
SEED Labs – Pseudo Random Number Generation Lab 1

Pseudo Random Number Generation Lab

Copyright © 2018 by Wenliang Du.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. If you remix, transform, or build upon the material, this copyright notice must be left intact, or
reproduced in a way that is reasonable to the medium in which the work is being re-published.

1 Overview

Generating random numbers is a quite common task in security software. In many cases, encryption keys
are not provided by users, but are instead generated inside the software. Their randomness is extremely
important; otherwise, attackers can predict the encryption key, and thus defeat the purpose of encryption.
Many developers know how to generate random numbers (e.g. for Monte Carlo simulation) from their
prior experiences, so they use the similar methods to generate the random numbers for security purpose.
Unfortunately, a sequence of random numbers may be good for Monte Carlo simulation, but they may be
bad for encryption keys. Developers need to know how to generate secure random numbers, or they will
make mistakes. Similar mistakes have been made in some well-known products, including Netscape and
Kerberos.

In this lab, students will learn why the typical random number generation method is not appropriate
for generating secrets, such as encryption keys. They will further learn a standard way to generate pseudo
random numbers that are good for security purposes. This lab covers the following topics:

• Pseudo random number generation
• Mistakes in random number generation
• Generating encryption key
• The /dev/random and /dev/urandom device files

Lab environment. This lab has been tested on the SEED Ubuntu 20.04 VM. You can download a pre-built
image from the SEED website, and run the SEED VM on your own computer. However, most of the SEED
labs can be conducted on the cloud, and you can follow our instruction to create a SEED VM on the cloud.

2 Lab Tasks

2.1 Task 1: Generate Encryption Key in a Wrong Way

To generate good pseudo random numbers, we need to start with something that is random; otherwise, the
outcome will be quite predictable. The following program uses the current time as a seed for the pseudo
random number generator.

Listing 1: ”Generating a 128-bit encryption key”
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define KEYSIZE 16

void main()



SEED Labs – Pseudo Random Number Generation Lab 2

{
int i;
char key[KEYSIZE];

printf("%lld\n", (long long) time(NULL));
srand (time(NULL)); À

for (i = 0; i< KEYSIZE; i++){
key[i] = rand()%256;
printf("%.2x", (unsigned char)key[i]);

}
printf("\n");

}

The library function time() returns the time as the number of seconds since the Epoch, 1970-01-01
00:00:00 +0000 (UTC). Run the code above, and describe your observations. Then, comment out
Line À, run the program again, and describe your observations. Use the observations in both cases to
explain the purpose of the srand() and time() functions in the code.

2.2 Task 2: Guessing the Key

On April 17, 2018, Alice finished her tax return, and she saved the return (a PDF file) on her disk. To protect
the file, she encrypted the PDF file using a key generated from the program described in Task 1. She wrote
down the key in a notebook, which is securely stored in a safe. A few month later, Bob broke into her
computer and gets a copy of the encrypted tax return. Since Alice is CEO of a big company, this file is very
valuable.

Bob cannot get the encryption key, but by looking around Alice’s computer, he saw the key-generation
program, and suspected that Alice’s encryption key may be generated by the program. He also noticed the
timestamp of the encrypted file, which is "2018-04-17 23:08:49". He guessed that the key may be
generated within a two-hour window before the file was created.

Since the file is a PDF file, which has a header. The beginning part of the header is always the version
number. Around the time when the file was created, PDF-1.5 was the most common version, i.e., the header
starts with %PDF-1.5, which is 8 bytes of data. The next 8 bytes of the data are quite easy to predict as
well. Therefore, Bob easily got the first 16 bytes of the plaintext. Based on the meta data of the encrypted
file, he knows that the file is encrypted using aes-128-cbc. Since AES is a 128-bit cipher, the 16-byte
plaintext consists of one block of plaintext, so Bob knows a block of plaintext and its matching ciphertext.
Moreover, Bob also knows the Initial Vector (IV) from the encrypted file (IV is never encrypted). Here is
what Bob knows:

Plaintext: 255044462d312e350a25d0d4c5d80a34
Ciphertext: d06bf9d0dab8e8ef880660d2af65aa82
IV: 09080706050403020100A2B2C2D2E2F2

Your job is to help Bob find out Alice’s encryption key, so you can decrypt the entire document. You
should write a program to try all the possible keys. If the key was generated correctly, this task will not be
possible. However, since Alice used time() to seed her random number generator, you should be able
to find out her key easily. You can use the date command to print out the number of seconds between a
specified time and the Epoch, 1970-01-01 00:00:00 +0000 (UTC). See the following example.

$ date -d "2018-04-15 15:00:00" +%s
1523818800



SEED Labs – Pseudo Random Number Generation Lab 3

2.3 Task 3: Measure the Entropy of Kernel

In the virtual world, it is difficult to create randomness, i.e., software alone is hard to create random numbers.
Most systems resort to the physical world to gain the randomness. Linux gains the randomness from the
following physical resources:

void add_keyboard_randomness(unsigned char scancode);
void add_mouse_randomness(__u32 mouse_data);
void add_interrupt_randomness(int irq);
void add_blkdev_randomness(int major);

The first two are quite straightforward to understand: the first one uses the timing between key presses;
the second one uses mouse movement and interrupt timing; the third one gathers random numbers using
the interrupt timing. Of course, not all interrupts are good sources of randomness. For example, the timer
interrupt is not a good choice, because it is predictable. However, disk interrupts are a better measure. The
last one measures the finishing time of block device requests.

The randomness is measured using entropy, which is different from the meaning of entropy in the infor-
mation theory. Here, it simply means how many bits of random numbers the system currently has. You can
find out how much entropy the kernel has at the current moment using the following command.

$ cat /proc/sys/kernel/random/entropy_avail

Let us monitor the change of the entropy by running the above command via watch, which executes
a program periodically, showing the output in fullscreen. The following command runs the cat program
every 0.1 second.

$ watch -n .1 cat /proc/sys/kernel/random/entropy_avail

Please run the above command. While it is running, move your mouse, click your mouse, type some-
things, read a large file, visit a website. What activities increases the entropy significantly. Please describe
your observation in your report.

2.4 Task 4: Get Pseudo Random Numbers from /dev/random

Linux stores the random data collected from the physical resources into a random pool, and then uses
two devices to turn the randomness into pseudo random numbers. These two devices are /dev/random
and /dev/urandom. They have different behaviors. The /dev/random device is a blocking device.
Namely, every time a random number is given out by this device, the entropy of the randomness pool will be
decreased. When the entropy reaches zero, /dev/random will block, until it gains enough randomness.

Let us design an experiment to observe the behavior of the /dev/random device. We will use the cat
command to keep reading pseudo random numbers from /dev/random. We pipe the output to hexdump
for nice printing.

$ cat /dev/random | hexdump

Please run the above command and at the same time use the watch command to monitor the entropy.
What happens if you do not move your mouse or type anything. Then, randomly move your mouse and see
whether you can observe any difference. Please describe and explain your observations.

Question: If a server uses /dev/random to generate the random session key with a client. Please
describe how you can launch a Denial-Of-Service (DOS) attack on such a server.



SEED Labs – Pseudo Random Number Generation Lab 4

2.5 Task 5: Get Random Numbers from /dev/urandom

Linux provides another way to access the random pool via the /dev/urandom device, except that this
device will not block. Both /dev/random and /dev/urandom use the random data from the pool to
generate pseudo random numbers. When the entropy is not sufficient, /dev/random will pause, while
/dev/urandom will keep generating new numbers. Think of the data in the pool as the “seed”, and as we
know, we can use a seed to generate as many pseudo random numbers as we want.

Let us see the behavior of /dev/urandom. We again use cat to get pseudo random numbers from
this device. Please run the following command, and the describe whether moving the mouse has any effect
on the outcome.

$ cat /dev/urandom | hexdump

Let us measure the quality of the random number. We can use a tool called ent, which has already been
installed in our VM. According to its manual, “ent applies various tests to sequences of bytes stored in files
and reports the results of those tests. The program is useful for evaluating pseudo-random number generators
for encryption and statistical sampling applications, compression algorithms, and other applications where
the information density of a file is of interest”. Let us first generate 1 MB of pseudo random number from
/dev/urandom and save them in a file. Then we run ent on the file. Please describe your outcome, and
analyze whether the quality of the random numbers is good or not.

$ head -c 1M /dev/urandom > output.bin
$ ent output.bin

Theoretically speaking, the /dev/random device is more secure, but in practice, there is not much
difference, because the “seed” used by /dev/urandom is random and non-predictable (/dev/urandom
does re-seed whenever new random data become available). A big problem of the blocking behavior of
/dev/random is that blocking can lead to denial of service attacks. Therefore, it is recommended that we
use /dev/urandom to get random numbers. To do that in our program, we just need to read directly from
this device file. The following code snippet shows how.

#define LEN 16 // 128 bits

unsigned char *key = (unsigned char *) malloc(sizeof(unsigned char)*LEN);
FILE* random = fopen("/dev/urandom", "r");
fread(key, sizeof(unsigned char)*LEN, 1, random);
fclose(random);

Please modify the above code snippet to generate a 256-bit encryption key. Please compile and run your
code; print out the numbers and include the screenshot in the report.

3 Submission

You need to submit a detailed lab report, with screenshots, to describe what you have done and what you
have observed. You also need to provide explanation to the observations that are interesting or surprising.
Please also list the important code snippets followed by explanation. Simply attaching code without any
explanation will not receive credits.


	Overview
	Lab Tasks
	Task 1: Generate Encryption Key in a Wrong Way
	Task 2: Guessing the Key
	Task 3: Measure the Entropy of Kernel
	Task 4: Get Pseudo Random Numbers from /dev/random
	Task 5: Get Random Numbers from /dev/urandom

	Submission

