size of the ID is only 16 bits, if the
attacker can forge K responses within the attack window (i.e. before the legitimate response arrives), the

SEED Labs – Remote DNS Cache Poisoning Attack Lab 7

Victim
DNS server

(Apollo)

Attacker’s DNS Server
ns.attacker32.comAttacker

(1) Query: what’s the IP
address of

twysw.example.com

example.com
DNS Server

(3) Answer:
twysw.example.com’s

IP address

(2) Query
example.com’s

DNS server

(3) Spoofed Answer: with
ns.attacker32.com
in the Authority section

Figure 3: The Kaminsky Attack

probability of success is K over 216. Sending out hundreds of forged responses is not impractical, so it will
not take too many tries before the attacker can succeed.

However, the above hypothetical attack has overlooked the cache effect. In reality, if the attacker is not
fortunate enough to make a correct guess before the real response packet arrives, correct information will
be cached by the DNS server for a while. This caching effect makes it impossible for the attacker to forge
another response regarding the same name, because the DNS server will not send out another DNS query
for this name before the cache times out. To forge another response on the same name, the attacker has to
wait for another DNS query on this name, which means he/she has to wait for the cache to time out. The
waiting period can be hours or days.

The Kaminsky Attack. Dan Kaminsky came up with an elegant technique to defeat the caching effect [2].
With the Kaminsky attack, attackers will be able to continuously attack a DNS server on a domain name,
without the need for waiting, so attacks can succeed within a very short period of time. Details of the attacks
are described in [1, 2]. In this task, we will try this attack method. The following steps with reference to
Figure 3 outlines the attack.

1. The attacker queries the DNS Server Apollo for a non-existing name in example.com, such as
twysw.example.com, where twysw is a random name.

2. Since the mapping is unavailable in Apollo’s DNS cache, Apollo sends a DNS query to the name-
server of the example.com domain.

3. While Apollo waits for the reply, the attacker floods Apollo with a stream of spoofed DNS
response, each trying a different transaction ID, hoping one is correct. In the response, not only
does the attacker provide an IP resolution for twysw.example.com, the attacker also provides an
“Authoritative Nameservers” record, indicating ns.attacker32.com as the nameserver for the
example.com domain. If the spoofed response beats the actual responses and the transaction ID

SEED Labs – Remote DNS Cache Poisoning Attack Lab 8

matches with that in the query, Apollo will accept and cache the spoofed answer, and and thus
Apollo’s DNS cache is poisoned.

4. Even if the spoofed DNS response fails (e.g. the transaction ID does not match or it comes too late),
it does not matter, because the next time, the attacker will query a different name, so Apollo has to
send out another query, giving the attack another chance to do the spoofing attack. This effectively
defeats the caching effect.

5. If the attack succeeds, in Apollo’s DNS cache, the nameserver for example.com will be replaced
by the attacker’s nameserver ns.attacker32.com. To demonstrate the success of this attack,
students need to show that such a record is in Apollo’s DNS cache.

Task overview. Implementing the Kaminsky attack is quite challenging, so we break it down into several
sub-tasks. In Task 2, we construct the DNS request for a random hostname in the example.com do-
main. In Task 3, we construct a spoofed DNS reply from example.com’s nameserver. In Task 4, we put
everything together to launch the Kaminsky attack. Finally in Task 5, we verify the impact of the attack.

3.2 Task 2: Construct DNS request

This task focuses on sending out DNS requests. In order to complete the attack, attackers need to trigger
the target DNS server to send out DNS queries, so they have a chance to spoof DNS replies. Since attackers
need to try many times before they can succeed, it is better to automate the process using a program.

Students need to write a program to send out DNS queries to the target DNS server (i.e., the local
DNS server in our setup). Students’ job is to write this program and demonstrate (using Wireshark) that
their queries can trigger the target DNS server to send out corresponding DNS queries. The performance
requirement for this task is not high, so students can use C or Python (using Scapy) to write this code. A
Python code snippet is provided in the following (the +++’s are placeholders; students need to replace them
with actual values):

Qdsec = DNSQR(qname=’www.example.com’)
dns = DNS(id=0xAAAA, qr=0, qdcount=1, ancount=0, nscount=0,

arcount=0, qd=Qdsec)

ip = IP(dst=’+++’, src=’+++’)
udp = UDP(dport=+++, sport=+++, chksum=0)
request = ip/udp/dns

3.3 Task 3: Spoof DNS Replies.

In this task, we need to spoof DNS replies in the Kaminsky attack. Since our target is example.com, we
need to spoof the replies from this domain’s nameserver. Students first need to find out the IP addresses
of example.com’s legitimate nameservers (it should be noted that there are multiple nameservers for this
domain).

Students can use Scapy to implement this task. The following code snippet constructs a DNS response
packet that includes a question section, an answer section, and an NS section. In the sample code, we use
+++ as placeholders; students need to replace them with the correct values that are needed in the Kaminsky
attack. Students need to explain why they pick those values.

name = ’+++’

SEED Labs – Remote DNS Cache Poisoning Attack Lab 9

domain = ’+++’
ns = ’+++’

Qdsec = DNSQR(qname=name)
Anssec = DNSRR(rrname=name, type=’A’, rdata=’1.2.3.4’, ttl=259200)
NSsec = DNSRR(rrname=domain, type=’NS’, rdata=ns, ttl=259200)
dns = DNS(id=0xAAAA, aa=1, rd=1, qr=1,

qdcount=1, ancount=1, nscount=1, arcount=0,
qd=Qdsec, an=Anssec, ns=NSsec)

ip = IP(dst=’+++’, src=’+++’)
udp = UDP(dport=+++, sport=+++, chksum=0)
reply = ip/udp/dns

Since this reply by itself will not be able to lead to a successful attack, to demonstrate this task, students
need to use Wireshark to capture the spoofed DNS replies, and show that the spoofed packets are valid.

3.4 Task 4: Launch the Kaminsky Attack

Now we can put everything together to conduct the Kaminsky attack. In the attack, we need to send out
many spoofed DNS replies, hoping one of them hits the correct transaction number and arrives sooner than
the legitimate replies. Therefore, speed is essential: the more packets we can send out, the higher the success
rate is. If we use Scapy to send the spoofed DNS replies like what we did in the previous task, the success
rate is too low. Students can use C, but constructing DNS packets in C is non-trivial. We introduce a hybrid
approach using both Scapy and C (see the SEED book for details).

With the hybrid approach, we first use Scapy to generate a DNS packet template, which is stored in a
file. We then load this template into a C program, and make small changes to some of the fields, and then
send out the packet. We have included a skeleton C code in Labsetup/Files/attack.c. Students
can make changes in the marked areas. Detailed explanation of the code is given in the guideline section.

Check the DNS cache. To check whether the attack is successful or not, we need to check the dump.db
file to see whether our spoofed DNS response has been successfully accepted by the DNS server. The
following commands dump the DNS cache, and search whether the cache contains the word attacker (in
our attack, we used attacker32.com as the attacker’s domain; if students use a different domain name,
they should search for a different word).

rndc dumpdb -cache && grep attacker /var/cache/bind/dump.db

3.5 Task 5: Result Verification

If the attack is successful, in the local DNS server’s DNS cache, the NS record for example.com will
become ns.attacker32.com. When this server receives a DNS query for any hostname inside the
example.com domain, it will send a query to ns.attacker32.com, instead of sending to the domain’s
legitimate nameserver.

To verify whether your attack is successful or not, go to the User machine, run the following two dig
commands. In the responses, the IP addresses for www.example.com should be the same for both com-
mands, and it should be whatever you have included in the zone file on the Attacker nameserver.

// Ask the local DNS server to do the query
$ dig www.example.com

SEED Labs – Remote DNS Cache Poisoning Attack Lab 10

// Directly query the attacker32 nameserver
$ dig @ns.attacker32.com www.example.com

Please include your observation (screenshots) in the lab report, and explain why you think your attack
is successful. In particular, when you run the first dig commands, use Wireshark to capture the network
traffic, and point out what packets are triggered by this dig command. Use the packet trace to prove that
your attack is successful. Note that DNS results may be cached on the local DNS server after the first dig
command is run. This could influence the results if you run the first dig command before using Wireshark.
You can clear the cache using "sudo rndc flush" on the local DNS server, but that will require you
to redo the attack.

4 Guidelines

To implement the Kaminsky attack, we can use Scapy to do the packet spoofing. Unfortunately, the speed
of Python is too slow; the number of packets generated per second is too low to make the attack successful.
It is better to use a C program. This could be quite challenging to many students, because constructing DNS
packets using C is not very easy. I have developed a hybrid method, and have experimented with it in my
own class. Using this approach, students’ time spent on coding can be significantly reduced, so they can
spend more time focusing on the actual attack.

The idea is to leverage the strength of both Scapy and C: Scapy is much more convenient in creating
DNS packets than C, but C is much faster. Therefore we simply use Scapy to create the spoofed DNS
packet, and save it to a file. We then load the packet into a C program. Even though we need to send a lot
of different DNS packets during the Kaminsky attack, these packets are mostly the same, except for a few
fields. Therefore, we can use the packet generated from Scapy as the basis, find the offsets where changes
need to be made (e.g., the transaction ID field), and directly make changes. This will be much easier than
creating the entire DNS packets in C. After the changes are made, we can use the raw socket to send out the
packets. Details of such a hybrid method are provided in the Packet Sniffing and Spoofing chapter of the
SEED book [1]. The following Scapy program creates a simple DNS reply packet, and saves it into a file.

Listing 1: generate dns reply.py
#!/usr/bin/env python3
from scapy.all import *

Construct the DNS header and payload
name = ’twysw.example.com’
Qdsec = DNSQR(qname=name)
Anssec = DNSRR(rrname=name, type=’A’, rdata=’1.1.2.2’, ttl=259200)
dns = DNS(id=0xAAAA, aa=1, rd=0, qr=1,

qdcount=1, ancount=1, nscount=0, arcount=0,
qd=Qdsec, an=Anssec)

Construct the IP, UDP headers, and the entire packet
ip = IP(dst=’10.0.2.7’, src=’1.2.3.4’, chksum=0)
udp = UDP(dport=33333, sport=53, chksum=0)
pkt = ip/udp/dns

Save the packet to a file
with open(’ip.bin’, ’wb’) as f:

f.write(bytes(pkt))

In a C program, we load the packet from the file ip.bin, and use it as our packet template, based on
which we create many similar packets, and flood the target local DNS servers with these spoofed replies.
For each reply, we change three places: the transaction ID and the name twysw occurred in two places (the
question section and the answer section). The transaction ID is at a fixed place (offset 28 from the beginning
of our IP packet), but the offset for the name twysw depends on the length of the domain name. We can use
a binary editor program, such as bless, to view the binary file ip.bin and find the two offsets of twysw.
In our packet, they are at offsets 41 and 64.

The following code snippet shows how we make change to these fields. We change the name in our reply
to bbbbb.example.com, and then send out a spoofed DNS replies, with transaction ID being 1000. In
the code, the variable ip points to the beginning of the IP packet.

// Modify the name in the question field (offset=41)
memcpy(ip+41, "bbbbb" , 5);

// Modify the name in the answer field (offset=64)
memcpy(ip+64, "bbbbb" , 5);

// Modify the transaction ID field (offset=28)
unsigned short id = 1000;
unsigned short id_net_order = htons(id);
memcpy(ip+28, &id_net_order, 2);

Generate random names. In the Kaminsky attack, we need to generate random hostnames. There are
many ways to do so. The following code snippet shows how to generate a random name consisting of 5
characters.

char a[26]="abcdefghijklmnopqrstuvwxyz";

// Generate a random name of length 5
char name[6];
name[5] = 0;
for (int k=0; k<5; k++)

name[k] = a[rand() % 26];

Compile the program. To compile the program, we can use the following command:

$ gcc -o attack attack.c

// For Apple Silicon machines: use static binding
$ gcc -static -o attack attack.c

5 Submission

You need to submit a detailed lab report, with screenshots, to describe what you have done and what you
have observed. You also need to provide explanation to the observations that are interesting or surprising.
Please also list the important code snippets followed by explanation. Simply attaching code without any
explanation will not receive credits.

SEED Labs – Remote DNS Cache Poisoning Attack Lab 12

References

[1] Wenliang Du. Computer & Internet Security: A Hands-on Approach, 2nd Edition. Self publishing, May
2019. ISBN: 978-1733003933. URL: https://www.handsonsecurity.net.

[2] D. Schneider. Fresh phish, how a recently discovered flaw in the internet’s domain name system makes
it easy for scammers to lure you to fake web sites. IEEE Spectrum, 2008. http://spectrum.
ieee.org/computing/software/fresh-phish.

https://www.handsonsecurity.net
http://spectrum.ieee.org/computing/software/fresh-phish
http://spectrum.ieee.org/computing/software/fresh-phish

	Lab Overview
	Lab Environment Setup (Task 1)
	Container Setup and Commands
	About the Attacker Container
	Summary of the DNS Configuration
	Testing the DNS Setup

	The Attack Tasks
	How Kaminsky attack works
	Task 2: Construct DNS request
	Task 3: Spoof DNS Replies.
	Task 4: Launch the Kaminsky Attack
	Task 5: Result Verification

	Guidelines
	Submission

